CrossMark

ERRATUM

Erratum to: A new look at 2D shallow water equations of fluid dynamics via multidimensional Kirchhoff paradigm

Sankar Basu¹ · Alfred Fettweis²

Published online: 26 August 2015

© Springer Science+Business Media New York 2015

Erratum to: Multidim Syst Sign Process DOI 10.1007/s11045-015-0321-z

During the production process, typesetting errors were introduced. Please find the corrections below:

Equation number (3.9) refers to the entire group of equations expressing L_0 , L_1 , L_2 , L_3 , and L_4 , and thus should have been aligned with the line above.

In Fig. 5 all T's are meant to be bold faced, i.e., T_1 , T_2 , T_3 , and T_4 must be as T_1 , T_2 , T_3 , and T_4 respectively.

In Fig. 7 all T's are meant to be bold faced, i.e., T_1 , T_2 , and T_3 , must be as T_1 , T_2 , and T_3 respectively.

The line after (7.12) should read:

and consequently with $a_0 = \gamma_1 a_1 + \cdots + \gamma_{n-1} a_{n-1}$,

All equations in the Appendix have been numbered as (7.*). This makes it appear as though the Appendix is Section 7 of the paper. We meant the equations in the Appendix to have the format (A.*) instead. Thus, all equations in the paper of the type (7.*) should be replaced by corresponding equation numbers in the format (A.*).

Further comments provided by the authors:

For the paragraph before equation (3.26):

For the MD Kirchhoff circuit in Fig. 2 to be MD passive the MD inductances must have nonnegative values. These requirements enforce conditions on the parameters α and v_3 that

The online version of the original article can be found under doi:10.1007/s11045-015-0321-z.

Lehrstuhl für Nachrichtentechnik, Ruhr-Universität Bochum, 44780 Bochum, Germany

[⊠] Sankar Basu sabasu@nsf.gov

Division of Computing and Communications Foundations, National Science Foundation, Arlington, VA 22230, USA

we have chosen according to $L_0 \geq 4/3$ and $L_{\kappa} \geq 1$ for $\kappa = 1$ to 3. Since the two series inductances in Fig. 2, 1, D_3 and $L_3 - 1$, D_3 , can be combined into one inductance L_3 , D_3 , strictly speaking the requirements for MD passivity, and thus the global stability of the circuit is $L_0 \geq 4/3$, $L_{\kappa} \geq 1$ for $\kappa = 1$ to 2 and $L_3 \geq 0$. However, the requirements $L_0 \geq 4/3$, $L_{\kappa} \geq 1$ for $\kappa = 1$ to 3, as adopted, can be conveniently satisfied, and they suffice for our purpose.

For the paragraph before equation (4.21):

Likewise, in Fig. 4 the two series inductances 1, D_3 and \hat{L}_3-1 , D_3 can be combined into one inductance \hat{L}_3 , D_3 . Once again, strictly speaking the requirements for the circuit in Fig. 4 to be MD passive are that $\hat{L}_{\kappa} \geq 1$ for $\kappa = 1$ to 2, $\hat{L}_3 \geq 0$ and $\hat{L}_{\kappa 0} \geq 4/3$ for $\kappa = 1$ to 3. However, the requirements $\hat{L}_{\kappa} \geq 1$ for $\kappa = 1$ to 3, and $\hat{L}_{\kappa 0} \geq 4/3$ for $\kappa = 1$ to 3 are sufficient for our purposes and have been used for a more streamlined treatment.

