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Abstract In the paper a two-dimensional integro-differential system is considered. Using
some variational methods we give sufficient conditions for the existence and uniqueness of
a solution to the considered system. Moreover, we show that the system is stable and robust.
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1 Introduction

We will denote by Q the unit interval in R
2, i.e.

Q = {
(x, y) ∈ R

2 : x ∈ [0, 1] and y ∈ [0, 1]
}
. (1)

General continuous 2D differential system has the following form

zxy (x, y) = f (x, y, z(x, y), zx (x, y), zy(x, y)), (2)

z(x, 0) = a(x), z(0, y) = b(y), a(0) = b(0), (3)
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Multidim Syst Sign Process

where f : Q × R
n × R

n × R
n → R

n , n ≥ 1, a, b : [0, 1] → R
n are given functions. The

linear case of system (2) can be written as

zxy(x, y) = A0(x, y)z(x, y) + A1(x, y)zx (x, y) + A2(x, y)zy(x, y)

+ w(x, y), (4)

where A0, A1, A2 : R2 → R
n×n are given functions (which values arematrices of the dimen-

sion n × n), w is a given n−dimensional vector function and z satisfies boundary conditions
(3). Continuous 2D systems correspond to the discrete model of Fornasini–Marchesini type,
which has the following form (see Fornasini and Marchesini 1976)

z(i + 1, j + 1) = A0(i, j)z(i, j) + A1(i, j)z(i + 1, j) + A2(i, j)z(i, j + 1) + w(i, j),

(5)

z(i, 0) = a(i), z(0, j) = b( j), a(0) = b(0), (6)

i, j = 0, 1, 2, . . ..
Two-dimensional discrete systems (5)–(6) and continuous systems (2)–(3) play an essen-

tial role in mathematical modeling of many technical, physical, biological and other
phenomena. For example, in the paper by Fornasini (see Fornasini 1991) 2D space mod-
els of the form (5)–(6) were applied to the investigation of the process of pollution and self
purification of a river. Application of the 2D discrete models to image processing and trans-
mission were studied in the book of Bracewell (see Bracewell 1995). The 2D continuous
systems of the form (2)–(3) were adopted to investigation of the gas filtration model (see
Bors and Walczak 2012). Other applications of discrete and continuous 2D systems in the
theory of automatic control, stability, robotics and optimization can be found in papers of
Galkowski et al. (2003), Paszke et al. (2004), Lomadze et al. (2008), Kaczorek (2001), Dey
and Kar (2011), Singh (2008), Idczak andWalczak (2000) and in the monograph of Kaczorek
(1985).

In the paper, we investigate 2D integro-differential system of the form

zxy(x, y) + f 1(x, y, z(x, y)) +
∫ x

0

∫ y

0
( f 2(s, t, z(s, t)) + A1(s, t)zx (s, t)

+ A2(s, t)zy(s, t))dsdt = v(x, y) (7)

with the following boundary conditions

z(x, 0) = 0 for x ∈ [0, 1] and z(0, y) = 0 for y ∈ [0, 1], (8)

where f 1, f 2 : Q × R
n → R, A1, A2 : Q → R

n × R
n are given functions (for more

details see Sect. 3). We shall consider the above system in the space of absolutely continuous
functions of two variables. The definition and basic properties of absolutely continuous
functions defined on the interval Q are presented in Sect. 2.

In the paper we prove, under assumptions (C1)–(C3) (see Sect. 3), that for any square
integrable function v system (7)–(8) possesses a unique solution zv which continuously
depends on v and the operator v �→ zv is differentiable in the Fréchet sense, i.e. the considered
system is well-posed and robust. It should be noticed that robustness can be understood in
many aspects and meanings. However, usually it is the ability of a system to resist change
without adapting its initial stable configuration Fukuda (2015). If the operator u �→ zv is
differentiable then the change of the solution caused by the change of control v is not rapid.
The speed of this change can be expressed by the derivative of the operator u �→ zv , which
measures the resistance of the system to the change of v.
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The proof of the main result, given in Sect. 4, is based on the global diffeomorphism
theorem (Theorem 1). In the final part of the paper we give an example and compare the
methodused in the paperwith themethods basedon the contraction principle and theSchauder
fixed point theorem.

2 Preliminaries

In this section we introduce somemathematical backgrounds necessary to understand further
considerations. In particular, we define the space of absolutely continuous functions which
is the space of solutions and present its basic properties.

We begin with the following theorem on a diffeomorphism between Banach and Hilbert
spaces which is the main tool in the proof of the main result.

Theorem 1 (see Idczak and Skowron 2012) Let Z be a real Banach space, V be a real
Hilbert space, F : Z → V be an operator of C1 class. If

(a) for any v ∈ V the functional ϕ(z) = 1
2‖F(z) − v‖2V satisfies Palais–Smale condition

((PS)–condition),
(b) for any v ∈ V the equation F ′(z)h = v possesses a unique solution,

then

1. for any v ∈ V there exists exactly one solution zv ∈ Z to the system F(z) = v,
2. the operator V � v → zv ∈ Z is differentiable in the Fréchet sense.

In other words, the operator F is a diffeomorphism between Banach space Z and Hilbert
space V .

We recall that functional φ satisfies (PS)–condition if whenever there is a sequence {zn} ⊂ Z
with |φ(zn)| ≤ const and φ′(zn) → 0 in the space Z∗ of linear and continuous functionals
defined on Z , then in the closure of the set {zn : n ∈ N }, there is some point z̄whereφ′(z̄) = 0
(see Aubin and Ekeland 2006).

From the bounded inverse theorem (see Limaye 1996, Theorem 11.1) it follows that for
any z ∈ Z there exists a constant αz > 0 such that ‖F ′(z)h‖V ≥ αz‖h‖z . Therefore it follows
easily that the above theorem is equivalent to Idczak and Skowron (2012, Theorem 3.1), with
f = F .
Let us denote by AC(Q,Rn) the space of absolutely continuous vector functions z =

(z1, z2, . . . , zn) defined on the interval Q. The geometrical definition of the space AC(Q,R)

can be found in papers Berkson and Gillespie (1984) and Walczak (1987). In this paper we
need necessary and sufficient conditions for z : Q → R

n to be absolutely continuous on
Q i.e. z ∈ AC(Q,Rn). We have the following theorem (see Berkson and Gillespie 1984;
Walczak 1987).

Theorem 2 A function z belongs to the space AC(Q,Rn) if and only if there exist functions
l ∈ L1(Q,Rn), l1, l2 ∈ L1([0, 1],Rn)1and a constant c ∈ R

n such that

z(x, y) =
∫ x

0

∫ y

0
l(s, t)dsdt +

∫ x

0
l1(s)ds +

∫ y

0
l2(t)dt + c.

1 Throughout the paper L p(Q,Rn), p ≥ 1 denotes the space of all functions z : Q → R
n which are

measurable and
∫
Q |z(z)|pdx < ∞
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Moreover the function z possesses partial derivatives zx , zy , zxy , for a.e. (x, y) ∈ Q and

zx (x, y) =
∫ y

0
l(x, t)dt + l1(x),

zy(x, y) =
∫ x

0
l(s, y)ds + l2(y),

zxy(x, y) = l(x, y).

Theorem 2 follows directly from (Berkson and Gillespie 1984, Theorem 4) and (Šremr 2010,
Proposition 3.5) (see also (Walczak 1987, Theorem 2), (Walczak 1998, Theorem 1)).

It is easy to check that if the function z satisfies homogeneous boundary conditions, i.e.
z(x, 0) = 0 for x ∈ [0, 1] and z(0, y) = 0 for y ∈ [0, 1] then l1 = 0, l2 = 0, c = 0 and
consequently we can write

z(x, y) =
∫ x

0

∫ y

0
l(s, t)dsdt =

∫ x

0

∫ y

0
zxy(s, t)dsdt. (9)

By AC2
0 (Q,Rn) we shall denote the space of absolutely continuous functions on the

interval Q which satisfy the homogeneous boundary conditions z(x, 0) = z(0, y) = 0 for
x, y ∈ [0, 1] and such that zxy ∈ L2(Q,Rn). The space AC2

0 is a Hilbert space with the inner
product given by formula

〈z, z̄〉 =
∫ 1

0

∫ 1

0
〈zxy(x, y), z̄xy(x, y)〉dxdy. (10)

In the space AC2
0 (Q,Rn) we introduce two norms. The first one is a classical norm given

by the formula

‖z‖ =
(∫ 1

0

∫ 1

0
|zxy(x, y)|2dxdy

) 1
2

= ‖zxy‖L2 (11)

and the second one is defined by the integral with exponential weight

‖z‖AC2
0,m

=
(∫ 1

0

∫ 1

0
e−m(x+y)|zxy(x, y)|2dxdy

) 1
2

, m > 0. (12)

Exponential norm (12)was introduced byBielecki (1956). The space AC2
0 (Q,Rn)with norm

(12) will be denoted by AC2
0,m(Q,Rn).

It is easy to notice that

e−2m‖z‖ ≤ ‖z‖AC2
0,m

≤ ‖z‖.
Thus the norms given by formulas (11) and (12) are equivalent.

Similarly, in the space L2 (Q,Rn) of square integrable functions on Q we introduce two
equivalent norms:

‖v‖L2 =
(∫ 1

0

∫ 1

0
|v(x, y)|2dxdy

) 1
2

and

‖v‖L2
m

=
(∫ 1

0

∫ 1

0
e−m(x+y)|v(x, y)|2dxdy

) 1
2

. (13)

The space of square integrable functions with norm (13) will be denoted by L2
m(Q,Rn).
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3 Basic assumptions and lemmas

In this section we formulate basic assumptions and proves lemmas. Lemma 1 has a technical
character, whereas Lemmas 2 and 3 are fundamental for understanding the proof of the main
theorem–Theorem 3.

On the functions defining system (7) we assume that

(C1) the functions f 1(·, ·, z), f 2(·, ·, z) are measurable on Q for every z ∈ R
n and

f 1(x, y, ·), f 2(x, y, ·) are continuously differentiable on R
n for a.e. (x, y) ∈ Q,

the function A1(·, y) is differentiable for a.e. y ∈ [0, 1], the function A2(x, ·) is dif-
ferentiable for a.e. x ∈ [0, 1], the functions A1, A2, A1

x , A
2
y are measurable on Q and

essentially bounded on Q, the function v ∈ L2(Q,Rn);
(C2) there exist a constant B > 0 and a function b ∈ L2(Q,R+) such that

| f 1(x, y, z)|, | f 2(x, y, z)| ≤ B|z| + b(x, y)

and

|A1(x, y)|, |A2(x, y)|, |A1
x (x, y)|, |A2

y(x, y)| ≤ B

for z ∈ R
n and a.e. (x, y) ∈ Q;

(C3) the functions f 1z , f 2z are bounded on bounded sets, i.e. for any � > 0 there exists a
constant M�, such that

∣
∣ f 1z (x, y, z)

∣
∣ ,

∣
∣ f 2z (x, y, z)

∣
∣ ≤ M�

for (x, y) ∈ Q and |z| ≤ �.

In the following lemma we prove some estimates for functions from the space
AC2

0 (Q,Rn).

Lemma 1 If the function z ∈ AC2
0 (Q,Rn) then

‖z‖L2
m

≤ 2

m
‖z‖AC2

0,m
, (14)

‖w0‖L2
m

≤ 2

m
‖z‖AC2

0,m
, (15)

‖w1‖L2
m

≤ 2

m
‖z‖AC2

0,m
, (16)

‖w2‖L2
m

≤ 2

m
‖z‖AC2

0,m
, (17)

where w0(x, y) = ∫ x
0

∫ y
0 |z(s, t)|dsdt, w1(x, y) = ∫ x

0

∫ y
0 |zx (s, t)|dsdt,

w2(x, y) = ∫ x
0

∫ y
0 |zy(s, t)|dsdt.

Remark 1 The norms ‖ · ‖L2
m
and ‖ · ‖AC2

0,m
are defined by (12) and (13) respectively.
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Proof Let z be an arbitrary function from the space AC2
0 (Q,Rn). By (9) and applying

Cauchy–Schwarz inequality we get

‖z‖2L2
m

=
∫ 1

0

∫ 1

0
e−m(x+y) |z(x, y)|2 dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣ dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt ·

∫ x

0

∫ y

0
dsdt

)
dxdy

≤
∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt

)
dxdy.

Applying integrating by parts formula for the inner integral (with respect to x) we obtain
∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt

)
dxdy

=
∫ 1

0

(∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt

)
dx

)
dy

=
∫ 1

0

([−1

m
e−m(x+y)

∫ x

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt

]x=1

x=0

−
∫ 1

0

(−1

m
e−m(x+y)

∫ y

0

∣
∣zxy(x, t)

∣
∣2 dt

)
dx

)
dy

=
∫ 1

0

(−1

m
e−m(1+y)

∫ 1

0

∫ y

0

∣
∣zxy(s, t)

∣
∣2 dsdt

)
dy

+
∫ 1

0

(∫ 1

0

(
1

m
e−m(x+y)

∫ y

0

∣
∣zxy(x, t)

∣
∣2 dt

)
dx

)
dy. (18)

Changing the order of integrals (thanks to Fubini’s theorem) and again applying integrating
by parts formula (for the integrals with respect to y), we get that the last term in (18) equals
to

∫ 1

0

(−1

m
e−m(1+y)

∫ y

0

(∫ 1

0

∣
∣zxy(s, t)

∣
∣2 ds

)
dt

)
dy

+
∫ 1

0

(∫ 1

0

(
1

m
e−m(x+y)

∫ y

0

∣
∣zxy(x, t)

∣
∣2 dt

)
dy

)
dx

=
[

1

m2 e
−m(1+y)

∫ y

0

∫ 1

0

∣
∣zxy(s, t)

∣
∣2 dsdt

]y=1

y=0

+
∫ 1

0

(
1

m2 e
−m(1+y)

∫ 1

0

∣
∣zxy(s, y)

∣
∣2 ds

)
dy

+
∫ 1

0

([
1

m2 e
−m(x+y)

∫ y

0

∣
∣zxy(x, t)

∣
∣2 dt

]y=1

y=0

+
∫ 1

0

1

m2 e
−m(x+y)

∣
∣zxy(x, y)

∣
∣2 dy

)
dx
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= 1

m2 e
−2m

∫ 1

0

∫ 1

0

∣
∣zxy(s, t)

∣
∣2 dsdt + 1

m2

∫ 1

0

∫ 1

0
e−m(1+y)

∣
∣zxy(s, y)

∣
∣2 dsdy

+ 1

m2

∫ 1

0

∫ 1

0
e−m(x+1)

∣
∣zxy(x, t)

∣
∣2 dtdx + 1

m2

∫ 1

0
e−m(x+y)

∣
∣zxy(x, y)

∣
∣2 dydx

≤ 4

m2

∫ 1

0

∫ 1

0
e−m(x+y)

∣
∣zxy(x, t)

∣
∣2 dxdy = 4

m2 ‖z‖2
AC2

0,m
.

We have thus proved inequality (14). Making use of (9) and from what has already been
proved, it follows that

‖w0‖2L2
m

=
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|z(s, t)|dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0

(∫ s

0

∫ t

0
|zxy(σ, τ )|dσdτ

)
dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0

(∫ x

0

∫ y

0
|zxy(σ, τ )|dσdτ

)
dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|zxy(σ, τ )|dσdτ ·

∫ x

0

∫ y

0
dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|zxy(σ, τ )|dσdτ

)2

dxdy ≤ 4

m2 ‖z‖2
AC2

0,m
.

Let us prove the next inequality. By (9) and by already proved inequality we have

‖w1‖2L2
m

=
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|zx (s, t)|dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0

(∫ t

0
|zxy(s, τ )|dτ

)
dsdt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ y

0

(∫ x

0

∫ t

0
|zxy(s, τ )|dτds

)
dt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ y

0

(∫ x

0

∫ y

0
|zxy(s, τ )|dτds

)
dt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|zxy(s, τ )|dτds ·

∫ y

0
dt

)2

dxdy

≤
∫ 1

0

∫ 1

0
e−m(x+y)

(∫ x

0

∫ y

0
|zxy(s, t)|dsdt

)2

dxdy = ‖w0‖2L2
m

≤ 4

m2 ‖z‖2
AC2

0,m
.

We conclude similarly that

‖w2‖2L2
m

≤ 4

m2 ‖z‖AC2
0,m

.

��
Denote by F : AC2

0 (Q,Rn) → L2(Q,Rn) the operator:

F(z)(x, y) = zxy(x, y) + f 1(x, y, z(x, y))

+
∫ x

0

∫ y

0

(
f 2(s, t, z(s, t)) + A1(s, t)zx (s, t) + A2(s, t)zy(s, t)

)
dsdt. (19)
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We will prove that the norm of F is coercive.

Lemma 2 If the functions f 1, f 2, A1, A2 satisfy assumptions (C1) and (C2) then the func-
tional z �→ ‖F(z)‖L2 is coercive, i.e.

‖F(z)‖L2 → ∞whenever ‖z‖AC2
0

→ ∞. (20)

Proof Let us take m > 8B (cf. (C2)). By (19) and assumptions (C1)–(C2) we have

‖F(z)‖L2
m

≥ ‖zxy‖L2
m

−
(
B‖z‖L2

m
+ B‖w0‖L2

m
+ B‖w1‖L2

m
+ B‖w2‖L2

m

)
− D,

where D = 2‖b‖L2
m
. By Lemma 1 and thanks to (12) it follows that

‖F(z)‖L2
m

≥ ‖z‖AC2
0,m

− 8B

m
‖z‖AC2

0,m
− D = ‖z‖AC2

0,m

(
1 − 8B

m

)
− D.

Inequality m > 8B implies that ‖F(z)‖L2
m

→ ∞ if ‖z‖AC2
0,m

→ ∞. Since the pairs of the

norms ‖ · ‖L2 , ‖ · ‖L2
m
and ‖ · ‖AC2

0
, ‖ · ‖AC2

0,m
are equivalent, we conclude that (20) holds. ��

Let {zk}∞k=0 ⊂ AC2
0 be an arbitrary sequence. Denote by {gk} ⊂ L2(Q,Rn) a sequence of

functions defined by

gk(x, y) = f 1(x, y, zk(x, y))

+
∫ x

0

∫ y

0

(
f 2(s, t, zk(s, t)) + A1(s, t)zkx (s, t) + A2(s, t)zky(s, t)

)
dsdt

− v(x, y), (21)

for k = 0, 1, 2, . . ..

Lemma 3 If

1. the functions f 1, f 2, A1, A2 satisfy assumptions (C1) and (C2);
2. the sequence {zk}∞k=0 ⊂ AC2

0 (Q,Rn) tends to z0 ∈ AC2
0 (Q,Rn) weakly in AC2

0 (Q,Rn)

then

(a) the sequence of functions {zk} tends uniformly to z0 on the interval Q;
(b) the sequence {gk} tends to g0 for (x, y) ∈ Q a.e.

Moreover, there exists a function b0 ∈ L2(Q,R+) such that

|gk(x, y)| ≤ b0(x, y)

for a.e. (x, y) ∈ Q and k = 1, 2, . . ..

Proof We first prove that the weak convergence of the sequence {zk} to z0 in the space
AC2

0 (Q,Rn) implies the uniform convergence of the sequence {zk} to z0 on the interval Q.
By the definition of the inner product [see (10)] the weak convergence of the sequence {zk}
to z0 in the space AC2

0 (Q,Rn) is equivalent to the weak convergence of mixed second order
derivatives {zkxy} to z0xy in the space L2(Q,Rn). Without loss of generality we can assume

that z0 = 0. Suppose that zk does not converge uniformly to z0 = 0 while it converges to
0 weakly in AC2

0 (Q,Rn). Therefore, there exists ε0 > 0 such that for any n ∈ N there is a
point (xn, yn) ∈ Q such that

|zn(xn, yn)| > ε0. (22)
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The sequence {(xn, yn)} ⊂ Q is compact. Passing if necessary to a subsequence we can
assume, that (xn, yn) tends to some (x̃, ỹ) ∈ Q. Denote by χn the characteristic function of
the interval2

{(x, y) ∈ Q : 0 ≤ x < xn, 0 ≤ y < yn}
and by χ̃ the characteristic function of the interval

{(x, y) ∈ Q : 0 ≤ x < x̃, 0 ≤ y < ỹ}.
It is easy to notice that χn tends to χ̃ on Q a.e. This implies the following inequalities

lim
n→∞ |zn(xn, yn)| ≤ lim

n→∞ |zn(xn, yn) − zn(x̃, ỹ)| + lim
n→∞ |zn(x̃, ỹ)|

= lim
n→∞

∣
∣
∣
∣

∫ 1

0

∫ 1

0
χn(s, t)znxy(s, t)dsdt −

∫ 1

0

∫ 1

0
χ̃ (s, t)znxy(s, t)dsdt

∣
∣
∣
∣

+ lim
n→∞

∣
∣
∣
∣

∫ 1

0

∫ 1

0
χ̃ (s, t)znxy(s, t)dsdt

∣
∣
∣
∣ .

Since znxy tends to zero weakly in L2(Q,Rn) the last limit is equal zero. Therefore

lim
n→∞ |zn(xn , yn)| ≤ lim

n→∞
∫ 1

0

∫ 1

0
|χn(s, t) − χ̃(s, t)||znxy(s, t)|dsdt

≤ lim
n→∞

(∫ 1

0

∫ 1

0
|χn(s, t) − χ̃(s, t)|2dsdt

) 1
2

·
(∫ 1

0

∫ 1

0
|znxy(s, t)|2dsdt

) 1
2

≤ C · lim
n→∞

(∫ 1

0

∫ 1

0
|χn(s, t) − χ̃(s, t)|2dsdt

) 1
2

= 0,

where C > 0 is some constant such that ‖znxy‖ ≤ C . Consequently,

limn→∞ |zn(xn, yn)| = 0. This contradicts our assumption (22). Thus zk tends to z0 uni-
formly on Q.

Next we prove the assertion (b) of Lemma 3. By assumptions (C1) the functions f 1

and f 2 are continuous with respect to the third variable; assumption (C2) allows to find an
appropriate dominating integrable function and to apply Lebesgue’s dominated convergence
theorem, consequently we get that

lim
k→∞ f 1

(
x, y, zk(x, y)

)
= f 1

(
x, y, z0(x, y)

)
(23)

for a.e. (x, y) ∈ Q and

lim
k→∞

∫ x

0

∫ y

0
f 2(s, t, zk(s, t))dsdt =

∫ x

0

∫ y

0
f 2(s, t, z0(s, t))dsdt

for a.e. (x, y) ∈ Q. Thanks to the fact that zk tends uniformly to z0 the sequence
{
zk(x, y)

}

is uniformly bounded, therefore there exists C̄ > 0 such that
∣
∣
∣zk(x, y)

∣
∣
∣ ≤ C̄ (24)

2 the characteristic function χ of a set X ⊂ R
n is the function such that χ(x) = 1 ⇔ x ∈ X and χ(x) = 0

otherwise.
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for (x, y) ∈ Q and k = 1, 2, . . . . Taking into account the above and again (C2), we get that
there exists a function b1 ∈ L2(Q,R+) such that

| f 1(x, y, zk(x, y))|,
∣
∣
∣
∣

∫ x

0

∫ y

0
f 2(s, t, zk(s, t))dsdt

∣
∣
∣
∣ ≤ b1(x, y)

for a.e. (x, y) ∈ Q and k = 1, 2, . . .. Integrating by parts, thanks (C1) and Fubini’s theorem,
we obtain

∫ x

0

∫ y

0
A1(s, t)zkx (s, t)dsdt =

∫ y

0

(∫ x

0
A1(s, t)zkx (s, t)ds

)
dt

=
∫ y

0
A1(x, t)zk(x, t)dt −

∫ x

0

∫ y

0
A1
x (s, t)z

k(s, t)dsdt

(25)

for k = 0, 1, . . .. Since zk tends to z0 uniformly on Q provided that zk converges to z0 weakly
in AC2

0 (Q,Rn), we get by (25) that

lim
k→∞

∫ x

0

∫ y

0
A1(s, t)zkx (s, t)dsdt

=
∫ y

0
lim
k→∞ A1(x, t)zk(x, t)dt −

∫ x

0

∫ y

0
lim
k→∞ A1

x (s, t)z
k(s, t)dsdt

=
∫ y

0
A1(x, t)z0(x, t)dt −

∫ x

0

∫ y

0
A1
x (s, t)z

0(s, t)dsdt

=
∫ x

0

∫ y

0
A1(s, t)z0x (s, t)dsdt (26)

for (x, y) ∈ Q. Similarly, we can show that

lim
k→∞

∫ x

0

∫ y

0
A2(s, t)zky(s, t)dsdt =

∫ x

0

∫ y

0
A2(s, t)z0y(s, t)dsdt (27)

for (x, y) ∈ Q. By (25), (24) and thanks to (C1) we have
∣
∣
∣
∣

∫ x

0

∫ y

0
A1(s, t)zkx (s, t)dsdt

∣
∣
∣
∣

≤
∫ y

0

∣
∣A1(x, t)

∣
∣ ·

∣
∣
∣zk(x, t)

∣
∣
∣ dt +

∫ x

0

∫ y

0

∣
∣A1

x (s, t)
∣
∣ ·

∣
∣
∣zk(s, t)

∣
∣
∣ dsdt

≤
∫ y

0
BC̄dt +

∫ x

0

∫ y

0
BC̄dsdt ≤ BC̄

∫ 1

0
dt + BC̄

∫ 1

0

∫ 1

0
dsdt = C1 (28)

for some constant C1 > 0, all (x, y) ∈ Q and k = 1, 2, . . .. Similar bounds can be found for
the integral

∫ x
0

∫ y
0 A2(s, t)zky(s, t)dsdt . From (23), (26), (27) and (28) it follows that

lim
k→∞ gk(x, y) = g0(x, y)

for a.e. (x, y) ∈ Q. Moreover, there exists a function b0 ∈ L2(Q,R+) such that
|gk(x, y)| ≤ b0(x, y) for k = 1, 2, . . . and a.e. (x, y) ∈ Q. This completes the proof.

��
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4 Main result and example

Let us consider a functional ϕ : AC2
0 → R given by the formula

ϕ (z) = 1

2
‖F(z) − v‖2L2 , (29)

where F is the operator defined by (19) and v is a fixed function from the space L2 (Q,Rn).
We begin by proving some lemmas.

Lemma 4 If the functions f 1, f 2, A1, A2 satisfy assumptions (C1)–(C2), then the functional
ϕ given by (29) satisfies (PS)—condition.

Proof Let {zk} ⊂ AC2
0 be an arbitrary (PS)—sequence for the functional ϕ. By Lemma 2 ϕ

is coercive. It implies that the sequence {zk} is weakly compact in AC2
0 . Passing if necessary

to a subsequence we can assume, that zk tends to some z0 weakly in AC2
0 . We claim that

{zk} is compact with respect to the norm topology of the space AC2
0 . Thanks to assumptions

(C1)–(C2) it is easy to check that the functional ϕ is Fréchet differentiable and

〈
ϕ′ (zk

)
, h

〉
=

∫ 1

0

∫ 1

0

〈
hxy (x, y) + f 1z

(
x, y, zk (x, y)

)
h (x, y)

+
∫ x

0

∫ y

0

(
f 2z

(
s, t, zk (s, t)

)
h (s, t) + A1 (s, t) hx (s, t)

+ A2 (s, t) hy (s, t)
)
dsdt, zkxy (x, y) + gk (x, y)

〉
dxdy, (30)

where the sequence {gk} ⊂ L2 (Q,Rn) is given by formula (21). Let us put hk − zk − z0,
k = 1, 2, . . .. From (30) it follows that

〈
ϕ′ (zk

)
− ϕ′ (z0

)
, zk − z0

〉
=

〈
zkxy − z0xy, h

k
xy

〉
+

5∑

i=1

V i (zk)

=
∥
∥
∥zk − z0

∥
∥
∥
2

AC2
0

+
5∑

i=1

V i
(
zk

)
, (31)

where

V 1
(
zk

)
=

〈
zkxy − z0xy, g

k − g0
〉

=
∫ 1

0

∫ 1

0

〈
zkxy (x, y) − z0xy (x, y) , gk (x, y) − g0 (x, y)

〉
dxdy,

V 2
(
zk

)
=

∫ 1

0

∫ 1

0

〈
f 1z

(
x, y, zk (x, y)

) (
zk (x, y) − z0 (x, y)

)

+
∫ x

0

∫ y

0
f 2z

(
s, t, zk (s, t)

) (
zk (s, t) − z0 (s, t)

)
dsdt, zkxy (x, y)

+ gk (x, y)
〉
dxdy,

V 3
(
zk

)
= −

∫ 1

0

∫ 1

0

〈
f 1z

(
x, y, z0 (x, y)

) (
zk (x, y) − z0 (x, y)

)

+
∫ x

0

∫ y

0
f 2z

(
s, t, z0 (s, t)

) (
zk (s, t) − z0 (s, t)

)
dsdt, z0xy (x, y)
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−g0 (x, y)
〉
dxdy,

V 4
(
zk

)
=

∫ 1

0

∫ 1

0

〈∫ x

0

∫ y

0
A1 (s, t)

(
zkx (s, t) − z0x (s, t)

)
dsdt,

zkxy (x, y) + gk (x, y)

〉
dxdy

+
∫ 1

0

∫ 1

0

〈∫ x

0

∫ y

0
A2 (s, t)

(
zky (s, t) − z0y (s, t)

)
dsdt,

zkxy (x, y) + gk (x, y)
〉
dxdy,

V 5
(
zk

)
= −

∫ 1

0

∫ 1

0

〈∫ x

0

∫ y

0
A1 (s, t)

(
zkx (s, t) − z0x (s, t)

)
dsdt,

z0xy (x, y) + g0 (x, y)

〉
dxdy

−
∫ 1

0

∫ 1

0

〈∫ x

0

∫ y

0
A2 (s, t)

(
zky (s, t) − z0y (s, t)

)
dsdt,

z0xy (x, y) + g0 (x, y)

〉
dxdy.

By the Cauchy–Schwarz inequality we have the following estimation

∣
∣
∣V 1

(
zk

)∣
∣
∣
2 ≤

∫ 1

0

∫ 1

0

∣
∣
∣zkxy (x, y) − z0xy (x, y)

∣
∣
∣
2
dxdy ·

∫ 1

0

∫ 1

0

∣
∣
∣gk (x, y) − g0 (x, y)

∣
∣
∣
2
dxdy.

Since zkxy − z0xy converges weakly to zero in L2 (Q,Rn), therefore there exists a constant
C > 0 such that

∣
∣
∣V 1

(
zk

)∣
∣
∣
2 ≤ C

∫ 1

0

∫ 1

0

∣
∣
∣gk (x, y) − g0 (x, y)

∣
∣
∣
2
dxdy.

By Lemma 2 and Lebesgue dominated convergence theorem it follows that V 1
(
zk

) → 0
as k → ∞. We have proved that zk (x, y) tends to z0 (x, y) uniformly on Q (see Lemma 2).
Therefore, it is easy to notice that V 2

(
zk

)
and V 3

(
zk

)
converge to zero as k → ∞.

Let us consider the functional V 4. By (25) we have

V 4
(
zk

)
=

∫ 1

0

∫ 1

0

〈∫ y

0
A1 (x, t)

(
zk (x, t) − z0 (x, t)

)
dt

−
∫ x

0

∫ y

0
A1
x (s, t)

(
zk (s, t) − z0 (s, t)

)
dsdt,

zkxy (x, y) + gk (x, y)

〉
dxdy

+
∫ 1

0

∫ 1

0

〈∫ x

0
A2 (s, y)

(
zk (s, y) − z0 (s, y)

)
ds

−
∫ x

0

∫ y

0
A2
y (s, t)

(
zk (s, t) − z0 (s, t)

)
dsdt,
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zkxy (x, y) + gk (x, y)

〉
dxdy.

Using the Cauchy–Schwarz inequality and Lemma 2 it is easy to show that V 4
(
zk

) → 0 as
k → ∞.

Similar considerations can be applied to V 5
(
zk

)
. Thus limk→∞

∑5
i=1 V

i
(
zk

) = 0.
Now, let us observe that

lim
k→∞ ϕ′ (zk

) (
zk − z0

)
= 0

because {zk} is the (PS)—sequence for the functional ϕ and the sequence
{
zk − z0

}
is

bounded. Moreover,

lim
k→∞ ϕ′ (z0

) (
zk − z0

)
= 0

since zk tends weakly to z0 in AC2
0 . Combining these equalities and (31) we conclude that

lim
k→∞

∥
∥
∥zk − z0

∥
∥
∥
2

AC2
0

= 0.

This gives us the desired conclusion that the functional ϕ given by (29) satisfies (PS)—
condition. ��
Next, we prove the following

Lemma 5 If the functions f 1, f 2, A1, A2 satisfy assumptions (C1)–(C3) then for any v ∈
L2 (Q,Rn) there exists a unique solution hv ∈ AC2

0 to the system

F ′ (z0
)
h = v, (32)

where the operator F : AC2
0 → L2 (Q,Rn) is given by (19) and z0 ∈ AC2

0 is an arbitrary
function.

Proof Let us put

h (x, y) =
∫ x

0

∫ y

0
g (s, t) dsdt,

where g ∈ L2 (Q,Rn). Substituting the above into (32) we obtain

Hg = v,

where

Hg (x, y) = g (x, y) + f 1z
(
x, y, z0 (x, y)

) ·
∫ x

0

∫ y

0
g (s, t) dsdt

+
∫ x

0

∫ y

0

(
f 2z

(
s, t, z0 (s, t)

) ∫ s

0

∫ t

0
g (σ, τ ) dσdτ

+ A1 (s, t)
∫ t

0
g (s, τ ) dτ + A2 (s, t)

∫ s

0
g (σ, t) dσ

)
dsdt.

Let us denote by H̃ the operator defined by

H̃ g = Hg − g − v. (33)
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We will restrict our investigation of the operator H̃ to the space L2
m (Q,Rn). We prove that

for sufficiently large m > 0 the mapping H̃ is contracting with respect to the norm ‖·‖L2
m

defined by (13). Under assumptions (C2) and (C3), there exists a constant d > 0 such that
∥
∥
∥H̃

(
g1 − g2

)∥
∥
∥
L2m

≤ d

(∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣
∣g1 (s, t) − g2 (s, t)

∣
∣
∣
2
dsdt

)
dxdy

) 1
2

+d

(∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

(∫ s

0

∫ t

0

∣
∣
∣
(
g1 (σ, τ ) − g2 (σ, τ )

)∣
∣
∣
2
dσdτ

)
dsdt

)
dxdy

) 1
2

+d

(∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

(∫ t

0

∣
∣
∣
(
g1 (s, τ ) − g2 (s, τ )

)∣
∣
∣
2
dτ

)
dsdt

)
dxdy

) 1
2

+d

(∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

(∫ s

0

∣
∣
∣
(
g1 (σ, t) − g2 (σ, t)

)∣
∣
∣
2
dσ

)
dsdt

)
dxdy

) 1
2

≤ 4d

(∫ 1

0

∫ 1

0

(
e−m(x+y)

∫ x

0

∫ y

0

∣
∣
∣g1 (s, t) − g2 (s, t)

∣
∣
∣
2
dsdt

)
dxdy

) 1
2

.

Integrating by parts twice, in much the same way as in the proof of inequality (Kaczorek
2001), we obtain

∥
∥
∥H̃

(
g1 − g2

)∥∥
∥
L2
m

≤ 4d

m2

∥
∥g1 − g2

∥
∥
L2
m
.

Hence for sufficiently large m, i.e. m > 2
√
d, the operator H̃ is contracting and, conse-

quently, has a unique fixed point. It means that, there exists exactly one point g0 ∈ L2 (Q,Rn)

such that g0 = H̃ g0. By (33) we get Hg0 = v and it follows easily that a function hv given
by

hv (x, y) =
∫ x

0

∫ y

0
g0 (s, t) dsdt

is a solution of (32) for fixed v ∈ L2 (Q,Rn). ��
We are now in a position to show the main result of the work.

Theorem 3 If the functions f 1, f 2, A1, A2 satisfy assumptions (C1)–(C3) then for any v ∈
L2 (Q,Rn) the integro-differential system (7)–(8) has a unique solution zv ∈ AC2

0 . The
solution zv continuously depends on v with respect to the norm topology in the spaces
L2 (Q,Rn) and AC2

0 . Moreover, the operator

L2 (
Q,Rn) � v �→ zv ∈ AC2

0

is differentiable (in Fréchet sense).

Proof If follows from Lemmas 4 and 5 that the operator F given by (19) meets assumptions
of Theorem 1. Thus system (7)–(8) has a solution zv which satisfies the requirements of our
theorem. ��

We now give an example of integro-differential system of the form (7)–(8) which satisfies
assumptions of Theorem 3. For simplicity we put n = 1.

123



Multidim Syst Sign Process

Example 1 Consider 2D integro-differential system

zxy (x, y) + w1 (x, y)

(
z3 (x, y)

1 + z2 (x, y)
+ ψ1(z(x, y)

)

+
∫ x

0

∫ y

0

(
w2 (s, t)

z (s, t) − 1

1 + z2 (x, y)
+ ψ2(z(x, y))

+ A1 (s, t) zx (s, t) + A2 (s, t) zy (s, t) dsdt
)

= v (x, y) , (34)

wherew1, w2, A1, A2 are some polynomials, v ∈ L2 (Q,R) andψ1, ψ2 are someC1−class
functionswith unbounded derivatives. For example one can takeψ1(z) = cos zk andψ2(z) =
sin zl , where k, l > 1. This simple and theoretical example allows us to emphasize the
difference between our work and some other methods of nonlinear analysis.

It is easy to see that system (34) satisfies assumptions (C1)–(C3). Hence by Theorem 3
for any v ∈ L2 (Q,R) there exists a solution zv ∈ AC2

0 to the system (34) with the following
properties:

1. the solution zv is unique,
2. zv continuously depends on v with respect to the norm topology of the spaces L2 (Q,Rn)

and AC2
0 , i.e. system (34) is stable,

3. the operator L2 (Q,R) � v �→ zv ∈ AC2
0 is differentiable in Fréchet sense, i.e. system

(34) is robust.

Let us notice that the functions f 1 (x, y, z) = w1 (x, y)
(

z3

1+z2
+ ψ1(z)

)
and

f 2 (x, y, z) = w2 (x, y) z−1
1+z2

+ ψ2(z) are not Lipschitz functions (sin zl and cos zl with
k, l ≥ 1 have ”fast variation” when |z| → ∞) and consequently we cannot apply the Banach
contraction principle. In this case the Schauder fixed point theorymay be applicable. But even
using sophisticated fixed point theorems we get only the existence of a solution to system
(34) and can hardly say anything related to properties (1)–(3).

5 Concluding remarks

In the paper two-dimensional integro-differential system was investigated. The main result
of this work is theorem 3 on the stability and robustness of a solution to considered system
(7)–(8). As far as we know 2D integro-differential systems have not been studied before. One-
dimensional integro-differential systems described by ordinary differential operators were
examined in many works (see monogrph Lakshmikantham 1995 and references therein). It is
important to notice that integro-differential operators can be used in mathematical modeling
of systems with “memory”, i.e. systems where the state at each moment t depends on its
behavior on some interval [t0, t). In our opinion 2D integro-differential systems have the
potential to play a similar role.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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