Skip to main content
Log in

Statistical performance analysis of direct position determination method based on doppler shifts in presence of model errors

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The direct position determination (DPD) method based on Doppler shifts for narrowband emitter is first presented by Amar and Weiss. Compared to the conventional differential Doppler localization method, this DPD method has higher localization accuracy. In this paper, the statistical performance of this DPD method in presence of model errors (i.e., the observer position and velocity uncertainty) is analyzed mathematically. First, the DPD method for narrowband emitter using Doppler shifts is introduced. Then, applying the matrix eigen-perturbation theory that relates the eigenvalue perturbations to the additive noise on the Hermitian matrix, the first-order asymptotic expression of the direct localization errors is derived. As a consequence, the theoretical variance of position estimation can be approximately determined. Subsequently, two kinds of exact formulas for calculating the localization success probability are deduced using the analytical results obtained in the previous section of this paper. Furthermore, the Cramér-Rao bound (CRB) expression for the DPD method in absence of model errors is presented, which takes on more explicit form than the formulation given by Amar and Weiss. The obtained CRB can be viewed as a reasonable benchmark to assess the performance degradation due to model mismatch. Simulation results support the validation of the theoretical analysis in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amar, A., & Weiss, A. J. (2004). Analysis of direct position determination approach in the presence of model errors. In Proceeding of the 23rd IEEE convention on electrical and electronics engineers (pp. 521–524). Israel: IEEE Press.

  • Amar, A., & Weiss, A. J. (2006). Direct position determination in the presence of model errors–known waveforms. Digital Signal Processing, 16(1), 52–83.

    Article  Google Scholar 

  • Amar, A., & Weiss, A. J. (2008). Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Transactions on Signal Processing, 56(11), 5500–5508.

    Article  MathSciNet  Google Scholar 

  • Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator by hyperbolic location. IEEE Transactions on Signal Processing, 42(4), 1905–1915.

    Article  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2006). On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC. IEEE Transactions on Signal Processing, 54(3), 907–920.

    Article  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2008). Performance prediction of maximum-likelihood direction-of-arrival estimation in the presence of modeling errors. IEEE Transactions on Signal Processing, 56(10), 4785–4793.

    Article  MathSciNet  Google Scholar 

  • Ferréol, A., Larzabal, P., & Viberg, M. (2010). Statistical analysis of the MUSIC algorithm in the presence of modeling errors, taking into accountthe resolution probability. IEEE Transactions on Signal Processing, 58(8), 4156–4166.

    Article  MathSciNet  Google Scholar 

  • Ho, K. C., Lu, X., & Kovavisaruch, L. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696.

    Article  MathSciNet  Google Scholar 

  • Ho, K. C., & Sun, M. (2007). An accurate algebraic closed-form solution for energy-based source localization. IEEE Transactions on Audio, Speech and Language Processing, 15(8), 2542–2550.

    Article  Google Scholar 

  • Ho, K. C., & Xu, W. W. (2004). An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 52(9), 2453–2463.

    Article  MathSciNet  Google Scholar 

  • Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48(12), 419–426.

    Article  MATH  MathSciNet  Google Scholar 

  • Kaveh, M., & Barabell, A. J. (1986). The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(2), 331–341.

    Article  Google Scholar 

  • Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech and Signal Processing, 44(8), 320–32.

    Article  Google Scholar 

  • Kutluyil, D. (2005). Bearings-only target localization using total least squares. Signal Processing, 85(9), 1695–1710.

    Article  MATH  MathSciNet  Google Scholar 

  • Ma, Z. H., & Ho, K. C. (2011). TOA localization in the presence of random sensor position errors. In Proceedings of the IEEE international conference on acoustics, speech and signal processing (pp. 2468–2471). Prague, Czech: IEEE Press.

  • Mason, J. (2004). Algebraic two-satellite TOA/FOA position solution on an ellipsoidal earth. IEEE Transactions on Aerospace and Electronic Systems, 40(7), 1087–1092.

    Article  Google Scholar 

  • Oispuu, M., & Nickel, U. (2010). Direct detection and position determination of multiple sources with intermittent emission. Signal Processing, 90(12), 3056–3064.

    Article  MATH  Google Scholar 

  • Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 267–280.

    MathSciNet  Google Scholar 

  • See, C. M. S., & Gershman, A. B. (2004). Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Transactions on Signal Processing, 52(2), 329–338.

    Article  MathSciNet  Google Scholar 

  • Stein, S. (1993). Differential delay/Doppler ML estimation with unknown signals. IEEE Transactions on Signal Processing, 41(8), 2717–2719.

    Article  MATH  Google Scholar 

  • Stoica, P. (1989). On reparametrization of loss functions used in estimation and the invariance principle. Signal Processing, 17(4), 383–387.

    Article  MathSciNet  Google Scholar 

  • Stoica, P., & Larsson, E. G. (2001). Comments on “Linearization method for finding Cramér-Rao bounds in signal processing”. IEEE Transactionson Signal Processing, 49(12), 3168–3169.

    Article  Google Scholar 

  • Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood, and Cramér-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(5), 720–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Ulman, R., & Geraniotis, E. (1999). Wideband TDOA/FDOA processing using summation of short-time CAF’s. IEEE Transactions on Signal Processing, 47(12), 3193–3200.

    Article  Google Scholar 

  • Viberg, M., & Ottersten, B. (1991). Sensor array processing based on subspace fitting. IEEE Transactions on Signal Processing, 39(5), 1110–1121.

    Article  MATH  Google Scholar 

  • Wang, D. (2013). Sensor array calibration in presence of mutual coupling and gain/phase errors by combining the spatial-domain and time-domain waveform information of the calibration sources. Circuits, Systems, and Signal Processing, 32(3), 1257–1292.

    Article  MathSciNet  Google Scholar 

  • Wang, D., Zhang, L., & Wu, Y. (2009). The structured total least squares algorithm for passive location based on angle information. Science in China Series F: Information Sciences, 52(6), 1043–1054.

    Article  MATH  MathSciNet  Google Scholar 

  • Weiss, A. J., & Amar, A. (2005). Direct position determination of multiple radio signals. EURASIP Journal on Applied Signal Processing, 2005(1), 37–49.

  • Weiss, A. J. (2004). Direct position determination of narrowband radio frequency transmitters. IEEE Signal Processing Letters, 11(5), 513–516.

    Article  Google Scholar 

  • Weiss, A. J. (2011). Direct geolocation of wideband emitters based on delay and Doppler. IEEE Transactions on Signal Processing, 59(6), 2513–5520.

    Article  MathSciNet  Google Scholar 

  • Yang, K., An, J. P., Bu, X. Y., & Sun, G. C. (2010). Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Transactions on Vehicular Technology, 59(3), 1558–1562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Additional information

The work is supported from the National Nature Science Foundation of China under Grants 61201381 and the Future Development Foundation of Information Engineering College under Grants YP12JJ202057.

Appendices

Appendix 1: Proof of Proposition 1

Assume the normalized eigenvectors of matrix \({\hat{\varvec{X}}}\) are defined as \({\hat{\varvec{\beta }}}_{1} , {\hat{\varvec{\beta }}}_{2}, \ldots , {\hat{\varvec{\beta }}}_n\). According to the Hermitian matrix eigen-perturbation theory (Kaveh and Barabell 1986), it follows that

$$\begin{aligned} \left\{ {\begin{array}{l} \hat{{\lambda }}_k =\lambda _k^{(0)} +\tilde{\lambda }_k^{(1)} +\tilde{\lambda }_k^{(2)} +\cdots , \\ {\hat{\varvec{\beta }}}_k =\left( {1-\frac{1}{2}{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\left| {\tilde{\varepsilon }_{ki}^{(1)}} \right| ^{2}}} \right) {\varvec{\beta }}_k^{(0)} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} {\varvec{\beta }}_i^{(0)}} + {\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(2)} {\varvec{\beta }}_i^{(0)}} +\cdots , \\ \end{array}} \right. \quad \left( {k=1 , 2 , \ldots , n} \right) \nonumber \\ \end{aligned}$$
(80)

where \(\tilde{\lambda }_k^{(1)}\) and \(\tilde{\varepsilon }_{ki}^{(1)}\) are the first-order perturbation terms, i.e., \(\tilde{\lambda }_k^{(1)} =O\left( { \left\| { {\tilde{\varvec{X}}}} \right\| _2} \right) \) and \(\tilde{\varepsilon }_{ki}^{(1)} =O\left( { \left\| { {\tilde{\varvec{X}}}} \right\| _2} \right) \), and \(\tilde{\lambda }_k^{(2)}\) and \(\tilde{\varepsilon }_{ki}^{(2)}\) are the second-order perturbation terms, i.e., \(\tilde{\lambda }_k^{(2)} =O\left( { \left\| {\tilde{\varvec{X}}} \right\| _{2}^{2}} \right) \) and \(\tilde{\varepsilon }_{ki}^{(2)} =O\left( { \left\| {\tilde{\varvec{X}}} \right\| _{2}^{2}} \right) \). It can be obtained from the matrix eigen-equation that

$$\begin{aligned} {\hat{\varvec{X}}\hat{\varvec{\beta }}}_k= & {} \hat{{\lambda }}_k {\hat{\varvec{\beta }}}_k \Leftrightarrow \left( {{\varvec{X}}+{\tilde{\varvec{X}}}} \right) \left( {\left( {1-\frac{1}{2}{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\left| {\tilde{\varepsilon }_{ki}^{(1)}} \right| ^{2}}} \right) {\varvec{\beta }}_k^{(0)} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} {\varvec{\beta }}_i^{(0)}} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(2)} {\varvec{\beta }}_i^{(0)}} +\cdots } \right) \nonumber \\= & {} \left( {\lambda _k^{(0)} +\tilde{\lambda }_k^{(1)} +\tilde{\lambda }_k^{(2)} +\cdots } \right) \left( {\left( {1-\frac{1}{2}{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\left| {\tilde{\varepsilon }_{ki}^{(1)}} \right| ^{2}}} \right) {\varvec{\beta }}_k^{(0)} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} {\varvec{\beta }}_i^{(0)}} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(2)} {\varvec{\beta }}_i^{(0)}} +\cdots } \right) \nonumber \\ \end{aligned}$$
(81)

By comparing the first-order perturbation terms between both sides of (81) leads to

$$\begin{aligned} {\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} \lambda _i^{(0)} {\varvec{\beta }}_i^{(0)}} +{\tilde{{\varvec{X}}}{\varvec{\beta }}}_k^{(0)} ={\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} \lambda _k^{(0)} {\varvec{\beta }}_i^{(0)}} +{\varvec{\beta }}_k^{(0)} \tilde{\lambda }_k^{(1)} \end{aligned}$$
(82)

Premultiplying both sides of (82) by \({\varvec{\beta }}_k^{(0)\mathrm{H}}\) and \({\varvec{\beta }}_i^{(0)\mathrm{H}} \left( {i\ne k} \right) \), respectively, produces

$$\begin{aligned} \left\{ {\begin{array}{l} \tilde{\lambda }_k^{(1)} ={\varvec{\beta }}_k^{(0)\mathrm{H}} {\tilde{\varvec{X}}\varvec{\beta }}_k^{(0)} \\ \tilde{\varepsilon }_{ki}^{(1)} =\left( {\lambda _k^{(0)} -\lambda _i^{(0)}} \right) ^{-1}{\varvec{\beta }}_i^{(0)\mathrm{H}} {\tilde{\varvec{X}}\varvec{\beta }}_k^{(0)} \\ \end{array}} \right. \end{aligned}$$
(83)

By comparing the second-order perturbation terms between both sides of (81), it follows that

$$\begin{aligned} {\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(2)} \lambda _i^{(0)} {\varvec{\beta }}_i^{(0)}} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} {\tilde{\varvec{X}}\varvec{\beta }}_i^{(0)}} ={\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(2)} \lambda _k^{(0)} {\varvec{\beta }}_i^{(0)}} +{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} \tilde{\lambda }_k^{(1)} {\varvec{\beta }}_i^{(0)}} +\tilde{\lambda }_k^{(2)} {\varvec{\beta }}_k^{(0)} \end{aligned}$$
(84)

Premultiplying both sides of (84) by \({\varvec{\beta }}_k^{(0)\mathrm{H}}\) yields

$$\begin{aligned} \tilde{\lambda }_k^{(2)}= & {} {\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\tilde{\varepsilon }_{ki}^{(1)} {\varvec{\beta }}_k^{(0)\mathrm{H}} {\tilde{\varvec{X}}\varvec{\beta }}_i^{(0)}} ={\varvec{\beta }}_k^{(0)\mathrm{H}} {\tilde{\varvec{X}}}\left( {{\mathop {\mathop {\sum }\limits _{i=1}}\limits _{i\ne k}^{n}} {\left( {\lambda _k^{(0)} -\lambda _i^{(0)}} \right) ^{-1}{\varvec{\beta }}_i^{(0)} {\varvec{\beta }}_i^{(0)\mathrm{H}}}} \right) {\tilde{\varvec{X}}\varvec{\beta }}_k^{(0)}\nonumber \\= & {} {\varvec{\beta }}_k^{(0)\mathrm{H}} {\tilde{\varvec{X}}\varvec{E}}_k {\tilde{\varvec{X}}\varvec{\beta }}_k^{(0)} \end{aligned}$$
(85)

Combining (80), (83) and (85), Eqs. (20)–(21) hold true and hence the proof is completed.

Appendix 2: Proof of (22) to (24)

Expanding the matrix function \({\bar{\varvec{A}}}\left( {{\hat{\varvec{q}}} , {\hat{{\bar{\varvec{p}}}}}_k} \right) \) in a second-order Taylor series around point \(\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \) gives

$$\begin{aligned} {\bar{\varvec{A}}}\left( {{\hat{\varvec{q}}} , {\hat{{\bar{\varvec{p}}}}}_k} \right)= & {} {\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) +\sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) } +\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }\nonumber \\&+\frac{1}{2}\sum _{d_1 =1}^D {\sum _{d_2 =1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }} \nonumber \\&+\frac{1}{2}\sum _{d_1 =1}^{2DL} {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }}\nonumber \\&+\sum _{d_1 =1}^D {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }} +o\left( {\varepsilon ^{2}} \right) \end{aligned}$$
(86)

where \({\ddot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \), \({\ddot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \), \({\ddot{\bar{\varvec{A}}}}_{d_1 d_2 }^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \), \({\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \) and \({\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \) are given in (24), \(o\left( {\varepsilon ^{2}} \right) \) denotes all the three- and higher-order terms.

Inserting (86) into (13) leads to

$$\begin{aligned} {\varvec{V}}_k \left( {{\hat{\varvec{q}}} , {\hat{{\bar{\varvec{p}}}}}_k , {\varvec{n}}_k} \right)= & {} {\bar{\varvec{A}}}\left( {{\hat{\varvec{q}}} , {\hat{{\bar{\varvec{p}}}}}_k} \right) \left( {{\varvec{X}}_k +{\varvec{N}}_k} \right) \nonumber \\\approx & {} {\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k +\sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k}\nonumber \\&+\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k} +{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k \nonumber \\&+\frac{1}{2}\sum _{d_1 =1}^D {\sum _{d_2 =1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k}}\nonumber \\&+\frac{1}{2}\sum _{d_1 =1}^{2DL} {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k}} \nonumber \\&+\sum _{d_1 =1}^D {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k}}\nonumber \\&+\sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k} +\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k} \nonumber \\= & {} {\varvec{V}}_k^{(0)} +{\tilde{\varvec{V}}}_k^{(1)} +{\tilde{\varvec{V}}}_k^{(2)} \end{aligned}$$
(87)

where the three- and higher-order perturbation terms are ignored. At this point, the proof of (22) to (24) is ended.

Appendix 3: Specified expressions for the matrices included in (24)

We begin by deriving the first- and second-order partial derivative of \(\phi \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) \) as follows:

$$\begin{aligned} {\dot{\varvec{\varphi }}}^\mathrm{(a)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\frac{\partial \phi \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) }{\partial {\varvec{q}}}=\frac{1}{c}\left( {\frac{{\dot{\varvec{p}}}_{l, k}}{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2}-\frac{\left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) \left( {{\dot{\varvec{p}}}_{l, k}^\mathrm{T} \left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) } \right) }{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2^3}} \right) \end{aligned}$$
(88)
(89)
$$\begin{aligned} {\ddot{\varvec{{\varPsi }}}}^\mathrm{(aa)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right)= & {} \frac{\partial \phi ^{{2}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) }{\partial {\varvec{q}}\partial {\varvec{q}}^{\mathrm{T}}}\nonumber \\= & {} \frac{1}{c}\left( {\begin{array}{l} {3}\frac{\left( {{\dot{\varvec{p}}}_{l, k}^\mathrm{T} \left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) } \right) }{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2^5}\left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) \left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) ^{\mathrm{T}}-\frac{{\dot{\varvec{p}}}_{l, k} \left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) ^{\mathrm{T}}}{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2^3} \\ -\frac{{\dot{\varvec{p}}}_{l, k}^\mathrm{T} \left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) }{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2^3}{\varvec{I}}_D -\frac{\left( {{\varvec{q}}-{\varvec{p}}_{l, k}} \right) {\dot{\varvec{p}}}_{l, k}^\mathrm{T}}{\left\| {{\varvec{q}}-{\varvec{p}}_{l, k}} \right\| _2^3} \\ \end{array}} \right) \end{aligned}$$
(90)
(91)
(92)

According to the fifth equation in (14), it follows

$$\begin{aligned}&{\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) =\frac{\partial {\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _d}=\left[ {{\begin{array}{llll} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _d}}&{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _d}}&{} \cdots &{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _d}} \\ \end{array}}} \right] \nonumber \\&\quad =\left[ {{\begin{array}{llll} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) } \right) ^{\mathrm{H}}}&{} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\dot{\varvec{\varDelta }}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) } \right) ^{\mathrm{H}}}&{} \cdots &{} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) } \right) ^{\mathrm{H}}} \\ \end{array}}} \right] \end{aligned}$$
(93)
$$\begin{aligned}&{\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) =\frac{\partial {\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _d}=\left[ {{\begin{array}{llll} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _d}}&{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _d}}&{} \cdots &{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _d}} \\ \end{array}}} \right] \nonumber \\&\quad =\left\{ {\begin{array}{l} \left[ {{\begin{array}{llll} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ d \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) } \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N} \\ \end{array}}} \right] \quad 1\le d\le 2D \\ \left[ {{\begin{array}{lllll} {{\varvec{O}}_N}&{} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ d \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) } \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N} \\ \end{array}}} \right] \quad 2D+1\le d\le 4D \\ \cdots \cdots \\ \left[ {{\begin{array}{llll} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N}&{} {\left( {{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ d \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) } \right) ^{\mathrm{H}}} \\ \end{array}}} \right] \quad \quad 2D\left( {L-1} \right) +1\le d\le 2DL \\ \end{array}} \right. \end{aligned}$$
(94)
$$\begin{aligned}&{\ddot{\bar{\varvec{A}}}}_{d_{1} d_{2} }^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) =\frac{\partial ^{{2}}{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {\varvec{q}} \right\rangle _{d_{2}}}=\left[ {{\begin{array}{llll} {\frac{\partial ^{{2}}{\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {\varvec{q}} \right\rangle _{d_{2}}}}&{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {\varvec{q}} \right\rangle _{d_{2}}}}&{} \cdots &{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {\varvec{q}} \right\rangle _{d_{2}}}} \\ \end{array}}} \right] \nonumber \\&\quad =\left[ {{\begin{array}{llll} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{d_{2}}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{d_{1}}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\ddot{\varvec{\varDelta }}}_{d_{1} d_{2}}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}}&{} \cdots &{} \cdots &{} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{d_{2}}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{d_{1}}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\ddot{\varvec{\varDelta }}}_{d_{1} d_{2}}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}} \\ \end{array}}} \right] \nonumber \\ \end{aligned}$$
(95)
$$\begin{aligned}&{\ddot{\bar{\varvec{A}}}}_{d_{1} d_{2} }^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) =\frac{\partial ^{{2}}{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}=\left[ {{\begin{array}{llll} {\frac{\partial ^{{2}}{\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}}&{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}}&{} \cdots &{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) }{\partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}} \\ \end{array}}} \right] \nonumber \\&\quad =\left\{ {\begin{array}{l} \left[ {{\begin{array}{llll} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{2}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{1}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_1} \right] _{2D} \left[ {d_2} \right] _{2D}}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N} \\ \end{array}}} \right] \;\;\left( {\begin{array}{l} 1\le d_1 \le 2D \\ 1\le d_{2} \le 2D \\ \end{array}} \right) \\ \left[ {{\begin{array}{lllll} {{\varvec{O}}_N}&{} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{2}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{1}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_1} \right] _{2D} \left[ {d_2} \right] _{2D}}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N} \\ \end{array}}} \right] \;\;\left( {\begin{array}{l} 2D+1\le d_1 \le 4D \\ 2D+1\le d_2 \le 4D \\ \end{array}} \right) \\ \cdots \cdots \\ \left[ {{\begin{array}{llll} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N}&{} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{2}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_{1}} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\ddot{\varvec{\varDelta }}}_{\left[ {d_1} \right] _{2D} \left[ {d_2} \right] _{2D}}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}} \\ \end{array}}} \right] \;\;\left( {\begin{array}{l} 2D\left( {L-1} \right) +1\le d_1 \le 2DL \\ 2D\left( {L-1} \right) +1\le d_2 \le 2DL \\ \end{array}} \right) \\ \end{array}} \right. \end{aligned}$$
(96)
$$\begin{aligned}&{\ddot{\bar{\varvec{A}}}}_{d_1 d_2 }^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) =\frac{\partial ^{{2}}{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}=\left[ {{\begin{array}{llll} {\frac{\partial ^{{2}}{\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}}&{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}}&{} \cdots &{} {\frac{\partial {\varvec{A}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) }{\partial \left\langle {\varvec{q}} \right\rangle _{d_{1}} \partial \left\langle {{\bar{\varvec{p}}}_k} \right\rangle _{d_{2}}}}\\ \end{array}}} \right] \nonumber \\&\quad =\left\{ {\begin{array}{l} \left[ {{\begin{array}{llll} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ {d_2} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1 \left[ {d_2} \right] _{2D}}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{1, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N}\\ \end{array}}} \right] \quad 1\le d_2 \le 2D \\ \left[ {{\begin{array}{lllll} {{\varvec{O}}_N}&{} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ {d_2} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1 \left[ {d_2} \right] _{2D}}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{2, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}}&{} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N} \\ \end{array}}} \right] \quad 2D+1\le d_2 \le 4D \\ \cdots \cdots \\ \left[ {{\begin{array}{llll} {{\varvec{O}}_N}&{} \cdots &{} {{\varvec{O}}_N}&{} {\left( {\begin{array}{l} {\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{\left[ {d_2} \right] _{2D}}^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1}^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ +{\varvec{A}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) {\dot{\varvec{\varDelta }}}_{d_1 \left[ {d_2} \right] _{2D}}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{L, k}} \right) \\ \end{array}} \right) ^{\mathrm{H}}} \\ \end{array}}} \right] \quad 2D\left( {L-1} \right) +1\le d_2 \le 2DL \\ \end{array}} \right. \end{aligned}$$
(97)

where

$$\begin{aligned} \left\{ {\begin{array}{l} {\dot{\varvec{\varDelta }}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\left\langle {{\dot{\varvec{\varphi }}}^\mathrm{(a)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) } \right\rangle _d \cdot \hbox {diag}\left[ {{\begin{array}{llll} 0&{} {\hbox {i2}{\uppi }f_c T_s}&{} \cdots &{} {\hbox {i2}{\uppi }f_c \left( {N-1} \right) T_s} \\ \end{array}}} \right] \\ {\dot{\varvec{\varDelta }}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\left\langle {{\dot{\varvec{\varphi }}}^\mathrm{(b)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) } \right\rangle _d \cdot \hbox {diag}\left[ {{\begin{array}{llll} 0&{} {\hbox {j2}{\uppi }f_c T_s}&{} \cdots &{} {\hbox {j2}{\uppi }f_c \left( {N-1} \right) T_s} \\ \end{array}}} \right] \\ {\ddot{\varvec{\varDelta }}}_{d_1 d_2}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\left\langle {{\ddot{\varvec{{\varPsi }}}}^\mathrm{(aa)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) } \right\rangle _{d_1 d_2} \cdot \hbox {diag}\left[ {{\begin{array}{llll} 0&{} {\hbox {j2}{\uppi }f_c T_s}&{} \cdots &{} {\hbox {j2}{\uppi }f_c \left( {N-1} \right) T_s} \\ \end{array}}} \right] \\ {\ddot{\varvec{\varDelta }}}_{d_1 d_2}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\left\langle {{\ddot{\varvec{{\varPsi }}}}^\mathrm{(ab)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) } \right\rangle _{d_1 d_2} \cdot \hbox {diag}\left[ {{\begin{array}{llll} 0&{} {\hbox {j2}{\uppi }f_c T_s}&{} \cdots &{} {\hbox {j2}{\uppi }f_c \left( {N-1} \right) T_s} \\ \end{array}}} \right] \\ {\ddot{\varvec{\varDelta }}}_{d_1 d_2}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) =\left\langle {{\ddot{\varvec{{\varPsi }}}}^\mathrm{(bb)}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_{l, k}} \right) } \right\rangle _{d_1 d_2} \cdot \hbox {diag}\left[ {{\begin{array}{llll} 0&{} {\hbox {j2}{\uppi }f_c T_s}&{} \cdots &{} {\hbox {j2}{\uppi }f_c \left( {N-1} \right) T_s} \\ \end{array}}} \right] \\ \end{array}} \right. \end{aligned}$$
(98)

At this point, the derivation is completed.

Appendix 4: Proof of (33) to (37)

With the first equation in (23), it follows for any vector \({\varvec{z}}\in \mathbf{C}^{L\times {1}}\) that

$$\begin{aligned} {\tilde{\varvec{V}}}_k^{(1)} {\varvec{z}}= & {} \sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}} +\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}} +{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k {\varvec{z}} \nonumber \\= & {} \frac{\partial \left( {{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}} \right) }{\partial {\varvec{q}}^{\mathrm{T}}}{\tilde{\varvec{q}}}+\frac{\partial \left( {{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}} \right) }{\partial {\bar{\varvec{p}}}_k^\mathrm{T}}{\tilde{\bar{\varvec{p}}}}_k +{\bar{\varvec{A}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) \left( {\hbox {diag}\left[ {\varvec{z}} \right] \otimes {\varvec{I}}_N} \right) {\varvec{{\varPi }}}_1 {\bar{\varvec{n}}}_k \nonumber \\= & {} {\varvec{T}}_{k1}^\mathrm{(a)} \left( {\varvec{z}} \right) {\tilde{\varvec{q}}}+{\varvec{T}}_{k2}^\mathrm{(a)} \left( {\varvec{z}} \right) {\tilde{\bar{\varvec{p}}}}_k +{\varvec{T}}_{k3}^\mathrm{(a)} \left( {\varvec{z}} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(99)
$$\begin{aligned} {\tilde{\varvec{V}}}_k^{(1)\mathrm{H}} {\varvec{z}}= & {} \sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\varvec{X}}_k^\mathrm{H} {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)H} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{z}}} +\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\varvec{X}}_k^\mathrm{H} {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)H} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{z}}} +{\varvec{N}}_k^\mathrm{H} {\bar{\varvec{A}}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{z}}\nonumber \\= & {} \frac{\partial \left( {{\varvec{X}}_k^\mathrm{H} {\bar{\varvec{A}}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{z}}} \right) }{\partial {\varvec{q}}^{\mathrm{T}}}{\tilde{\varvec{q}}}+\frac{\partial \left( {{\varvec{X}}_k^\mathrm{H} {\bar{\varvec{A}}}^{\mathrm{H}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{z}}} \right) }{\partial {\bar{\varvec{p}}}_k^\mathrm{T}}{\tilde{\bar{\varvec{p}}}}_k +\left( {{\varvec{I}}_L \otimes {\varvec{z}}^{\mathrm{T}}} \right) {\bar{{\bar{\varvec{A}}}}}\left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{{\varPi }}}_2 {\bar{\varvec{n}}}_k \nonumber \\= & {} {\varvec{T}}_{k1}^\mathrm{(b)} \left( {\varvec{z}} \right) {\tilde{\varvec{q}}}+{\varvec{T}}_{k2}^\mathrm{(b)} \left( {\varvec{z}} \right) {\tilde{\bar{\varvec{p}}}}_k +{\varvec{T}}_{k3}^\mathrm{(b)} \left( {\varvec{z}} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(100)

where \(\left\{ {{\varvec{T}}_{kn}^\mathrm{(a)} \left( \cdot \right) } \right\} _{n=1}^3\) and \(\left\{ {{\varvec{T}}_{kn}^\mathrm{(b)} \left( \cdot \right) } \right\} _{n=1}^3\) are given in (35) and (36), respectively.

It can be seen from (99) and (100) that

$$\begin{aligned} \tilde{J}_{\mathrm{cost}}^{(1)}= & {} \sum _{k=1}^K {\left( {{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{V}}_k^{(0)\mathrm{H}} {\varvec{T}}_{k1}^\mathrm{(a)} \left( {{\varvec{\beta }}_{k, L}^{(0)}} \right) {\tilde{\varvec{q}}}+{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{V}}_k^{(0)\mathrm{H}} {\varvec{T}}_{k2}^\mathrm{(a)} \left( {{\varvec{\beta }}_{k, L}^{(0)}} \right) {\tilde{\bar{\varvec{p}}}}_k +{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{V}}_k^{(0)\mathrm{H}} {\varvec{T}}_{k3}^\mathrm{(a)} \left( {{\varvec{\beta }}_{k, L}^{(0)}} \right) {\bar{\varvec{n}}}_k} \right) } \nonumber \\&+\,\sum _{k=1}^K {\left( {{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{T}}_{k1}^\mathrm{(b)} \left( {{\varvec{V}}_k^{(0)} {\varvec{\beta }}_{k, L}^{(0)}} \right) {\tilde{\varvec{q}}}+{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{T}}_{k2}^\mathrm{(b)} \left( {{\varvec{V}}_k^{(0)} {\varvec{\beta }}_{k, L}^{(0)}} \right) {\tilde{\bar{\varvec{p}}}}_k +{\varvec{\beta }}_{k, L}^{(0)\mathrm{H}} {\varvec{T}}_{k3}^\mathrm{(b)} \left( {{\varvec{V}}_k^{(0)} {\varvec{\beta }}_{k, L}^{(0)}} \right) {\bar{\varvec{n}}}_k} \right) } \nonumber \\= & {} \sum _{k=1}^K {{\varvec{t}}_{k1}^\mathrm{H} {\tilde{\varvec{q}}}} +\sum _{k=1}^K {{\varvec{t}}_{k2}^\mathrm{H} {\tilde{\bar{\varvec{p}}}}_k} +\sum _{k=1}^K {{\varvec{t}}_{k3}^\mathrm{H} {\bar{\varvec{n}}}_k} \end{aligned}$$
(101)

where \(\left\{ {{\varvec{t}}_{kn}} \right\} _{n=1}^3\) are given in (34). At this point, the proof of (33) to (37) is ended.

Appendix 5: Proof of (38) to (45)

Using (99), it follows for any vectors \({\varvec{z}}_{1}\) and \({\varvec{z}}_{2}\) and matrix \({\varvec{Z}}\) of compatible dimensions

$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(1)\mathrm{H}} {\varvec{Z}\tilde{\varvec{V}}}_k^{(1)} {\varvec{z}}_2= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{T}}_{k1}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k1}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{T}}_{k2}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k2}^\mathrm{(a){*}} \left( {{\varvec{z}}_1} \right) } \right) {\tilde{\bar{\varvec{p}}}}_k\nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(a){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} \left( {{\varvec{T}}_{k2}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k2}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(a){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{T}}_{k3}^\mathrm{(a)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \nonumber \\= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k +{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{{\varPhi }}}_{k6}^\mathrm{(a)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(102)

where \(\left\{ {{\varvec{{\varPhi }}}_{kn}^\mathrm{(a)} \left( {{\varvec{z}}_1 , {\varvec{Z}} , {\varvec{z}}_2} \right) } \right\} _{n=1}^6\) are given in (42).

Analogously, it follows from (100) for any vectors \({\varvec{z}}_{1}\) and \({\varvec{z}}_{2}\) and matrix \({\varvec{Z}}\) of compatible dimensions

$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(1)} {\varvec{Z}\tilde{\varvec{V}}}_k^{(1)\mathrm{H}} {\varvec{z}}_2= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k1}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{T}}_{k2}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k\nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(b)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k2}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) } \right) {\tilde{\bar{\varvec{p}}}}_k\nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(b)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} \left( {{\varvec{T}}_{k2}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k2}^\mathrm{(b)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{T}}_{k3}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(b)} \left( {{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k\nonumber \\= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k +{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{{\varPhi }}}_{k6}^\mathrm{(b)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(103)

where \(\left\{ {{\varvec{{\varPhi }}}_{kn}^\mathrm{(b)} \left( {{\varvec{z}}_1 , {\varvec{Z}} , {\varvec{z}}_2} \right) } \right\} _{n=1}^6\) are given in (43).

In addition, combining (99) and (101) it can be obtained for any vectors \({\varvec{z}}_{1}\) and \({\varvec{z}}_{2}\) and matrix \({\varvec{Z}}\) of compatible dimensions that

$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(1)} {\varvec{Z}\tilde{\varvec{V}}}_k^{(1)} {\varvec{z}}_2= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k1}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{T}}_{k2}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k\nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k2}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k2}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) } \right) {\tilde{\bar{\varvec{p}}}}_k\nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}\left( {{\varvec{T}}_{k1}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k1}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} \left( {{\varvec{T}}_{k2}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) +{\varvec{T}}_{k2}^\mathrm{(a)T} \left( {{\varvec{z}}_2} \right) {\varvec{Z}}^{\mathrm{T}}{\varvec{T}}_{k3}^\mathrm{(b){*}} \left( {{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{T}}_{k3}^\mathrm{(b)H} \left( {{\varvec{z}}_1} \right) {\varvec{ZT}}_{k3}^\mathrm{(a)} \left( {{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \nonumber \\= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k +{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{{\varPhi }}}_{k6}^\mathrm{(c)} \left( {{\varvec{z}}_1 ,{\varvec{Z}},{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(104)
$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(1)\mathrm{H}} {\varvec{Z}\tilde{\varvec{V}}}_k^{(1)\mathrm{H}} {\varvec{z}}_2= & {} \left( {{\varvec{z}}_2^\mathrm{H} {\tilde{\varvec{V}}}_k^{(1)} {\varvec{Z}}^{\mathrm{H}}{\tilde{\varvec{V}}}_k^{(1)} {\varvec{z}}_1} \right) ^{\mathrm{H}} \nonumber \\= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(c){*}} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(c){*}} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(c){*}} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(c){*}} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3 {\bar{\varvec{n}}}_k +{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(c){*}} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3 {\bar{\varvec{n}}}_k\nonumber \\&+\,{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{{\varPhi }}}_{k6}^\mathrm{(c)H} \left( {{\varvec{z}}_2 ,{\varvec{Z}}^{\mathrm{H}},{\varvec{z}}_1} \right) {\bar{\varvec{n}}}_k \end{aligned}$$
(105)

where \(\left\{ {{\varvec{{\varPhi }}}_{kn}^\mathrm{(c)} \left( {{\varvec{z}}_1 , {\varvec{Z}} , {\varvec{z}}_2} \right) } \right\} _{n=1}^6\) are given in (44).

Furthermore, applying the second equation in (23), it follows for any vectors \({\varvec{z}}_{1}\) and \({\varvec{z}}_{2}\) of compatible dimensions that

$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(2)} {\varvec{z}}_2= & {} \frac{1}{2}\sum _{d_1 =1}^D {\sum _{d_2 =1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_2} \cdot {\varvec{z}}_1^\mathrm{H} {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(aa)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}_2}}\nonumber \\&+\,\frac{1}{2}\sum _{d_1 =1}^{2DL} {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\varvec{z}}_1^\mathrm{H} {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(bb)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}_2}} \nonumber \\&+\,\sum _{d_1 =1}^D {\sum _{d_2 =1}^{2DL} {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _{d_1} \cdot \left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _{d_2} \cdot {\varvec{z}}_1^\mathrm{H} {\ddot{\bar{\varvec{A}}}}_{d_1 d_2}^\mathrm{(ab)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{X}}_k {\varvec{z}}_2}}\nonumber \\&+\,\sum _{d=1}^D {\left\langle {{\tilde{\varvec{q}}}} \right\rangle _d \cdot {\varvec{z}}_1^\mathrm{H} {\dot{\bar{\varvec{A}}}}_d^\mathrm{(a)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k {\varvec{z}}_2} +\sum _{d=1}^{2DL} {\left\langle {{\tilde{\bar{\varvec{p}}}}_k} \right\rangle _d \cdot {\varvec{z}}_1^\mathrm{H} {\dot{\bar{\varvec{A}}}}_d^\mathrm{(b)} \left( {{\varvec{q}} , {\bar{\varvec{p}}}_k} \right) {\varvec{N}}_k {\varvec{z}}_2} \nonumber \\= & {} {\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) {\tilde{\bar{\varvec{p}}}}_k +{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k +{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) {\bar{\varvec{n}}}_k\end{aligned}$$
(106)
$$\begin{aligned} {\varvec{z}}_1^\mathrm{H} {\tilde{\varvec{V}}}_k^{(2)\mathrm{H}} {\varvec{z}}_2= & {} \left( {{\varvec{z}}_2^\mathrm{H} {\tilde{\varvec{V}}}_k^{(2)} {\varvec{z}}_1} \right) ^{\mathrm{H}}={\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k1}^\mathrm{(d){*}} \left( {{\varvec{z}}_2 ,{\varvec{z}}_1} \right) {\tilde{\varvec{q}}}+{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k2}^\mathrm{(d){*}} \left( {{\varvec{z}}_2 ,{\varvec{z}}_1} \right) {\tilde{\bar{\varvec{p}}}}_k \nonumber \\&+\,{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k3}^\mathrm{(d){*}} \left( {{\varvec{z}}_2 ,{\varvec{z}}_1} \right) {\tilde{\bar{\varvec{p}}}}_k +{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varPhi }}}_{k4}^\mathrm{(d){*}} \left( {{\varvec{z}}_2 ,{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3 {\bar{\varvec{n}}}_k \nonumber \\&+\,{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varPhi }}}_{k5}^\mathrm{(d){*}} \left( {{\varvec{z}}_2 ,{\varvec{z}}_1} \right) {\varvec{{\varPi }}}_3 {\bar{\varvec{n}}}_k \end{aligned}$$
(107)

where \(\left\{ {{\varvec{{\varPhi }}}_{kn}^\mathrm{(d)} \left( {{\varvec{z}}_1 ,{\varvec{z}}_2} \right) } \right\} _{n=1}^6\) are given in (45).

It can be obtained from (102) to (107) that

$$\begin{aligned} \tilde{J}_{\mathrm{cost}}^{(2)}= & {} \sum _{k=1}^K {{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varOmega }}}_{k1} {\tilde{\varvec{q}}}} +\sum _{k=1}^K {{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varOmega }}}_{k2} {\tilde{\bar{\varvec{p}}}}_k} +\sum _{k=1}^K {{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varOmega }}}_{k3} {\tilde{\bar{\varvec{p}}}}_k} +\sum _{k=1}^K {{\tilde{\varvec{q}}}^{\mathrm{T}}{\varvec{{\varOmega }}}_{k4} {\bar{\varvec{n}}}_k} \nonumber \\&+\sum _{k=1}^K {{\tilde{\bar{\varvec{p}}}}_k^\mathrm{T} {\varvec{{\varOmega }}}_{k5} {\bar{\varvec{n}}}_k} +\sum _{k=1}^K {{\bar{\varvec{n}}}_k^\mathrm{H} {\varvec{{\varOmega }}}_{k6} {\bar{\varvec{n}}}_k} \end{aligned}$$
(108)

where \(\left\{ {{\varvec{{\varOmega }}}_{kn}} \right\} _{n=1}^3\) are given in (39), \(\left\{ {{\varvec{{\varOmega }}}_{kn}} \right\} _{n=4}^5\) are given in (40), \({\varvec{{\varOmega }}}_{k6}\) is given in (41). At this point, the proof of (38) to (45) is completed.

Appendix 6: Proof of (58)

Assume that the unit eigenvectors of matrix \({\varvec{Q}}\) associated with eigenvalues \(\kappa _1 , \kappa _2 , \ldots , \kappa _D\) are denoted as \({\varvec{\eta }}_1 , {\varvec{\eta }}_2 , \ldots , {\varvec{\eta }}_D\). Then it follows

$$\begin{aligned} \left\| {{\tilde{\varvec{q}}}} \right\| _{2}^{2} \mathop =\limits ^\mathrm{d} {\tilde{\varvec{q}}}_0^\mathrm{T} {\varvec{Q}\tilde{\varvec{q}}}_0 \mathop =\limits ^\mathrm{d} \sum _{d=1}^D {\gamma _d \left( {{\tilde{\varvec{q}}}_0^\mathrm{T} {\varvec{\eta }}_d} \right) ^{2}} =\sum _{d=1}^D {\gamma _d \kappa _d} \end{aligned}$$
(109)

where \(\kappa _d =\left( {{\tilde{\varvec{q}}}_0^\mathrm{T} {\varvec{\eta }}_d} \right) ^{2}\). In can be straightforwardly proved that \(\kappa _d\) is chi-square distributed with one degree of freedom. Consequently, the characteristic function of \(\kappa _d\) can be formulated as \(\varphi _{\kappa _d} \left( t \right) =\left( {1-2\hbox {j}t} \right) ^{-1/2}\), and furthermore, the characteristic function of \(\gamma _d \kappa _d\) can be expressed as \(\varphi _{\gamma _d \kappa _d} \left( t \right) =\left( {1-2\hbox {j}\gamma _d t} \right) ^{-1/2}\). In addition, it can be easily verified that the random variables \(\kappa _{d_{1}}\) and \(\kappa _{d_{2}}\) are statistically independent for all \(d_1 \ne d_2\) due to the orthogonality between \({\varvec{\eta }}_{d_{1}}\) and \({\varvec{\eta }}_{d_{2}}\). As a result, Eq. (58) holds due to the fact that the characteristic function of the sum of several independent random variables is equal to the product of all the single characteristic function corresponding to each random variable. Then, the proof of (58) is ended.

Appendix 7: Detailed derivation of matrices \({G}_{1}\), \({G}_{2}\) and \({G}_{3}\)

According to the first equality in (78) we obtain

$$\begin{aligned} {\varvec{G}}_1= & {} {\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot {\varvec{{\varSigma }}}_{\varvec{q}} ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{\varvec{q}} -{\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} } \left( {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }} \right) ^{-1}{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{\varvec{q}} \nonumber \\= & {} \sum _{k=1}^K {\sum _{l=1}^L {\left| {\alpha _{l, k}} \right| ^{{2}}\left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}\cdot \hbox {diag}\left[ {\left| {{\varvec{s}}_k} \right| ^{2}} \right] \cdot \frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}}} \nonumber \\&-\sum _{k=1}^K \frac{{1}}{\left\| {{\varvec{\alpha }}_k} \right\| _2^2}\sum _{l_{1} =1}^L \sum _{l_{2} =1}^L \left| {\alpha _{l_{1} , k}} \right| ^{{2}}\left| {\alpha _{l_{2} , k}} \right| ^{{2}}\left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l_1 , k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}\nonumber \\&\cdot \; \hbox {diag}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l_1 , k}} \right) {\varvec{s}}_k^{*}} \right] \cdot {\bar{\bar{\varvec{I}}}}_N \cdot \hbox {diag}\left[ {{\varvec{A}}^{{*}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l_{2} , k}} \right) {\varvec{s}}_k} \right] \cdot \frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l_2 , k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}\qquad \end{aligned}$$
(110)

where \({\bar{\bar{\varvec{I}}}}_N =\hbox {blkdiag}\left[ {{\begin{array}{ll} {0}&{} {{\varvec{I}}_{N-1}} \\ \end{array}}} \right] \). Using the second equality in (78) leads to

$$\begin{aligned} {\varvec{G}}_2 ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot \cdot \left[ {{\begin{array}{lll} {{\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}}}&{} {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} }}&{} {{\varvec{{\varSigma }}}_{\mathrm{Im}\left\{ {\varvec{\alpha }} \right\} }} \\ \end{array}}} \right] =\left[ {{\begin{array}{lll} {{\varvec{G}}_{2,1}}&{} {{\varvec{G}}_{2,2}}&{} {{\varvec{G}}_{2,3}} \\ \end{array}}} \right] \end{aligned}$$
(111)

where

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{G}}_{2,1} ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot {\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}} ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}} -{\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} } \left( {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }} \right) ^{-1}{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}} \\ \quad =\left[ {{\begin{array}{llll} {{\varvec{G}}_{2,1}^{(1)}}&{} {{\varvec{G}}_{2,1}^{(2)}}&{} \cdots &{} {{\varvec{G}}_{2,1}^{(K)}} \\ \end{array}}} \right] \\ {\varvec{G}}_{2,2} ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} } ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} } -{\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} } \left( {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }} \right) ^{-1}{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }^\mathrm{H} {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} } \\ \quad =\left[ {{\begin{array}{llll} {{\varvec{G}}_{2,2}^{(1)}}&{} {{\varvec{G}}_{2,2}^{(2)}}&{} \cdots &{} {{\varvec{G}}_{2,2}^{(K)}} \\ \end{array}}} \right] \\ {\varvec{G}}_{2,3} ={\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot {\varvec{{\varSigma }}}_{\mathrm{Im}\left\{ {\varvec{\alpha }} \right\} } =\hbox {j}{\varvec{{\varSigma }}}_{\varvec{q}}^\mathrm{H} {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot {\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} } =\hbox {j}{\varvec{G}}_{2,2} \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(112)

in which

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{G}}_{2,1}^{(k)} =\sum _{l=1}^L \left| {\alpha _{l, k}} \right| ^{{2}}\left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}\\ \quad \left( {\hbox {diag}\left[ {{\varvec{B}}_k^{*} {\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) \left| {{\varvec{s}}_k} \right| ^{2}} \right] -\hbox {diag}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) {\varvec{s}}_k^{*}} \right] \cdot {\bar{\bar{\varvec{I}}}}_N \cdot \hbox {diag}\left[ {{\varvec{B}}_k^{*} {\varvec{s}}_k} \right] } \right) {\dot{\varvec{b}}}_k \\ {\varvec{G}}_{2,2}^{(k)} =\left[ {{\begin{array}{lll} {\alpha _{1, k}^{*} \left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{1, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{1, k}} \right) \left| {{\varvec{s}}_k} \right| ^{{2}}}&{} {\cdots \;\;\;\cdots }&{} {\alpha _{L, k}^{*} \left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{L, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{L, k}} \right) \left| {{\varvec{s}}_k} \right| ^{{2}}} \\ \end{array}}} \right] \\ -\sum _{l=1}^L {\frac{\left| {\alpha _{l, k}} \right| ^{2}}{\left\| {{\varvec{\alpha }}_k} \right\| _2^2}\left( {\frac{\partial \hbox {vecd}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) } \right] }{\partial {\varvec{q}}^{\mathrm{T}}}} \right) ^{\mathrm{H}}\cdot \hbox {diag}\left[ {{\varvec{A}}\left( {{\varvec{q}}\;,\;{\bar{\varvec{p}}}_{l, k}} \right) {\varvec{s}}_k^{*}} \right] \cdot {\bar{\bar{\varvec{I}}}}_N \left( {{\varvec{\alpha }}_k^\mathrm{H} \otimes {\varvec{s}}_k} \right) } \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(113)

Applying the third equality in (78) produces

$$\begin{aligned} {\varvec{G}}_3= & {} \left[ {{\begin{array}{lll} {{\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}}}&{} {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} }}&{} {{\varvec{{\varSigma }}}_{\mathrm{Im}\left\{ {\varvec{\alpha }} \right\} }} \\ \end{array}}} \right] ^{\mathrm{H}}\cdot {\varvec{{\varPi }}}_{{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{s}} \right\} }}^\bot \cdot \left[ {{\begin{array}{lll} {{\varvec{{\varSigma }}}_{{\varvec{\varDelta }\varvec{f}}}}&{} {{\varvec{{\varSigma }}}_{\mathrm{Re}\left\{ {\varvec{\alpha }} \right\} }}&{} {{\varvec{{\varSigma }}}_{\mathrm{Im}\left\{ {\varvec{\alpha }} \right\} }} \\ \end{array}}} \right] \nonumber \\= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {{\varvec{G}}_{3,11}}&{} {{\varvec{G}}_{3,12}}&{} {{\varvec{G}}_{3,13}} \\ {{\varvec{G}}_{3,12}^\mathrm{H}}&{} {{\varvec{G}}_{3,22}}&{} {{\varvec{G}}_{3,23}} \\ {{\varvec{G}}_{3,13}^\mathrm{H}}&{} {{\varvec{G}}_{3,23}^\mathrm{H}}&{} {{\varvec{G}}_{3,33}} \\ \end{array}}} \right] \end{aligned}$$
(114)

where

(115)

in which

$$\begin{aligned} \left\{ {\begin{array}{l} {\varvec{G}}_{3,11}^{(k)} =\left\| {{\varvec{\alpha }}_k} \right\| _2^2 {\dot{\varvec{b}}}_k^\mathrm{H} \left( {\hbox {diag}\left[ {\left| {{\varvec{s}}_k} \right| ^{2}} \right] -\hbox {diag}\left[ {{\varvec{B}}_k {\varvec{s}}_k^{*}} \right] \cdot {\bar{\bar{\varvec{I}}}}_N \cdot \hbox {diag}\left[ {{\varvec{B}}_k^{*} {\varvec{s}}_k} \right] } \right) {\dot{\varvec{b}}}_k \\ {\varvec{G}}_{3,12}^{(k)} =\left( {{\dot{\varvec{b}}}_k^\mathrm{H} \cdot \hbox {diag}\left[ {{\varvec{B}}_k {\varvec{s}}_k^{*}} \right] \cdot {\varvec{s}}_k} \right) {\varvec{\alpha }}_k^\mathrm{H} -{\dot{\varvec{b}}}_k^\mathrm{H} \cdot \hbox {diag}\left[ {{\varvec{B}}_k {\varvec{s}}_k^{*}} \right] \cdot {\bar{\bar{\varvec{I}}}}_N \left( {{\varvec{\alpha }}_k^\mathrm{H} \otimes {\varvec{s}}_k}\right) \\ {\varvec{G}}_{3,22}^{(k)} =\left\| {{\varvec{s}}_k} \right\| _2^2 {\varvec{I}}_L -\frac{1}{\left\| {{\varvec{\alpha }}_k} \right\| _2^2}\left( {{\varvec{\alpha }}_k \otimes {\varvec{s}}_k^\mathrm{H}} \right) {\bar{\bar{\varvec{I}}}}_N \left( {{\varvec{\alpha }}_k^\mathrm{H} \otimes {\varvec{s}}_k} \right) \\ \end{array}} \right. \quad \left( {k=1 , 2 , \ldots , K} \right) \nonumber \\ \end{aligned}$$
(116)

At this point, the derivation is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wu, Y. Statistical performance analysis of direct position determination method based on doppler shifts in presence of model errors. Multidim Syst Sign Process 28, 149–182 (2017). https://doi.org/10.1007/s11045-015-0338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0338-3

Keywords

Navigation