Skip to main content
Log in

A new beta differential evolution algorithm for edge preserved colored satellite image enhancement

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Image enhancement plays a very crucial role in many image processing applications. It aims at improving the visual and informational quality of the distorted images. Histogram equalization is one of the most frequently used techniques for image contrast enhancement. However, histogram and most of the other enhancement approaches may yield un-natural looking or artifacts after enhancement, and the images computed by these methods are not desirable in few applications such as consumer electronic products where brightness preservation is necessary to avoid annoying artifacts. To overcome such problems, a new optimal grey level mapping based edge preserved satellite images enhancement technique using a beta differential evolution (BDE) algorithm has been proposed in this paper. The proposed method uses a simple grey-level mapping technique and beta differential evolution algorithm together with corresponding enhancement operators for quality contrast and brightness boosting of the satellite images. In this approach, the grey levels of the input image are replaced by a new set of grey levels. The proposed algorithm has been tested on numerous colored satellite images and also on standard Lena image. Further qualitative and statistical comparisons of the proposed BDE with artificial bee colony, modified artificial bee colony, particle swarm optimization, differential evolution algorithms are presented in the paper, which have proven its superiority in terms of PSNR, MSE, SSIM, FSIM and EKI indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600.

    Article  Google Scholar 

  • Agrawal, S., & Panda, R. (2012). An efficient algorithm for gray level image enhancement using cuckoo search. In B. K. Panigrahi et al. (Eds.), Swarm, evolutionary, and memetic computing (pp. 82–89). Berlin, Heidelberg: Springer.

  • Alatas, B. (2010). Chaotic bee colony algorithms for global numerical optimization. Expert Systems with Applications, 37(8), 5682–5687.

    Article  Google Scholar 

  • Ali, M. M. (2007). Synthesis of the b-distribution as an aid to stochastic global optimization. Computational Statistics & Data Analysis, 52, 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Arici, T., Dikbas, S., & Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18(9), 1921–1935.

    Article  MathSciNet  Google Scholar 

  • Ayala, H. V. H., dos Santos, F. M., Mariani, V. C., & dos Santos Coelho, L. (2014). Image thresholding segmentation based on a novel beta differential evolution approach. Expert Systems with Applications, 42, 2136–2142.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Padhy, P. K. (2011). Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition. World Academy of Science, Engineering and Technology, 79, 35–41.

    Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Procedia Technology, 6, 612–621.

    Article  Google Scholar 

  • Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014a). Artificial bee colony-based satellite image contrast and brightness enhancement technique using DWT–SVD. International Journal of Remote Sensing, 35(5), 1601–1624.

    Article  Google Scholar 

  • Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014b). Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT–SVD. ISA Transactions, 53, 1286–1296.

    Article  Google Scholar 

  • Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014c). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538–3560.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2015a). Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Systems with Applications, 42(3), 1573–1601.

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2015b). Improved knee transfer function and gamma correction based method for contrast and brightness enhancement of satellite image. AEU-International Journal of Electronics and Communications, 69(2), 579–589.

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2015c). Improved feature extraction scheme for satellite images using NDVI and NDWI technique based on DWT and SVD. Arabian Journal of Geosciences, 1–18.

  • Braik, M., Sheta, A. F., & Ayesh, A. (2007). Image enhancement using particle swarm optimization. In Proceedings of the World Congress on Engineering 2007 (WCE 2007), London, Vol. 1, pp. 978–988.

  • Chaira, T. (2014). An improved medical image enhancement scheme using Type II fuzzy set. Applied Soft Computing, 25, 293–308.

  • Chen, S. D., & Ramli, A. R. (2003). Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4), 1310–1319.

    Article  Google Scholar 

  • Coelho, L. D. S., Mariani, V. C., & Leite, J. V. (2012). Solution of Jiles–Atherton vector hysteresis parameters estimation by modified differential evolution approaches. Expert Systems with Applications, 39(2), 2021–2025.

    Article  Google Scholar 

  • Coelho, L. D. S., Sauer, J. G., & Rudek, M. (2009). Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos, Solitons & Fractals, 42(1), 522–529.

    Article  Google Scholar 

  • Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.

    Article  Google Scholar 

  • Draa, A., & Bouaziz, A. (2014). An artificial bee colony algorithm for image contrast enhancement. Swarm and Evolutionary Computation, 16, 69–84.

    Article  Google Scholar 

  • de Araujo, A. F., Constantinou, C. E., & Tavares, J. M. R. (2014). New artificial life model for image enhancement. Expert Systems with Applications, 41(13), 5892–5906.

    Article  Google Scholar 

  • Gao, W. F., & Liu, S. Y. (2012). A modified artificial bee colony algorithm. Computers & Operations Research, 39(3), 687–697.

    Article  MATH  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2006). Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice-Hall Inc.

    Google Scholar 

  • Hanmandlu, M., Jha, D., & Sharma, R. (2003). Color image enhancement by fuzzy intensification. Pattern Recognition Letters, 24(1), 81–87.

    Article  MATH  Google Scholar 

  • Hanmandlu, M., Verma, O. P., Kumar, N. K., & Kulkarni, M. (2009). A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Transactions on Instrumentation and Measurement, 58(8), 2867–2879.

    Article  Google Scholar 

  • Hashemi, S., Kiani, S., Noroozi, N., & Moghaddam, M. E. (2010). An image contrast enhancement method based on genetic algorithm. Pattern Recognition Letters, 31(13), 1816–1824.

    Article  Google Scholar 

  • Hoseini, P., & Shayesteh, M. G. (2013). Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digital Signal Processing, 23(3), 879–893.

    Article  MathSciNet  Google Scholar 

  • http://earthobservatory.nasa.gov/Images/?eocn=topnav&eoci=imag

  • Ibrahim, H., & Kong, N. S. P. (2007). Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(4), 1752–1758.

    Article  Google Scholar 

  • Johnson, N., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Kaelo, P., & Ali, M. M. (2006). A numerical study of some modified differential evolution algorithms. European Journal of Operational Research, 169(3), 1176–1184.

    Article  MathSciNet  MATH  Google Scholar 

  • Kao, W. C., Hsu, M. C., & Yang, Y. Y. (2010). Local contrast enhancement and adaptive feature extraction for illumination-invariant face recognition. Pattern Recognition, 43(5), 1736–1747.

    Article  MATH  Google Scholar 

  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department.

  • Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.

    Article  Google Scholar 

  • Kim, J. Y., Kim, L. S., & Hwang, S. H. (2001). An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Transactions on Circuits and Systems for Video Technology, 11(4), 475–484.

    Article  Google Scholar 

  • Kumar, A., Bhandari, A. K., & Padhy, P. (2012). Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing. IET on Signal Processing, 6(7), 617–625.

    Article  MathSciNet  Google Scholar 

  • Kumar, S., Pant, M., & Ray, A. K. (2014). DE-IE: Differential evolution for color image enhancement. International Journal of System Assurance Engineering and Management, 1–12.

  • Kwok, N. M., Ha, Q. P., Liu, D., & Fang, G. (2009). Contrast enhancement and intensity preservation for gray-level images using multiobjective particle swarm optimization. IEEE Transactions on Automation Science and Engineering, 6(1), 145–155.

    Article  Google Scholar 

  • Kwok, N. M., Shi, H. Y., Ha, Q. P., Fang, G., Chen, S. Y., & Jia, X. (2013). Simultaneous image color correction and enhancement using particle swarm optimization. Engineering Applications of Artificial Intelligence, 26(10), 2356–2371.

    Article  Google Scholar 

  • Mahapatra, P. K., Ganguli, S., & Kumar, A. (2014). A hybrid particle swarm optimization and artificial immune system algorithm for image enhancement. Soft Computing, 1–9.

  • Mendes, R., & Kennedy, J. (2007). Stochastic barycenters and beta distribution for gaussian particle swarms. In J. Neves, M. F. Santos, & J. M. Machado (Eds.), Progress in artificial intelligence (pp. 259–270). Berlin, Heidelberg: Springer.

  • Mishra, A., Agarwal, C., Sharma, A., & Bedi, P. (2014). Optimized gray-scale image watermarking using DWT–SVD and Firefly Algorithm. Expert Systems with Applications, 41(17), 7858–7867.

    Article  Google Scholar 

  • Paul, J. S., Mathew, J. J., & Kesavadas, C. (2014). MR image enhancement using an extended neighborhood filter. Journal of Visual Communication and Image Representation, 25(7), 1604–1615.

    Article  Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  • Ryu, C., Kong, S. G., & Kim, H. (2011). Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognition Letters, 32(2), 107–113.

    Article  Google Scholar 

  • Shanmugavadivu, P., & Balasubramanian, K. (2014). Particle swarm optimized multi-objective histogram equalization for image enhancement. Optics & Laser Technology, 57, 243–251.

    Article  Google Scholar 

  • Shao, L., & Rehman, A. U. (2014). Image demosaicing using content and colour-correlation analysis. Signal Processing, 103, 84–91.

    Article  Google Scholar 

  • Shao, L., Yan, R., Li, X., & Liu, Y. (2014). From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Transactions on Cybernetics, 44(7), 1001–1013.

    Article  Google Scholar 

  • Singh, K., & Kapoor, R. (2014). Image enhancement using exposure based sub image histogram equalization. Pattern Recognition Letters, 36, 10–14.

    Article  Google Scholar 

  • Soni, V., Bhandari, A. K., Kumar, A., & Singh, G. K. (2013). Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms. IET Signal Processing, 7(8), 720–730.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, C. C., Ruan, S. J., Shie, M. C., & Pai, T. W. (2005). Dynamic contrast enhancement based on histogram specification. IEEE Transactions on Consumer Electronics, 51(4), 1300–1305.

    Article  Google Scholar 

  • Tello-Alonso, M., López-Martínez, C., Mallorquí, J. J., & Salembier, P. (2011). Edge enhancement algorithm based on the wavelet transform for automatic edge detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 222–235.

    Article  Google Scholar 

  • Xie, X., & Lam, K. M. (2005). Face recognition under varying illumination based on a 2D face shape model. Pattern Recognition, 38(2), 221–230.

    Article  Google Scholar 

  • Yan, R., Shao, L., & Liu, Y. (2013). Nonlocal hierarchical dictionary learning using wavelets for image denoising. IEEE Transactions on Image Processing, 22(12), 4689–4698.

    Article  MathSciNet  Google Scholar 

  • Yan, R., Shao, L., Liu, L., & Liu, Y. (2014). Natural image denoising using evolved local adaptive filters. Signal Processing, 103, 36–44.

    Article  Google Scholar 

  • Yang, Y., Su, Z., & Sun, L. (2010). Medical image enhancement algorithm based on wavelet transform. Electronics Letters, 46(2), 120–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A.K., Kumar, A., Chaudhary, S. et al. A new beta differential evolution algorithm for edge preserved colored satellite image enhancement. Multidim Syst Sign Process 28, 495–527 (2017). https://doi.org/10.1007/s11045-015-0353-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0353-4

Keywords

Navigation