Skip to main content
Log in

Structural stabilization of linear 2D discrete systems using equivalence transformations

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

We consider stability and stabilization issues for linear two-dimensional (2D) discrete systems. We give a general definition of structural stability for all linear 2D discrete systems which coincides with the existing definitions in the particular cases of the classical Roesser and Fornasini–Marchesini discrete models. We study the preservation of the structural stability by equivalence transformations in the sense of the algebraic analysis approach to linear systems theory. This allows us to use recent works both on the stabilization of linear 2D Roesser models and on the equivalence of linear multidimensional systems in order to develop a stabilization method for linear 2D discrete Fornasini–Marchesini models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Note that the isomorphism between the D-modules associated to \(R_s\,x=0\) and \(R_s'\,x'=0\) is defined by the matrix \(P \in D^{(d_x+d_u) \times (d_{x'}+d_{u'})}\) defining the isomorphism between the D-modules associated to (11) and (12).

  2. Note however that this does not necessarily imply that the Fornasini model (4) cannot be stabilized.

References

  • Bachelier, O., Yeganefar, N., Mehdi, D., & Paszke, W. (2015a). State feedback structural stabilization of 2D discrete Roesser models. In Proceedings of the 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real (Portugal), 07–09 Sep 2015.

  • Bachelier, O., Paszke, W., Yeganefar, N., Mehdi, D., & Cherifi, A. (2016a). LMI necessary and sufficient stability conditions for 2D Roesser models. IEEE Transaction on Automatic Control, 61(3), 766–770.

  • Bachelier, O., Yeganefar, N., Mehdi, D., & Paszke, W. (2016b) On structural stabilization of state-space 2D models. Submitted

  • Basu, S. (2002). Multidimensional causal, stable, perfect reconstruction filter banks. IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 49(6), 832–843.

    Article  MathSciNet  Google Scholar 

  • Bose, N. K. (1982). Applied multidimensional system theory. New York: Van Nostrand Reinhold Comp.

    MATH  Google Scholar 

  • Bose, N. K. (1984). Multidimensional system theory. Dordrecht: D. Reidel Publishing Comp.

    Google Scholar 

  • Boudellioua, M. S. (2012). Strict system equivalence of 2D linear discrete state space models. Journal of Control Science and Engineering, 2012, 609276. doi:10.1155/2012/609276.

  • Bouzidi, Y., Quadrat, A., & Rouillier, F. (2015). Computer algebra methods for testing the structural stability of multidimensional systems. In Proceedings of the 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real (Portugal), 07–09 Sep 2015.

  • Boyd, S., El Ghaoui, L., Féron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory, Volume 15 of SIAM Studies in Applied Mathematics.

  • Bracewell, R. N. (1995). Two-Dimensional Imaging Prentice Hall Signal Processing Series. Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Chyzak, F., Quadrat, A., & Robertz, D. (2007). OreModules: A symbolic package for the study of multidimensional linear systems. In Lecture Notes in Control and Information Science (Vol. 352, pp. 233–264). Berlin: Springer. http://pages.saclay.inria.fr/alban.quadrat/OreModules.html (last consultation June 2016).

  • Chyzak, F., Quadrat, A., & Robertz, D. (2005). Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Comm. Comput., 16, 319–376.

    Article  MathSciNet  MATH  Google Scholar 

  • Cluzeau, T. (2015). A constructive algebraic analysis approach to the equivalence of multidimensional linear systems. In Proceedings of the 9th international workshop on multidimensional (nD) systems (nDS’15), Vila Real (Portugal), 07–09 Sep 2015.

  • Cluzeau, T., & Quadrat, A. (2009). OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems. In Lecture Notes in Control and Information Science (Vol. 388, pp. 179–194). Berlin: Springer. http://pages.saclay.inria.fr/alban.quadrat/OreMorphisms.html (last consultation June 2016).

  • Cluzeau, T., & Quadrat, A. (2011). A constructive version of Fitting’s theorem on isomorphisms and equivalences of linear systems. In Proceedings of the 7th international workshop on multidimensional (nD) systems (nDS’11), Poitiers (France), 05–07 Sep 2011.

  • Cluzeau, T., & Quadrat, A. (2013) Isomorphisms and Serre’s reduction of linear systems. In Proceedings of the 8th international workshop on multidimensional (nD) systems (nDS’13), Erlangen (Germany), 09–11 Sep 2013.

  • Cluzeau, T., & Quadrat, A. (2016). Equivalences of linear functional systems.

  • Cluzeau, T., Quadrat, A., & Tõnso, M. (2015) OreAlgebraicAnalysis: A Mathematica package for the algorithmic study of linear functional systems. OreAlgebraicAnalysis project, 2015. http://pages.saclay.inria.fr/alban.quadrat/OreAlgebraicAnalysis.html (last consultation June 2016).

  • Cluzeau, T., & Quadrat, A. (2008). Factoring and decomposing a class of linear functional systems. Linear Algebra Applications, 428, 324–381.

    Article  MathSciNet  MATH  Google Scholar 

  • D’Andrea, R., & Dullerud, G. E. (2003). Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, 48(9), 1478–1495.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudgeon, D. E., & Merseau, R. M. (1984). Multidimensional digital signal processing, Prentice Hall Signal Processing Series. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Doubly indexed dynamical systems: state space models and structural properties. Mathematical Systems Theory, 12, 59–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Fuhrmann, P. A. (1977). On strict system equivalence and similarity. International Journal of Control, 25(1), 5–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Gahinet, P., Nemirovski, A., Laub, A. J., & Chilali, M. (1995). LMI control toolbox. Natick: The MathWorks Inc.

    Google Scholar 

  • Gałkowski, K. (1996). The Fornasini-Marchesini and the Roesser model: Algebraic methods for recasting. IEEE Transaction on Automatic Control, 41(1), 107–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K., Lam, J., Xu, S., & Lin, Z. (2003a). LMI approach to state feedback stabilization of multidimensional systems. International Journal of Control, 76(14), 1428–1436.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K., Paszke, W., Rogers, E., Xu, S., Lam, J., & Owens, D. H. (2003b). Stability and control of differential repetitive processes using an LMI setting. IEEE Transactions on Circuits and Systems - II: Analog and Digital Signal Processing, 50, 662–666.

    Article  Google Scholar 

  • Gałkowski, K., & Wood, J. (2001). Multidimensional signals, circuits and systems. London: Taylor & Francis.

    Google Scholar 

  • Justice, J. H., & Shanks, J. L. (1973). Stability criterion for n-dimensional digital filters. IEEE Transactions on Automatic Control, 18(3), 284–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (1985). Two-Dimensional Linear Systems. Berlin: Springer.

    MATH  Google Scholar 

  • Kaczorek, T. (1988). The singular general model of 2-D systems and its solution. IEEE Transactions on Automatic Control, 33(11), 1060–1061.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (1991). Equivalence and similarity for singular 2-D linear systems. In G. Conte, A. M. Perdon, & B. Wyman (Eds.), New trends in systems theory. Progress in systems and control theory (Vol. 7, pp. 448–455). Basel: Birkhauser.

  • Kurek, J. E. (1985). The general state-space model for a two-dimensional linear digital system. IEEE Transactions on Automatic Control, 30, 600–602.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, T. Y. (1999). Lectures on Modules and Rings. Graduate Texts in Mathematics, 189. Berlin: Springer.

    Book  Google Scholar 

  • Li, L., Xu, L., & Lin, Z. (2013). Stability and stabilization of linear multidimensional discrete systems in the frequency domain. International Journal of Control, 86(11), 1969–1989.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, W. S., & Antoniou, A. (1992). Two-Dimensional Digital Filters Electrical Engineering and Electronics Series (Vol. 80). New York: Marcel Dekker Inc.

    Google Scholar 

  • Malgrange, B. (1962). Systèmes différentiels à coefficients constants. Séminaire Bourbaki, 1962(63), 1–11.

    Google Scholar 

  • Moore, K. L. (1993). Iterative learning control for deterministic systems. In Avances in industrial control. London: Springer.

  • Oberst, U. (1990). Multidimensional constant linear systems. Acta Applicandae Mathematica, 20, 1–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Oberst, U. (2006). Stability and stabilization of multidimensional input/output systems. SIAM Journal on Control and Optimization, 45(4), 1467–1507.

    Article  MathSciNet  MATH  Google Scholar 

  • Oberst, U., & Scheicher, M. (2007). A survey of (BIBO) stability and (proper) stabilization of multidimensional input/output systems. Radon Series on Computational and Applied Mathematics, 3, 151–190.

    MathSciNet  MATH  Google Scholar 

  • Oberst, U., & Scheicher, M. (2014). The asymptotic stability of stable and time-autonomous discrete multidimensional behaviors. Mathematics of Control, Signals, and Systems, 26(2), 215–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Pandolfi, L. (1984). Exponential stability of 2-D systems. Systems and Control Letters, 4(6), 381–385.

    Article  MathSciNet  MATH  Google Scholar 

  • Quadrat, A. (2004). Every internally stabilizable multidimensional system admits a doubly coprime factorization. In Proceedings of MTNS’04, Leuven (Belgium), 05–09 July 2004.

  • Quadrat, A. (2010). An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, Journées Nationales de Calcul Formel, 1(2), 281–471.

    Article  Google Scholar 

  • Rabenstein, R. (2000) Partial differential equation models for continuous multidimensional systems. In Proceedings of IEEE international symposium on circuits and systems (ISCAS), Geneva, Switzerland.

  • Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, E., Gałkowski, K., & Owens, D. H. (2007). Control systems theory and applications for linear repetitive processes, Lecture Notes in Control and Information Sciences (Vol. 349). Berlin: Springer.

    MATH  Google Scholar 

  • Rosenbrock, H. H. (1970). State space and multivariable theory. London: Nelson-Wiley.

    MATH  Google Scholar 

  • Rotman, J. J. (1979). An introduction to homological algebra. London: Academic Press.

    MATH  Google Scholar 

  • Scheicher, M., & Oberst, U. (2008). Multidimensional BIBO stability and Jury’s conjecture. Mathematics of Control, Signals, and Systems, 20(1), 81–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Sumanasena, B., & Bauer, P. H. (2011a). Realization using the Fornasini-Marchesini model for implementations in distributed grid sensor networks. IEEE Transactions on Circuits and Systems I, 58(11), 2708–2717.

    Article  MathSciNet  MATH  Google Scholar 

  • Sumanasena, B., & Bauer, P. H. (2011b). Realization using the Roesser model for implementations in distributed grid sensor networks. Multidimensional Systems and Signal Processing, 22(1–3), 131–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Valcher, M. E. (2000). Characteristic cones and stability properties of two-dimensional autonomous behaviours. IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, 47(3), 290–302.

    Article  Google Scholar 

  • Willems, J. C. (1986a). From time series to linear system (Parts I). Automatica, 22, 561–580.

    Article  MATH  Google Scholar 

  • Willems, J. C. (1986b). From time series to linear system (Parts II). Automatica, 22, 675–694.

    Article  MATH  Google Scholar 

  • Willems, J. C. (1987). From time series to linear system (Parts III). Automatica, 23, 87–115.

    Article  MATH  Google Scholar 

  • Wood, J., Rogers, E., & Owens, D. H. (2001). Behaviours, modules, and duality. In K. Galkowski & J. Wood (Eds.), Multidimensional signals, circuits and systems, Ch. 3 (pp. 45–56). Abingdon: Taylor & Francis.

    Google Scholar 

  • Yeganefar, N., Yeganefar, N., Bachelier, O., & Moulay, E. (2013). Exponential stability for 2D systems: The linear case. In Proceedings of the 8th international worskop on multidimensional systems (nDS’13), Erlangen, Germany.

  • Zerz, E. (2000). On strict system equivalence for multidimensional systems. International Journal of Control, 73(6), 495–504.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the members of the ANR-13-BS03-0005 (MSDOS) project. In particular, we thank Alban Quadrat for helpful discussions on this subjects and Yacine Bouzidi for providing us with his Maple implementation of the algorithm developed in Bouzidi et al. (2015). Finally, we warmly thank the referees for their comments and suggestions which have enhanced the clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bachelier.

Additional information

This work was supported by the ANR-13-BS03-0005 (MS-DOS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachelier, O., Cluzeau, T., David, R. et al. Structural stabilization of linear 2D discrete systems using equivalence transformations. Multidim Syst Sign Process 28, 1629–1652 (2017). https://doi.org/10.1007/s11045-016-0439-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0439-7

Keywords

Navigation