Skip to main content
Log in

Weighted fusion of MRI and PET images based on fractal dimension

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a fusion scheme is presented to combine the useful information present in magnetic resonance and positron emission tomography images. The proposed scheme utilizes image pre-processing, local feature (fractal dimension), weighted fusion and improved guided filter to extract and combine information present at different scales/frequencies. The fusion scheme assist radiologist in better analysis and diagnosis of different diseases. Visual and quantitative analysis reveals the significance of proposed image fusion scheme, as compared to state of the art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Kadi, O. S., & Watson, D. (2008). Texture analysis of aggressive and nonaggressive lung tumor CECT Images. IEEE Transaction on Biomedical Engineering, 55(7), 1822–1830.

    Article  Google Scholar 

  • Amolins, K., Zhang, Y., & Dare, P. (2007). Wavelet based image fusion techniques: An introduction, review and comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 249–263.

    Article  Google Scholar 

  • Arici, T., Dikbas, S., & Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 18(9), 1921–1935.

    Article  MathSciNet  Google Scholar 

  • Bhatnagar, G., Wu, Q. M. J., & Liu, Z. (2013). Human visual system inspired multi-modal medical image fusion framework. Expert Systems with Applications, 40(5), 1708–1720.

    Article  Google Scholar 

  • Das, S., & Kundu, M. K. (2012). NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency. Medical & Biological Engineering & Computing, 50(10), 1105–1114.

    Article  Google Scholar 

  • Dougherty, G., & Henebry, G. M. (2001). Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Medical Engineering & Physics, 23(6), 369–380.

    Article  Google Scholar 

  • Do, M. N., & Vetterli, M. (2005). The contourlet transform: An efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12), 2091–2106.

    Article  Google Scholar 

  • Goh, V., Sanghera, B., Wellsted, D. M., Sundin, J., & Halligan, S. (2009). Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. European Radiology, 19(6), 1358–1365.

    Article  Google Scholar 

  • Harvard Medical Atlas Database. http://www.med.harvard.edu/AANLIB/home.html.

  • He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397–1409.

    Article  Google Scholar 

  • Iftekharuddin, K. M., Jia, W., & Marsh, R. (2003). Fractal analysis of tumor in brain MR images. Machine Vision and Applications, 13, 352–362.

    Article  Google Scholar 

  • Jameel, A., Ghafoor, A., & Riaz, M. M. (2014). Improved guided image fusion for magnetic resonance and computed tomography imaging. The Scientific World Journal, 2014, 695752. doi:10.1155/2014/695752.

  • Javed, U., Riaz, M. M., Ghafoor, A., Ali, S. S., & Cheema, T. A. (2014). MRI and PET image fusion using fuzzy logic and image local features. The Scientific World Journal, 2014, 708075. doi:10.1155/2014/708075.

  • Kido, S., Kuriyama, K., Higashiyama, M., Kasugai, T., & Kuroda, C. (2001). Fractal analysis of internal and peripheral textures of small peripheral bronchogenic carcinomas in thin-section computed tomography: Comparison of bronchioloalveolar cell carcinomas with nonbronchioloalveolar cell carcinomas. Journal of Computer Assisted Tomography, 27(1), 56–61.

    Article  Google Scholar 

  • Kido, S., Kuriyama, K., Higashiyama, M., Kasugai, T., & Kuroda, C. (2002). Fractal analysis of small peripheral pulmonary nodules in thin-section CT: Evaluation of the lung-nodule interfaces. Journal of Computer Assisted Tomography, 26(4), 573–578.

    Article  Google Scholar 

  • Kilic, K. I., & Abiyev, R. H. (2011). Exploiting the synergy between fractal dimension and lacunarity for improved texture recognition. Signal Processing, 91(10), 2332–2344.

    Article  MATH  Google Scholar 

  • Kim, Y., Lee, C., Han, D., Kim, Y., & Kim, Y. (2011). Improved additive wavelet image fusion. IEEE Geoscience and Remote Sensing Letters, 8(2), 263–267.

    Article  Google Scholar 

  • Li, D., & Chongzhao, H. (2010). Fusion for CT image and MR image based on nonsubsampled transformation. International Conference on Advanced Computer Control (ICACC), 5, 372–374.

    Google Scholar 

  • Li, Q., Du, J., & Xu, L. (2013). Multi-focus image fusion using the local fractal dimension. International Journal of Advanced Robotic Systems, 10(251), 1–11.

    Article  Google Scholar 

  • Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing, 22(7), 2864–2875.

    Article  Google Scholar 

  • Li, S., Yang, B., & Hu, J. (2011). Performance comparison of different multi-resolution transforms for image fusion. Information Fusion, 12(2), 74–84.

    Article  Google Scholar 

  • Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., & Wu, W. (2012). Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 94–109.

    Article  Google Scholar 

  • Mandelbrot, B. (1983). The fractal geometry of nature. New York: W. H. Freeman and Company.

    MATH  Google Scholar 

  • Nakamoto, Y., Higashi, T., Sakahara, H., Tamaki, N., Kogire, M., Imamura, M., et al. (1999). Contribution of PET in the detection of liver metastases from pancreatic tumours. Clinical Radiology, 54, 248–252.

    Article  Google Scholar 

  • Pajares, G., & Cruz, J. (2004). A wavelet-based image fusion tutorial. Pattern Recognition, 37(9), 1855–1872.

    Article  Google Scholar 

  • Piella, G. (2009). Image fusion for enhanced visualization: A variational approach. International Journal of Computer Vision, 83(1), 1–11.

    Article  Google Scholar 

  • Poddar, S., Tewary, S., Sharma, D., Karar, V., Ghosh, A., & Pal, S. K. (2013). Non-parametric modified histogram equalisation for contrast enhancement. IET Image Processing, 7(7), 641–652.

    Article  Google Scholar 

  • Qu, G., Zhang, D., & Yan, P. (2002). Information measure for performance of image fusion. Electronics Letters, 38(7), 313–315.

    Article  Google Scholar 

  • Rojas, G. M., Raff, U., Quintana, J. C., Huete, I., & Hutchinson, M. (2007). Image fusion in neuroradiology: Three clinical examples including MRI of Parkinson disease. Computerized Medical Imaging and Graphics, 31(1), 17–27.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116–132.

    Article  MATH  Google Scholar 

  • Teng, J., Wang, S., Zhang, J., & Wang, X. (2010). Neuro-fuzzy logic based fusion algorithm of medical images. International Congress on Image and Signal Processing, 4, 1552–1556.

    Article  Google Scholar 

  • Wang, L. X. (1997). A course in fuzzy fystems and control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Xu, Z. (2014). Medical image fusion using multi-level local extrema. Information Fusion, 19, 38–48.

    Article  Google Scholar 

  • Xydeas, C. S., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308–309.

    Article  Google Scholar 

  • Yang, L., Guo, B. L., & Ni, W. (2008). Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing, 72(13), 203–211.

    Article  Google Scholar 

  • Yang, Y., Park, D. S., Huang, S., & Rao, N. (2010). Medical image fusion via an effective wavelet-based approach. EURASIP Journal on Advances in Signal Processing, 2010, 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, U., Riaz, M.M., Ghafoor, A. et al. Weighted fusion of MRI and PET images based on fractal dimension. Multidim Syst Sign Process 28, 679–690 (2017). https://doi.org/10.1007/s11045-015-0367-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0367-y

Keywords

Navigation