Skip to main content
Log in

CORDIC-lifting factorization of paraunitary filter banks based on the quaternionic multipliers for lossless image coding

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Quaternions have offered a new paradigm to the signal processing community: to operate directly in a multidimensional domain. We have recently introduced the quaternionic approach to the design and implementation of paraunitary filter banks: four- and eight-channel linear-phase paraunitary filter banks, including those with pairwise-mirror-image symmetric frequency responses. The hypercomplex number theory is utilized to derive novel lattice structures in which quaternion multipliers replace Givens (planar) rotations. Unlike the conventional algorithms, the proposed computational schemes maintain losslessness regardless of their coefficient quantization. Moreover, the one regularity conditions can be expressed directly in terms of the quaternion lattice coefficients and thus easily satisfied even in finite-precision arithmetic. In this paper, a novel approach to realizing CORDIC-lifting factorization of paraunitary filter banks is presented, which is based on the embedding of the CORDIC algorithm inside the lifting scheme. Lifting allows for making multiplications invertible. The 2D CORDIC engine using sparse iterations and asynchronous pipeline processor architecture based on the embedded CORDIC engine as stage of processor is reported. Also it is necessary to notice, that the quaternion multiplier lifting scheme based on the 2D CORDIC algorithm is the structural decision for the lossless digital signal processing. This approach applies to very practical filter banks, which are essential for image processing, and addresses interesting theoretical questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Baker, H. G. (1996). Quaternions and orthogonal \(4\times 4\) real matrices. http://www.gamedev.net/reference/articles/article428.asp.

  • Calderbank, A. R., Daubechies, I., Sweldens, W., & Yeo, B. L. (1998). Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis, 5(3), 332–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y. J., & Amaratunga, K. S. (2003). \(M\)-channel lifting factorization of perfect reconstruction filter banks and reversible \(M\)-band wavelet transforms. IEEE Transactions on Circuits and Systems II, 50(12), 963–976.

    Article  Google Scholar 

  • Chen, Y. J., Oraintara, S., & Amaratunga, K. S. (2005). Dyadic-based factorizations for regular paraunitary filterbanks and \(M\)-band orthogonal wavelets with structural vanishing moments. IEEE Transactions on Signal Processing, 53(1), 193–207.

    Article  MathSciNet  Google Scholar 

  • Chokchaitam, S., & Iwahashi, M. (2007). A new optimum-word-length-assignment (OWLA) multiplierless integer dct for lossless/lossy image coding. In Proceedings of IWAIT’07. Bangkok, Thailand.

  • Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 245–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Delosme, J. M., & Hsiao, S. F. (1990). CORDIC algorithms in four dimensions. In Advanced algorithms and architectures for signal processing IV (Proceedings of SPIE 1348), San Diego, CA (pp. 349–360).

  • Gan, L., & Ma, K. K. (2001). A simplified lattice factorization for linear-phase perfect reconstruction filter bank. IEEE Signal Processing Letters, 8(7), 207–209.

    Article  Google Scholar 

  • Howell, T. D., & Lafon, J. C. (1975). The complexity of the quaternion product. Technical Report TR 75-245, Cornell University. http://citeseer.ist.psu.edu/howell75complexity.html

  • ITU-T, ISO/IEC: ITU-T Rec. H.264 Advanced video coding for generic audiovisual services / ISO/IEC 14496–10 MPEG-4 AVC. ITU, Geneva (2014). http://www.itu.int/rec/T-REC-H.264

  • Kovacevic, J., & Vetterli, M. (1995). Wavelets and subband coding. Prentice-Hall signal processing series. Englewood Cliffs, NJ: Prentice Hall PTR.

    MATH  Google Scholar 

  • Madishetty, S. K., Madanayake, A., Cintra, R. J., Dimitrov, V. S., & Mugler, D. H. (2014). Algebraic integer architecture with minimum adder count for the 2-d daubechies 4-tap filters banks. Multidimensional Systems and Signal Processing, 25(4), 829–845. doi:10.1007/s11045-013-0245-4.

    Article  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  • Malvar, H. S. (1992). Signal processing with lapped transforms. Norwell, MA: Artech House.

    MATH  Google Scholar 

  • Meher, P., Valls, J., Juang, T. B., Sridharan, K., & Maharatna, K. (2009). 50 years of CORDIC: Algorithms, architectures, and applications. IEEE Transactions on Circuits and Systems I, 56(9), 1893–1907. doi:10.1109/TCSI.2009.2025803.

    Article  MathSciNet  Google Scholar 

  • Mitchell, J. L., Pennebaker, W. B., Fogg, C. E., & Legall, D. J. (Eds.). (1996). MPEG video compression standard. London, UK: Chapman & Hall Ltd.

    Google Scholar 

  • Nguyen, T. Q., & Vaidyanathan, P. P. (1988). Maximally decimated perfect-reconstruction FIR filter banks with pairwise mirror-image analysis (and synthesis) frequency responses. IEEE Transactions on Acoustics, Speech and Signal Processing, 36(5), 693–706.

    Article  MATH  Google Scholar 

  • Oraintara, S., Tran, T. D., Heller, P. N., & Nguyen, T. Q. (2001). Lattice structure for regular paraunitary linear-phase filterbanks and \(m\)-band orthogonal symmetric wavelets. IEEE Transactions on Signal Processing, 49(11), 2659–2672. doi:10.1109/78.960413.

    Article  MathSciNet  Google Scholar 

  • Parfieniuk, M., & Petrovsky, A. (2004). Implementation perspectives of quaternionic component for paraunitary filter banks. In Proceedings of the International TICSP workshop on spectral methods and multirate signal processing (SMMSP) (pp. 151–158). Vienna, Austria.

  • Parfieniuk, M., & Petrovsky, A. (2004). Quaternionic building block for paraunitary filter banks. In Proceedings of 12th European signal processing conference (EUSIPCO), Vienna, Austria, (pp. 1237–1240).

  • Parfieniuk, M., & Petrovsky, A. (2005). Quaternionic approach to 8-channel general paraunitary filter bank. In Proceedings of 13th European signal processing conference (EUSIPCO). Antalya, Turkey. CD.

  • Parfieniuk, M., & Petrovsky, A. (2006). Quaternionic approach to the one-regular eight-band linear phase paraunitary filter banks. In Proceedings of 14th European signal processing conference (EUSIPCO). Florence, Italy. CD.

  • Parfieniuk, M., & Petrovsky, A. (2007) Dependencies between coding gain and filter length in paraunitary filter banks designed using quaternionic approach. In Proceedings of 15th European signal processing conference (EUSIPCO). Poznan, Poland.

  • Parfieniuk, M., & Petrovsky, A. (2007). Quaternionic lattice structures for four-channel paraunitary filter banks. EURASIP Journal on Advances in Signal Processing, Special Issue on Multirate Systems and Applications, (9), 12. Article ID 37481.

  • Parfieniuk, M., & Petrovsky, A. (2010). Inherently lossless structures for eight- and six-channel linear-phase paraunitary filter banks based on quaternion multipliers. Signal Processing, 90, 1755–1767. doi:10.1016/j.sigpro.2010.01.008.

    Article  MATH  Google Scholar 

  • Parfieniuk, M., & Petrovsky, A. (2010). Quaternion multiplier inspired by the lifting implementation of plane rotations. IEEE Transactions on Circuits and Systems I, 57(10), 2708–2717. doi:10.1109/TCSI.2010.2046259.

    Article  MathSciNet  Google Scholar 

  • Parfieniuk, M., Petrovsky, N. A., & Petrovsky, A. A. (2011). Rapid prototyping technology: Principles and functional requirements, Chap. In Rapid prototyping of quaternion multiplier: From matrix notation to FPGA-based circuits (pp. 227–246). InTech.

  • Pennebaker, W. B., & Mitchell, J. L. (1993). JPEG: Still image compression standard. New York, NY: Van Nostrand Reinhold.

    Google Scholar 

  • Petrovsky, NA., & Parfieniuk, M. (2011). Distributed arithmetic-based quaternion M-band wavelets kernel for multi-resolution analysis of multimedia data. In Proceedings 11th international conference on pattern recognition and information processing (PRIP’2011) (pp. 253–258). Minsk, Belarus.

  • Petrovsky, N. A., & Parfieniuk, M. (2012). The CORDIC-inside-lifting architecture for constant-coefficient hardware quaternion multipliers. In Proceedings of international conference on signals and electronic systems (ICSES) (p. 6.) Wroclaw, Poland. doi:10.1109/ICSES.2012.6382236.

  • Rao, K. R., & Yip, P. (1990). Discrete cosine transform: Algorithms, advantages, applications. New York, NY: Academic Press.

    Book  MATH  Google Scholar 

  • Srinivasan, S., Tu, C., Regunathan, S. L., & Sullivan, G. J. (2007). HD photo: A new image coding technology for digital photography. In A. G. Tescher (Ed.), Proceedings of SPIE, Applications of Digital Image Processing XXX (Vol. 66960A, pp. 19). San Diego, CA:SPIE. doi:10.1117/12.767840.

  • Steffen, P., Heller, P. N., Gopinath, R. A., & Burrus, C. S. (1993). Theory of regular \(M\)-band wavelet bases. IEEE Transactions on Signal Processing, 41(12), 3497–3511.

    Article  MATH  Google Scholar 

  • Strang, G., & Nguyen, T. Q. (1996). Wavelets and filter banks. Wellesley, MA: Wellesley-Cambridge Press.

    MATH  Google Scholar 

  • Suzuki, T., & Ikehara, M. (2010). Integer DCT based on direct-lifting of DCT-IDCT for lossless-to-lossy image coding. IEEE Transactions on Image Processing, 19(11), 2958–2965.

    Article  MathSciNet  Google Scholar 

  • Sweldens, W. (1996). The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3(2), 186–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Taubman, D., & Marcellin, M. (2002). JPEG2000: Image compression fundamentals, standards, and practice. Boston: Kluwer Academic.

    Book  Google Scholar 

  • Tchobanou, M. (2009). Multidimensional multirate signal processing systems. Moscow: Technoshpera.

    Google Scholar 

  • Tran, T. D. (2000). The BinDCT: Fast multiplierless approximation of the DCT. IEEE Signal Processing Letters, 7(6), 141–144.

    Article  Google Scholar 

  • Tran, T. D., & Topiwala, P. N. (2008). Modern transform design for advanced image/video coding applications. In A. G. Tescher (Ed.), Proceedings of SPIE, Applications of Digital Image Processing XXXI (Vol. 70730H, pp. 12). San Diego, CA: SPIE. doi:10.1117/12.798304.

  • Vaidyanathan, P. P. (1991). On coefficient-quantization and computational roundoff effects in lossless multirate filter banks. IEEE Transactions on Signal Processing, 39(4), 1006–1008.

    Article  MathSciNet  Google Scholar 

  • Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Vanhoof, J., Rompaey, K., Bolsens, I., Goossens, G., & Man, H. (1993). High-level synthesis for real-time digital signal processing. Boston, MA: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Petrovsky.

Additional information

This work was supported by Belarusian Republic Foundation for Fundamental Research under the Project No. F12MB-030 and Ministry of Education of the Republic of Belarus under the Grant No. 13-3084.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovsky, N., Stankevich, A. & Petrovsky, A. CORDIC-lifting factorization of paraunitary filter banks based on the quaternionic multipliers for lossless image coding. Multidim Syst Sign Process 27, 667–695 (2016). https://doi.org/10.1007/s11045-015-0323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0323-x

Keywords

Navigation