Skip to main content
Log in

Long-tail distribution based multiscale-multiband autoregressive detection for hyperspectral imagery

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

There are often demands for region target detection such as air pollution detection and oil spill monitoring, even though small target detection has gained much attention in the field of hyperspectral detection. In this paper, we present a long-tail distribution based multiscale-multivariate autoregressive hyperspectral detector to handle such region targets. We establish a multiscale-multiband autoregresive model (MMAM) to characterize the inter-band, the spatial and the band-spatial correlation in hyperspectral data simultaneously and have the corresponding multiscale-multiband likelihood ratio (MMLR) test. Due to the long tail property of MMAM noise, we treat the statistical characteristics of MMAM noise as multivariate t distribution. Then, alternating projection involving fixed-point iteration and gradient based searching (APFPGS) are utilized to fit this statistical distribution. Experimental results on the real hyperspectral imagery recorded with A series of Environmental Probe System (EPS-A) show that our approach has better performance in hyperspectral region target detection than the other four detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alawadi, F., Amos, C., Byfield, V., & Petrov, P. (2008). The application of hyperspectral image techniques on MODIS data for the detection of oil spills in the rsa. In SPIE proceedings of remote sensing for environmental monitoring, GIS applications, and geology VIII, Vol. 7110.

  • Bjorck A. (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • Boyd S., Vandenberghe L. (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chang C. I., Chiang S. S. (2002) Anomaly detection and classification for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 40(6): 1314–1325

    Article  Google Scholar 

  • Cui P. L., Pan Q., K Zhao G. W., Li J. (2006) Estimation of the projection operator in a multiresolution multisensor data fusion scheme. IEEE Transactions on Circuits and Systems II 53(12): 1343–1347

    Article  Google Scholar 

  • Daoudi K., Frakt A. B., Willsky A. S. (1999) Multiscale autoregressive models and wavelets. IEEE Transactions on Information Theory 45(3): 828–845

    Article  MathSciNet  MATH  Google Scholar 

  • Di W., Pan Q., He L., Cheng Y. (2008) Anomaly detection in hyperspectral imagery by fuzzy integral fusion of band-subsets. Photogrammetric Engineering and Remote Sensing 74(2): 201–214

    Google Scholar 

  • Farrell, M. D. F., Jr. (2005). Analysis of modeling, training, and dimension reduction approaches for target detection in hyperspectral imagery. PhD thesis, Georgia Institute of Technology.

  • Ferreira, M. A. R, West, M., & Herbert, K. H. L. (2001). A class of multi-scale time series models. Technical report, Duke University.

  • Frakt A.B., Willsky A.S. (2001) Computationally efficient stochastic realization for internal multiscale autoregressive models. Multidimensional Systems and Signal Processing 12(2): 109–142

    Article  MathSciNet  MATH  Google Scholar 

  • Golub G. H., Loan C. F. V. (1996) Matrix computation (3rd ed.). The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Granas A., Dugundji J. (2003) Fixed point theory. Springer, New York

    MATH  Google Scholar 

  • He L., Pan Q., Di W., Li Y. (2008) Anomaly detection in hyperspectral imagery by maximum entropy and nonparametric estimation. Pattern Recognition Letters 29(9): 1392–1403

    Article  Google Scholar 

  • Higham N. J. (1996) Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  • Kotz S., Nadarajah S. (2004) Multivariate t distribution and their applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lagueux, P., Vallieres, A., Villemaire, A., Chamberland, M., Farley, V., & Giroux, J. (2009). Chemical agent standoff detection and identification with a hyperspectral imaging infrared sensor. In Proceedings of the SPIE optics and phontonics for counterterrorism and crime fighting V, Berlin, vol 7486.

  • Liu C. (1997) ML estimation of the multivariate t distribution and the EM algorithm. Journal of Multivariate Analysis 63(2): 296–312

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C., Rubin D. B. (1995) ML estimation of the t distribution using EM and its expectations, ECM and ECME. Statistica Sinica 5: 19–39

    MathSciNet  MATH  Google Scholar 

  • Lutkepohl H. (2005) New introduction to multiple time series analysis. Springer, Berlin

    Google Scholar 

  • Manolakis D., Shaw G. (2002) Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine 19(1): 29–43

    Article  Google Scholar 

  • Manolakis, D., Shaw, G., & Keshava, N. (2000). Comparative analysis of hyperspectral adaptive matched filter detectors. In: SPIE, algorithms for multispectral, hyperspectral, and ultraspectral, imagery VI, Orlando, Vol. 4049, pp. 2–17.

  • Nadarajah S., Kotz S. (2008) Estimation methods for the multivariate t distribution. Acta Applicandae Mathematicae 102: 99–118

    Article  MathSciNet  MATH  Google Scholar 

  • Nahidi, A., Roper, W. E., & Gomez, R. B. (2003). Hyperspectral systems’ role in understanding the composition of atmospheric air pollution. In: SPIE proceedings of geo-spatial and temporal image and data exploitation III, Orlando, Vol. 5097

  • Neumaier A., Schneider T. (2001) Estimation of parameter and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software 27(1): 27–57

    Article  MATH  Google Scholar 

  • Plaza, A., Martinez, P., Perez, R., & Plaza J. (2003). A new method for target detection in hyperspectral based on extended morphological profiles. In: IEEE proceedings of IGARSS, Toulouse, Vol. 6, pp. 3772–3774.

  • Pun M. O., Morelli M., Kuo C. C. J. (2006) Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions. IEEE Transactions on Communications 54(4): 726–736

    Article  Google Scholar 

  • Schweizer S. M., Moura M. F. (2000) Hyperspectral imagery: Clutter adaptation in anomaly detection. IEEE Transactions on Information Theory 10(4): 1855–1871

    Article  Google Scholar 

  • Schweizer S.M., Moura M. F. (2001) Efficient detection in hyperspectral imagery. IEEE Transactions on Image Processing 10(4): 584–597

    Article  MATH  Google Scholar 

  • Wasserman L. (2003) All of statistics: A concise course in statistical inference. Springer, New York

    Google Scholar 

  • Yu X. L., Reed I. S., Stocker A. D. (1993) Comparative performance analysis of adaptive multispectral detectors. IEEE Transactions on Signal Process 41(8): 2639–2656

    Article  MATH  Google Scholar 

  • Zerz E., Levandovskyy V., Schindelar K. (2011) Exact linear modeling with polynomial coefficients. Multidimensional System and Signal Processing 22(1): 55–65

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L., Wu X., Pan Q., Zhang H. (2004) Multiresolution modeling and estimation of multisensor data. IEEE Transactions on Signal Processing 52(11): 3170–3182

    Article  MathSciNet  Google Scholar 

  • Ziskind I., Wax M. (1988) Maximum likelihood localization of multiple sources by alternating projection. IEEE Transactions on Signal Processing 36(10): 1553–1560

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Yu, Z., Gu, Z. et al. Long-tail distribution based multiscale-multiband autoregressive detection for hyperspectral imagery. Multidim Syst Sign Process 24, 65–85 (2013). https://doi.org/10.1007/s11045-011-0155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0155-2

Keywords

Navigation