Skip to main content

Advertisement

Log in

Optimal design of 2-D FIR digital differentiator using \(L_1\)-norm based cuckoo-search algorithm

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, an optimal design of two-dimensional finite impulse response digital differentiators (2-D FIR-DD) with quadrantally odd symmetric impulse response is presented. The design problem of 2-D FIR-DD is formulated as an optimization problem based on the \(L_1\)-error fitness function. The novel error fitness function is based on the \(L_1\) norm which is unique and is liable to produce a flat response. This design methodology incorporates advantages of \(L_1\)-error approximating function and cuckoo-search algorithm (CSA) which is capable of attaining a global optimal solution. The optimized system coefficients are computed using \(L_1\)-CSA and performance is measured in terms of magnitude response, phase response, absolute magnitude error and elapsed time. Simulation results have been compared with other optimization algorithms such as real-coded genetic algorithm and particle swarm optimization and it is observed that \(L_1\)-CSA delivers optimal results for 2-D FIR-DD design problem. Further, performance of the \(L_1\)-CSA based 2-D FIR-DD design is evaluated in terms of absolute magnitude error and algorithm execution time to demonstrate their effect with variation in the control parameters of CSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aggarwal, A., Kumar, M., Rawat, T. K., & Upadhyay, D. K. (2016a). Optimal design of 2D FIR filters with quadrantally symmetric properties using fractional derivative constraints. Circuits, Systems, and Signal Processing, 35(6), 2213–2257.

    Article  MATH  Google Scholar 

  • Aggarwal, A., Rawat, T. K., Kumar, M., & Upadhyay, D. K. (2016b). Design of optimal band-stop FIR filter using \(L_1\)-norm based RCGA. Ain Shams Engineering Journal. doi:10.1016/j.asej.2015.11.022.

  • Aggarwal, A., Rawat, T. K., Kumar, M., & Upadhyay, D. K. (2015). Optimal design of FIR high pass filter based on \(L_1\) error approximation using real coded genetic algorithm. Enggineeing Science and Technology, An International Journal, 18(4), 594–602.

    Article  Google Scholar 

  • Aggarwal, A., Rawat, T. K., & Upadhyay, D. K. (2016c). Design of optimal digital FIR filters using evolutionary and swarm optimization techniques. AEU-International Journal of Electronics and Communications, 70, 373–385.

    Article  Google Scholar 

  • Al-Alaoui, M. A. (2011). Class of digital integrators and differentiators. IET Signal Processing, 5(2), 251–260.

    Article  Google Scholar 

  • Bhattacharya, D., & Antoniou, A. (1999). Design of 2-D FIR filters by a feedback neural network. Multidimensional Systems and Signal Processing, 10(3), 319–330.

    Article  MATH  Google Scholar 

  • Chu, C. H., Delp, E. J., & Buda, A. J. (1988). Detecting left ventricular endocardial and epicardial boundaries by digital two-dimensional echocardiography. IEEE Transactions on Medical Imaging, 7(2), 81–90.

    Article  Google Scholar 

  • Cichocki, A., & Amari, S. I. (2002). Adaptive blind signal and image processing: Learning algorithms and applications (Vol. 1). Hoboken: Wiley.

    Book  Google Scholar 

  • Dhabal, S., & Venkateswaran, P. (2015). A novel accelerated artificial bee colony algorithm for optimal design of two dimensional FIR filter. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-015-0352-5

  • Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engineering with Computers, 29(1), 17–35.

    Article  Google Scholar 

  • Grossmann, L. D., & Eldar, Y. C. (2007). An \(L_1\)-method for the design of linear-phase FIR digital filters. IEEE Transactions on Signal Processing, 55(11), 5253–5266.

    Article  MathSciNet  Google Scholar 

  • Gupta, M., Jain, M., & Kumar, B. (2011). Recursive wideband digital integrator and differentiator. International Journal of Circuit Theory and Applications, 39, 775–782.

    Article  Google Scholar 

  • Gupta, M., Relan, B., Yadav, R., & Aggarwal, V. (2014). Wideband digital integrators and differentiators designed using particle swarm optimization. IET Signal Processing, 8(6), 668–679.

    Article  Google Scholar 

  • Gupta, M., & Yadav, R. (2014). New improved fractional order differentiator models based on optimized digital differentiators. The Scientific World Journal. doi:10.1155/2014/741395.

  • Hinamoto, T., & Doi, A. (1996). A technique for the design of 2-D recursive digital filters with guaranteed stability. Multidimensional Systems and Signal Processing, 7(2), 225–237.

    Article  MATH  Google Scholar 

  • Jalloul, M. K., & Al-Alaoui, M. A. (2015). Design of recursive digital integrators and differentiators using particle swarm optimization. International Journal of Circuit Theory and Applications. doi:10.1002/cta.2115.

  • Kockanat, S., & Karaboga, N. (2015). The design approaches of two-dimensional digital filters based on meta-heuristic optimization algorithms: A review of the literature. Artificial Intelligence Review, 44(2), 265–287.

  • Kumar, M., & Rawat, T. K. (2015a). Optimal design of FIR fractional order differentiator using cuckoo search algorithm. Expert Systems with Applications, 42, 3433–3449.

    Article  Google Scholar 

  • Kumar, M., & Rawat, T. K. (2015b). Optimal fractional delay-IIR filter design using cuckoo search algorithm. ISA Transactions, 59, 39–54.

    Article  Google Scholar 

  • Kumar, M., Rawat, T. K., Jain, A., Singh, A. A., & Mittal, A. (2015a). Design of digital differentiators using interior search algorithm. Procedia Computer Science, 57, 368–376.

    Article  Google Scholar 

  • Kumar, M., Rawat, T. K., Singh, A. A., Mittal, A., Jain, A. (2015b). Optimal design of wideband digital integrators using gravitational search algorithm. In International conference on international conference on computing, communication and automation (ICCCA), pp. 1314–1319.

  • Lai, X. (2007). Design of smallest size two-dimensional linear-phase FIR filters with magnitude error constraint. Multidimensional Systems and Signal Processing, 18(4), 341–349.

    Article  MATH  Google Scholar 

  • Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 165–168.

    Article  Google Scholar 

  • Lin, Y. P., & Vaidyanathan, P. P. (1996). Theory and design of two-dimensional filter banks: A review. Multidimensional Systems and Signal Processing, 7(3–4), 263–330.

    Article  MATH  Google Scholar 

  • Lu, W. S., & Hinamoto, T. (2011). Two-dimensional digital filters with sparse coefficients. Multidimensional Systems and Signal Processing, 22(1–3), 173–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, B., Xie, H., Guo, Z., & Hua, T. (2007). Full-field strain measurement using a two-dimensional Savitzky–Golay digital differentiator in digital image correlation. Optical Engineering, 46(3), 033601–033601.

    Article  Google Scholar 

  • Patwardhan, A. P., Patidar, R., & George, N. V. (2014). On a cuckoo search optimization approach towards feedback system identification. Digital Signal Processing, 32, 156–163.

    Article  Google Scholar 

  • Rawat, T. K. (2015). Digital signal processing (1st ed.). New Delhi: Oxford Publication.

    Google Scholar 

  • Shyu, J. J., Pei, S. C., Huang, Y. D., & Chen, Y. S. (2014). A new structure and design method for variable fractional-delay 2-D FIR digital filters. Multidimensional Systems and Signal Processing, 25(3), 511–529.

    Article  Google Scholar 

  • Tseng, C. C., & Lee, S. L. (2008). Design of digital differentiator using difference formula and richardson extrapolation. IET Signal Processing, 2(2), 177–188.

    Article  MathSciNet  Google Scholar 

  • Tseng, C. C., & Lee, S. L. (2013). Designs of two-dimensional linear phase FIR filters using fractional derivative constraints. Signal Processing, 93(5), 1141–1151.

    Article  Google Scholar 

  • Tseng, C. C., & Lee, S. L. (2014). Designs of fractional derivative constrained 1-D and 2-D FIR filters in the complex domain. Signal Processing, 95, 111–125.

    Article  Google Scholar 

  • Tzafestas, S. G. (1986). Multidimensional systems, techniques and applications. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Tzeng, S. T. (2004). Genetic algorithm approach for designing 2-D FIR digital filters with 2-D symmetric properties. Signal Processing, 84(10), 1883–1893.

    Article  MATH  Google Scholar 

  • Upadhyay, D. K., & Singh, R. K. (2011). Recursive wide band digital differentiators and integrators. Electronic Letters, 47(11), 647648.

    Article  Google Scholar 

  • Yang, X. S. (2014). Nature-inspired optimization algorithms. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation: Theory and applications (1st ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Yang, X. S., Deb, S. (2009). Cuckoo search via lvy flights. In Proceeding of world congress on nature and biologically inspired computing, IEEE Publications, pp. 210–214.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, A., Kumar, M., Rawat, T.K. et al. Optimal design of 2-D FIR digital differentiator using \(L_1\)-norm based cuckoo-search algorithm. Multidim Syst Sign Process 28, 1569–1587 (2017). https://doi.org/10.1007/s11045-016-0433-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0433-0

Keywords

Navigation