Skip to main content
Log in

Sparse representation based two-dimensional direction of arrival estimation using co-prime array

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Direction of arrival (DOA) estimation using co-prime array has been attractive for its potential advantages. A co-prime array consists of two uniform linear arrays (ULAs), where one has M elements with \(N\lambda /2\) being the inter-element spacing, and the other has N (co-prime to M) elements with \(M\lambda /2\) being the inter-element spacing . In this paper, the two ULAs of the co-prime array are placed parallel to each other in the same plane for two-dimensional (2D) DOA estimation, and the uniqueness proof of DOA estimation for this geometry is given. By setting the vectorization of the cross covariance matrix of the two ULAs as an observing vector in sparse representation, MN degrees of freedom (DOF) can be achieved via (\(M+N)\) sensors. Then through the enhanced sparse recovery technique, unique and automatically paired 2D DOA estimation can be obtained from the recovery vector via only 1D dictionary. The proposed algorithm can achieve better DOA estimation performance than conventional algorithms. The simulation results verify the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing, 54(10), 3873–3883.

    Article  MATH  Google Scholar 

  • Cao, H., Yang, L., Tan, X., et al. (2009). Computationally efficient 2-D DOA estimation using two parallel uniform linear arrays. ETRI Journal, 31(6), 806–808.

    Article  Google Scholar 

  • Cao, J., Zhang, K., Luo, M., Yin, C., & Lai, X. (2016). Extreme learning machine and adaptive sparse representation for image classification. Neural Networks, 81, 91–102.

    Article  Google Scholar 

  • Cao, J., Zhao, Y., Lai, X., Ong, M. E. H., Yin, C., Koh, Z. X., et al. (2015). Landmark recognition with sparse representation classification and extreme learning machine. Journal of the Franklin Institute, 352(10), 4528–4545.

    Article  MathSciNet  Google Scholar 

  • Cheng, Z., Zhao, Y., Li, H., et al. (2015). Two-dimensional DOA estimation algorithm with co-prime array via sparse representation. Electronics Letters, 51(25), 2084–2086.

    Article  Google Scholar 

  • Ewout, V. D. B., & Friedlander, M. P. (2008). Probing the Pareto frontier for basis pursuit solutions. Siam Journal on Scientific Computing, 31(2), 890–912.

    MathSciNet  MATH  Google Scholar 

  • Gershman, A. B., Rübsamen, M., & Pesavento, M. (2010). One-and two-dimensional direction-of-arrival estimation: An overview of search-free techniques. Signal Processing, 90(5), 1338–1349.

    Article  MATH  Google Scholar 

  • Hu, N., Ye, Z., Xu, X., & Bao, M. (2013). DOA estimation for sparse array via sparse signal reconstruction. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 760–773.

    Article  Google Scholar 

  • Kikuchi, S., Tsuji, H., & Sano, A. (2006). Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix. IEEE Antennas and Wireless Propagation Letters, 5(1), 35–40.

    Article  Google Scholar 

  • Li, J., & Zhang, X. (2015). Sparse representation-based joint angle and Doppler frequency estimation for MIMO radar. Multidimensional Systems and Signal Processing, 26(1), 179–192.

    Article  MathSciNet  Google Scholar 

  • Li, J., Zhang, X., & Chen, H. (2012). Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method. Signal Processing, 92(12), 3032–3038.

    Article  Google Scholar 

  • Luo, X., Fei, X., Wei, P., et al. (2014). Sparse representation-based method for two-dimensional direction-of-arrival estimation with L-shaped array. In 2014 IEEE international conference on communication problem-solving (ICCP) (pp. 277–280).

  • Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  MATH  Google Scholar 

  • Moffet, A. (1968). Minimum-redundancy linear arrays. IEEE Transactions on Antennas Propagation, 16(2), 172–175.

    Article  Google Scholar 

  • Ottersten, B., Stoica, P., & Roy, R. (1998). Covariance matching estimation techniques for array signal processing applications. Digital Signal Processing, 8, 185–210.

    Article  Google Scholar 

  • Pal, P., & Vaidyanathan, P. P. (2011). Coprime sampling and the music algorithm. In Digital signal processing workshop and IEEE signal processing education workshop (DSP/SPE) (pp. 289–294). IEEE.

  • Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167–4181.

    Article  MathSciNet  Google Scholar 

  • Sidiropoulos, N. D., Giannakis, G. B., & Bro, R. (2000). Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing, 48, 810–823.

    Article  Google Scholar 

  • Song, S. J., Shin, H. J., & Jang, Y. H. (2002). Development of an ultra sonic phased array system for nondestructive tests of nuclear power plant components. Nuclear Engineering and Design, 214(1), 151–161.

    Article  Google Scholar 

  • Stoica, P., Babu, P., & Li, J. (2011). SPICE: A sparse covariance-based estimation method for array processing. IEEE Transactions on Signal Processing, 59(2), 629–638.

    Article  MathSciNet  Google Scholar 

  • Tan, Z., & Nehorai, A. (2014). Sparse direction of arrival estimation using co-prime arrays with off-grid targets. IEEE Signal Processing Letters, 21(1), 26–29.

    Article  Google Scholar 

  • Tayem, N., & Kwon, H. M. (2005). L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Transactions on Antennas and Propagation, 53(5), 1622–1630.

    Article  Google Scholar 

  • Vaidyanathan, P. P., & Pal, P. (2011). Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 59(2), 573–586.

    Article  MathSciNet  Google Scholar 

  • Wang, F., Cui, X., & Lu, M. (2014). Decoupled 2D direction finding based on sparse signal reconstruction. In 2014 IEEE military communications conference (MILCOM) (pp. 306–311). IEEE.

  • Weng, Z., & Djurić, P. M. (2014). A search-free DOA estimation algorithm for coprime arrays. Digital Signal Processing, 24(1), 27–33.

    Article  Google Scholar 

  • Wu, Y., Liao, G., & So, H. C. (2003). A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing, 83(8), 1827–1831.

    Article  MATH  Google Scholar 

  • Xia, T., Zheng, Y., Wan, Q., & Wang, X. (2007). Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays. IEEE Transactions on Antennas and Propagation, 55(9), 2627–2632.

    Article  Google Scholar 

  • Xin, J., Zheng, N., & Sano, A. (2007). Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition. IEEE Transactions on Signal Processing, 55(4), 1405–1420.

    Article  MathSciNet  Google Scholar 

  • Yin, Q. Y., Newcomb, R. W., & Zou, L. H. (1989). Estimating 2-D angles of arrival via two parallel linear arrays. In IEEE international conference on acoustics, speech, and signal processing (pp. 2803–2806).

  • Yin, J., & Chen, T. (2011). Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 59(9), 4489–4493.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y. D., Amin, M. G., & Himed, B. (2013). Sparsity-based DOA estimation using co-prime arrays. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3967–3971). IEEE.

  • Zhou, C., Shi, Z., Gu, Y., et al. (2013). DECOM: DOA estimation with combined MUSIC for coprime array. In 2013 IEEE international conference on wireless communications and signal processing (WCSP) (pp. 1–5). IEEE.

  • Zoltowski, M. D., Haardt, M., & Mathews, C. P. (1996). Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Transactions on Signal Processing, 44(2), 316–328.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61371169), the Fundamental Research Funds for the Central Universities (2015B12614) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Li.

Appendix

Appendix

As

$$\begin{aligned} E[{\hat{\mathbf{R}}}_C ]= & {} E\left[ \frac{1}{J}\sum _{t=1}^J {\mathbf{x}_M \left( t \right) \mathbf{x}_N^H \left( t \right) } \right] \nonumber \\= & {} \frac{1}{J}\sum _{t=1}^J {E\left[ \mathbf{x}_M \left( t \right) \mathbf{x}_N^H \left( t \right) \right] } \nonumber \\= & {} \mathbf{R}_C \end{aligned}$$
(17)

From Eq. (17), it is shown that the mean of \(\Delta \mathbf{r}\) is 0. For the variance matrix of \(\Delta \mathbf{r}\), the \(i-\)th column of \({\hat{\mathbf{R}}}_C \) is

$$\begin{aligned} {\hat{\mathbf{r}}}_{Ci} =\frac{1}{J}\sum _{t=1}^J {\mathbf{x}_M \left( t \right) x_{Ni}^*\left( t \right) } \end{aligned}$$
(18)

where \(x_{Ni}\left( t \right) \) is the i-th element of \(\mathbf{x}_N \left( t \right) \). According to Ottersten et al. (1998), the signals are independent from sample to sample and circularly Gaussian distributed. Then it can be derived that

$$\begin{aligned} E\left[ {\hat{\mathbf{r}}}_{Ci} {\hat{\mathbf{r}}}_{Cj} ^{H}\right]= & {} \frac{1}{J^{2}}\sum _{t=1}^J {\sum _{p=1}^J {E\left[ \mathbf{x}_M \left( t \right) x_{Ni}^*\left( t \right) \mathbf{x}_M^H \left( p \right) x_{Nj}\left( p \right) \right] }} \nonumber \\= & {} \mathbf{r}_{Ci} \mathbf{r}_{Cj} ^{H}+\frac{1}{J}\hbox {R}_{Nji} \mathbf{R}_M \end{aligned}$$
(19)

where \(\hbox {R}_{Nji} \) is the (j,i)th element of covariance matrix \(\mathbf{R}_N =E[\mathbf{x}_N \left( t \right) \mathbf{x}_N^H \left( t \right) ]\), and \(\mathbf{R}_M =E[\mathbf{x}_M \left( t \right) \mathbf{x}_M^H \left( t \right) ]\). From Eq. (19), it can be derived that the variance matrix of \(\Delta \mathbf{r}\) is

$$\begin{aligned} E[\Delta \mathbf{r}\Delta \mathbf{r}^{H}]=\frac{1}{J}(\mathbf{R}_N^T \otimes \mathbf{R}_M ) \end{aligned}$$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, D. & Zhang, X. Sparse representation based two-dimensional direction of arrival estimation using co-prime array. Multidim Syst Sign Process 29, 35–47 (2018). https://doi.org/10.1007/s11045-016-0453-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0453-9

Keywords

Navigation