Skip to main content
Log in

ISAR imaging of target with complex motion based on novel approach for the parameters estimation of multi-component cubic phase signal

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Inverse synthetic aperture radar (ISAR) imaging of target with complex motion is very important in the radar signal processing domain. In this case, the received signal can be characterized as multi-component cubic phase signal (CPS), and the high quality instantaneous ISAR images can be obtained by the parameters estimation approach. The match Fourier transform (MFT) has been proposed for the parameters estimation of linear frequency modulated (LFM) signal, and it has been used successfully in the field of ISAR imaging. In this paper, the third-order match Fourier transform (TMFT) is proposed as an extension of the traditional MFT for the parameters estimation of cubic phase signal, and the asymptotic statistical performance is analyzed theoretically with the derivation of asymptotic statistical results for the estimated parameters. Finally, the TMFT algorithm is used as a tool for the improvement of inverse synthetic aperture radar (ISAR) images quality of target with complex motion, and the results of simulated and real data validate the effectiveness of the TMFT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bai, X., Tao, R., Wang, Z. J., & Wang, Y. (2014). ISAR imaging of a ship target based on parameter estimation of multicomponent quadratic frequency-modulated signals. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1418–1429.

    Article  Google Scholar 

  • Bao, Z., Wang, G. Y., & Luo, L. (1998). Inverse synthetic aperture radar imaging of maneuvering targets. Optical Engineering, 37(5), 1582–1588.

    Article  Google Scholar 

  • Chen, V. C., Lipps, R. (2000). ISAR imaging of small craft with roll, pitch and yaw analysis. In IEEE international radar conference. pp. 493–498.

  • Chen, V. C., & Miceli, W. J. (1998). Time-varying spectral analysis for radar imaging of maneuvering targets. IEE Proceedings-Radar, Sonar and Navigation, 145(5), 262–268.

    Article  Google Scholar 

  • Cohen, L. (1989). Time–frequency distribution—A review. Proceedings of IEEE, 77(7), 941–981.

    Article  Google Scholar 

  • Huang, Y. J., Cao, M., Fu, Y. W., Li, Y. N., & Jiang, W. D. (2009). ISAR imaging of equably accelerative rotating targets based on matching Fourier transform. Signal Processing, 25(6), 864–867. (in Chinese).

    Google Scholar 

  • Kirkpatrik, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Lanterman, A. D., Munson, D. C., & Wu, Y. (2003). Wide-angle radar imaging using time frequency distributions. IEE Proceedings-Radar, Sonar and Navigation, 150(4), 203–211.

    Article  Google Scholar 

  • Li, J., & Ling, H. (2003). Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts. IEE Proceedings-Radar, Sonar and Navigation, 150(4), 284–291.

    Article  Google Scholar 

  • Liu, Z. S., Wu, R. B., & Li, J. (1999). Complex ISAR imaging of maneuvering targets via the Capon estimator. IEEE Transactions on Signal Processing, 47(5), 1262–1271.

    Article  Google Scholar 

  • Li, G., & Varshney, P. K. (2014). Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12), 4937–4948.

    Article  Google Scholar 

  • Li, G., Zhang, H., Wang, X. Q., & Xia, X. G. (2012). ISAR 2-D imaging of uniformly rotating targets via matching pursuit. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1838–1846.

    Article  Google Scholar 

  • Martorella, M., Acito, N., & Berizzi, F. (2007). Statistical CLEAN technique for ISAR imaging. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3552–3560.

    Article  Google Scholar 

  • Ma, C. Z., Yeo, T. S., Tan, C. S., & Tan, H. S. (2010). Sparse array 3-D ISAR imaging based on maximum likelihood estimation and CLEAN technique. IEEE Transactions on Image Processing, 19(8), 2127–2142.

    Article  MathSciNet  MATH  Google Scholar 

  • Pastina, D., Montanari, A., Aprile, A. (2003). Motion estimation and optimum time selection for ship ISAR imaging. In IEEE radar conference. pp. 7–14.

  • Peleg, S., & Porat, B. (1991). Linear FM signal parameter estimation from discrete-time observations. IEEE Transactions on Aerospace and Electronic Systems, 27(4), 607–614.

    Article  Google Scholar 

  • Rao, W., Li, G., Wang, X. Q., & Xia, X. G. (2013). Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 942–952.

    Article  Google Scholar 

  • Thayaparan, T., Lampropoudos, G., Wong, S. K., & Riseborough, E. (2003). Application of adaptive joint time-frequency algorithm for focusing distorted ISAR images from simulated and measured radar data. IEE Proceedings-Radar, Sonar and Navigation, 150(4), 213–220.

    Article  Google Scholar 

  • Walker, J. L. (1980). Range–Doppler imaging of rotating objects. IEEE Transactions on Aerospace and Electronic Systems, 16(1), 23–52.

    Article  Google Scholar 

  • Wang, G. Y., Bao, Z., & Sun, X. B. (1996). Inverse synthetic aperture radar imaging of non-uniformly rotating targets. Optical Engineering, 35(10), 3007–3011.

    Article  Google Scholar 

  • Wang, Y., & Jiang, Y. C. (2011). Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function. IEEE Geoscience and Remote Sensing Letters, 8(5), 958–962.

    Article  Google Scholar 

  • Wang, Y., & Jiang, Y. C. (2012). ISAR imaging of three-dimensional rotation target based on two-order match Fourier transform. IET Signal Processing, 6(2), 159–169.

    Article  MathSciNet  Google Scholar 

  • Wang, Y., & Jiang, Y. C. (2013). Approach for high resolution inverse synthetic aperture radar imaging of ship target with complex motion. IET Signal Processing, 7(2), 146–157.

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Kang, J., & Jiang, Y. C. (2014). ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and integrated high order ambiguity function for cubic phase signal model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7), 2971–2991.

    Article  Google Scholar 

  • Wang, S. L., Li, S. G., Ni, J. L., & Zhang, G. Y. (2001). A new transform-match Fourier transform. Acta electronica sinica, 29(3), 403–405.

    Google Scholar 

  • Wang, C., Wang, Y., & Li, S. B. (2013). ISAR imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model. IET Radar, Sonar and Navigation, 7(9), 994–1003.

    Article  Google Scholar 

  • Wang, Y., Zhao, B., & Kang, J. (2015). Asymptotic statistical performance of local polynomial Wigner distribution for the parameters estimation of cubic phase signal with application in ISAR imaging of ship target. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1087–1098.

    Google Scholar 

  • Wong, S. K., Duff, G., & Riseborough, E. (2003). Distortion in the inverse synthetic aperture radar (ISAR) images of a target with time-varying perturbed motion. IEE Proceedings-Radar, Sonar and Navigation, 150(4), 221–227.

    Article  Google Scholar 

  • Wu, L., Wei, X. Z., Yang, D. G., Wang, H. Q., & Li, X. (2012). ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 4201–4212.

    Article  Google Scholar 

  • Xu, W., Wang, S. L. (2007). SAR detection of moving targets based on matched Fourier transform. In 1st Asian and Pacific conference on synthetic aperture radar, pp. 289–292.

  • Zhang, Y., & Jiang, Y. C. (2009). A method of ISAR ship imaging based on match Fourier transform. Journal of Dalian Maritime University, 35(1), 47–52.

    Google Scholar 

  • Zhang, Y., & Jiang, Y. C. (2009). Estimating parameters of ship echoes using match Fourier transform. Journal of Harbin Engineering University, 30(4), 447–450.

    Google Scholar 

  • Zhang, L., Xing, M. D., Qiu, C. W., Li, J., Sheng, J. L., Li, Y. C., et al. (2010). Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. IEEE Transactions on Geoscience and Remote Sensing, 48(10), 3824–3838.

    Article  Google Scholar 

  • Zheng, J. B., Su, T., Zhang, L., Zhu, W. T., & Liu, Q. H. (2014). ISAR imaging of targets with complex motion based on the chirp rate-quadratic chirp rate distribution. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7276–7289.

    Article  Google Scholar 

  • Zheng, J. B., Su, T., Zhu, W. T., & Liu, Q. H. (2014). ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution. IEEE Geoscience and Remote Sensing Letters, 11(7), 1275–1279.

    Article  Google Scholar 

  • Zheng, J. B., Su, T., Zhu, W. T., Liu, Q. H., Zhang, L., & Zhu, T. W. (2013). Fast parameter estimation algorithm for cubic phase signal based on quantifying effects of Doppler frequency shift. Progress in Electromagnetics Research, 142, 57–74.

    Article  Google Scholar 

  • Zhu, L., Wang, S. L., Ni, J. L., & Liu, G. S. (2005). Estimation of Doppler parameter of spaceborne synthetic aperture radar by matched Fourier transform. ACTA ARMAMEN TARII, 26(3), 429–432.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61471149 and 61622107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Appendix

Appendix

The Appendix within this paper derives the asymptotic MSEs for the estimation errors in (10), and the following computations are implemented based on the first-order perturbation principle:

(1) The computation of constant A

(11)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =-60\omega _0^2 -80\alpha _0^2 -36\beta _0^2 -12\beta _0 \omega _0 +72\beta _0 \alpha _0 +120\alpha _0 \omega _0 -720 \\ c_1 =120\alpha _0^2 +180\beta _0 \omega _0 -252\beta _0 \alpha _0 -120\alpha _0 \omega _0 +108\beta _0^2 \\ c_2 =40\alpha _0^2 +60\omega _0^2 -120\alpha _0 \omega _0 -117\beta _0^2 -120\beta _0 \omega _0 +180\beta _0 \alpha _0 \\ c_3 =120\alpha _0 \omega _0 -180\beta _0 \omega _0 -120\alpha _0^2 +180\beta _0 \alpha _0 \\ c_4 =132\beta _0 \omega _0 +126\beta _0^2 -252\beta _0 \alpha _0 +40\alpha _0^2 \\ c_5 =72\beta _0 \alpha _0 -108\beta _0^2 \\ c_6 =27\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(12)

For large N, we can approximate A as follows:

$$\begin{aligned} A\approx -\frac{b^{2}N^{2}}{360}c_6 N^{6}=-\frac{3}{40}N^{8}b^{2}\beta _0^2 \end{aligned}$$
(13)

(2) The computation of constant B

(14)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =6300-210\alpha _0 \omega _0 +450\alpha _0 \beta _0 +385\omega _0^2 -162\beta _0^2 -555\beta _0 \omega _0 -1050j\omega _0 \\ c_1 =-240\beta _0 \omega _0 -1050\alpha _0^2 +513\beta _0^2 +2100\alpha _0 \omega _0 -665\omega _0^2 -105\alpha _0 \beta _0 -6300 \\ c_2 =1575\alpha _0^2 +378\beta _0^2 -490\omega _0^2 -3570\alpha _0 \beta _0 +1050j\omega _0 -1050\alpha _0 \omega _0 \\ c_3 =525\alpha _0^2 -2457\beta _0^2 -2100\alpha _0 \omega _0 +560\omega _0^2 +3675\alpha _0 \beta _0 -975\beta _0 \omega _0 \\ c_4 =-1575\alpha _0^2 +1512\beta _0^2 +2100\alpha _0 \beta _0 -2970\beta _0 \omega _0 +1260\alpha _0 \omega _0 \\ c_5 =525\alpha _0^2 +1512\beta _0^2 -3570\alpha _0 \beta _0 +1440\beta _0 \omega _0 \\ c_6 =-1728\beta _0^2 +1020\alpha _0 \beta _0 \\ c_7 =432\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(15)

For large N, we can approximate B as follows:

$$\begin{aligned} B\approx -\frac{b^{2}N^{3}}{3150}c_7 N^{7}=-\frac{24}{175}N^{10}b^{2}\beta _0^2 \end{aligned}$$
(16)

(3) The computation of constant C

(17)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =-\frac{1}{5}\alpha _0 \beta _0 +\frac{1}{21}\alpha _0 \omega _0 +\frac{37}{210}\beta _0 \omega _0 -\frac{1}{21}\omega _0^2 +\frac{1}{2}+\frac{2}{225}\alpha _0^2 +\frac{1}{10}\beta _0^2 \\ c_1 =\frac{1}{10}\alpha _0 \beta _0 +\frac{1}{14}\beta _0 \omega _0 -\frac{47}{105}\alpha _0 \omega _0 -3-\frac{3}{10}\beta _0^2 +\frac{1}{3}\alpha _0^2 \\ c_2 =-\frac{1}{5}\alpha _0 \omega _0 -\frac{41}{28}\beta _0 \omega _0 +\frac{11}{24}\omega _0^2 +\frac{13}{2}-\frac{23}{45}\alpha _0^2 -\frac{41}{120}\beta _0^2 +\frac{11}{6}\alpha _0 \beta _0 \\ c_3 =\frac{21}{10}\alpha _0 \omega _0 -\frac{1}{2}\omega _0^2 -6+2\beta _0^2 -\frac{9}{10}\alpha _0^2 -\frac{25}{12}\alpha _0 \beta _0 \\ c_4 =-\frac{4}{3}\alpha _0 \omega _0 +\frac{109}{30}\beta _0 \omega _0 -\frac{1}{4}\omega _0^2 +2+\frac{877}{450}\alpha _0^2 -\frac{71}{60}\beta _0^2 -\frac{63}{20}\alpha _0 \beta _0 \\ c_5 =-2\beta _0 \omega _0 -\frac{19}{15}\alpha _0 \omega _0 +\frac{1}{2}\omega _0^2 +\frac{28}{5}\alpha _0 \beta _0 -\frac{1}{3}\alpha _0^2 -\frac{27}{10}\beta _0^2 \\ c_6 =-\frac{53}{28}\beta _0 \omega _0 +\frac{52}{35}\alpha _0 \omega _0 -\frac{9}{56}\omega _0^2 +\frac{137}{40}\beta _0^2 -\frac{19}{15}\alpha _0^2 -\frac{1}{2}\alpha _0 \beta _0 \\ c_7 =-\frac{27}{70}\alpha _0 \omega _0 +\frac{27}{14}\beta _0 \omega _0 -\frac{13}{4}\alpha _0 \beta _0 +\frac{9}{10}\alpha _0^2 \\ c_8 =-\frac{19}{42}\beta _0 \omega _0 +\frac{121}{60}\alpha _0 \beta _0 -\frac{11}{6}\beta _0^2 -\frac{9}{50}\alpha _0^2 \\ c_9 =-\frac{11}{30}\alpha _0 \beta _0 +\beta _0^2 \\ c_{10} =-\frac{1}{6}\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(18)

For large N, we can approximate C as follows:

$$\begin{aligned} C\approx b^{2}N^{2}c_{10} N^{10}=-\frac{1}{6}N^{12}b^{2}\beta _0^2 \end{aligned}$$
(19)

(4) The computation of constant D

(20)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =-360-24\alpha _0^2 -30\omega _0^2 +44\alpha _0 \omega _0 +18\beta _0 \omega _0 \\ c_1 =-90\alpha _0 \beta _0 +90\beta _0 \omega _0 +60\alpha _0^2 +18\beta _0^2 -76\alpha _0 \omega _0 \\ c_2 =135\alpha _0 \beta _0 -56\alpha _0 \omega _0 -90\beta _0 \omega _0 +30\omega _0^2 -63\beta _0^2 \\ c_3 =45\beta _0^2 -90\beta _0 \omega _0 +45\alpha _0 \beta _0 +64\alpha _0 \omega _0 -60\alpha _0^2 \\ c_4 =24\alpha _0^2 -135\alpha _0 \beta _0 +72\beta _0 \omega _0 +45\beta _0^2 \\ c_5 =45\alpha _0 \beta _0 -63\beta _0^2 \\ c_6 =18\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(21)

For large N, we can approximate D as follows:

$$\begin{aligned} D\approx -\frac{b^{2}N^{3}}{180}c_6 N^{6}=-\frac{1}{10}N^{9}b^{2}\beta _0^2 \end{aligned}$$
(22)

(5) The computation of constant E

(23)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =2520+168\omega _0^2 -112\alpha _0^2 -180\beta _0^2 -276\beta _0 \omega _0 +360\beta _0 \alpha _0 \\ c_1 =-5040-252\beta _0 \alpha _0 +1260\alpha _0 \omega _0 +360\beta _0^2 -616\alpha _0^2 +102\beta _0 \omega _0 -462\omega _0^2 \\ c_2 =-2268\beta _0 \alpha _0 +2265\beta _0 \omega _0 -252\omega _0^2 +1120\alpha _0^2 +315\beta _0^2 -840\alpha _0 \omega _0 \\ c_3 =-1260\alpha _0 \omega _0 +2520\beta _0 \alpha _0 -1575\beta _0^2 +280\alpha _0^2 -885\beta _0 \omega _0 +378\omega _0^2 \\ c_4 =1260\beta _0 \alpha _0 -1809\beta _0 \omega _0 +945\beta _0^2 +840\alpha _0 \omega _0 -1008\alpha _0^2 \\ c_5 =-2268\beta _0 \alpha _0 +963\beta _0 \omega _0 +336\alpha _0^2 +945\beta _0^2 \\ c_6 =648\beta _0 \alpha _0 -1080\beta _0^2 \\ c_7 =270\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(24)

For large N, we can approximate E as follows:

$$\begin{aligned} E\approx -\frac{b^{2}N^{3}}{2520}c_7 N^{7}=-\frac{3}{28}N^{10}b^{2}\beta _0^2 \end{aligned}$$
(25)

(6) The computation of constant F

(26)

where

$$\begin{aligned} \left\{ {\begin{array}{l} c_0 =1200\alpha _0^2 -432\alpha _0 \beta _0 -1480\alpha _0 \omega _0 -12600 \\ c_1 =-840\alpha _0^2 -2740\alpha _0 \omega _0 +37800+7668\alpha _0 \beta _0 -6930\beta _0 \omega _0 -2520\beta _0^2 +3150\omega _0^2 \\ c_2 =-25200+13150\alpha _0 \omega _0 -2142\alpha _0 \beta _0 -7560\alpha _0^2 -5670\beta _0 \omega _0 +6930\beta _0^2 -2100\omega _0^2 \\ c_3 =-25452\alpha _0 \beta _0 +22050\beta _0 \omega _0 -1550\alpha _0 \omega _0 +8400\alpha _0^2 -3150\omega _0^2 +2205\beta _0^2 \\ c_4 =-11070\alpha _0 \omega _0 +19782\alpha _0 \beta _0 -17640\beta _0^2 +4200\alpha _0^2 +2100\omega _0^2 \\ c_5 =-15120\beta _0 \omega _0 +13482\alpha _0 \beta _0 +4890\alpha _0 \omega _0 -7560\alpha _0^2 +8820\beta _0^2 \\ c_6 =-17208\alpha _0 \beta _0 +2160\alpha _0^2 +5670\beta _0 \omega _0 +8820\beta _0^2 \\ c_7 =4302\alpha _0 \beta _0 -8505\beta _0^2 \\ c_8 =1890\beta _0^2 \\ \end{array}} \right. \end{aligned}$$
(27)

For large N, we can approximate F as follows:

$$\begin{aligned} F\approx -\frac{b^{2}N^{3}}{12600}c_8 N^{8}=-\frac{3}{20}N^{11}b^{2}\beta _0^2 \end{aligned}$$
(28)

(7) The computation of variance of d

(29)

(8) The computation of variance of e

(30)

(9) The computation of variance of f

(31)

(10) The computation of covariance for d and e

$$\begin{aligned} E\left[ {de^{{*}}} \right]= & {} 2b^{2}\sigma ^{2}\sum _{n=0}^{N-1} {\sum _{m=0}^{N-1} {\sum _{k=0}^{N-1} {\left[ {\left( {n-k} \right) \left( {m^{2}-k^{2}} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) } \right. } } } \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) ^{2} \nonumber \\&\times \,\left( {\omega _0 +2\alpha _0 m+3\beta _0 m^{2}} \right) -j\left( {n-k} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) \nonumber \\&\times \,\left( {2\omega _0 m+2\omega _0 k+8\alpha _0 mk+6\beta _0 mk^{2}+6\beta _0 m^{2}k} \right) +j\left( {m^{2}-k^{2}} \right) \left( {\omega _0 +2\alpha _0 m+3\beta _0 m^{2}} \right) \nonumber \\&\times \,\left( {\omega _0 +2\alpha _0 k\!+\!3\beta _0 k^{2}} \right) \left( {2\omega _0 \!+\!2\alpha _0 k\!+\!2\alpha _0 n\!+\!3\beta _0 k^{2}+3\beta _0 n^{2}} \right) \nonumber \\&\left. {+\,\left( {2\omega _0 m\!+\!2\omega _0 k+8\alpha _0 mk+6\beta _0 mk^{2}+6\beta _0 m^{2}k} \right) \left( {2\omega _0 +2\alpha _0 k+2\alpha _0 n+3\beta _0 k^{2}+3\beta _0 n^{2}} \right) } \right] \nonumber \\\approx & {} \frac{99}{700}N^{14}b^{2}\sigma ^{2}\beta _0^4 \end{aligned}$$
(32)

(11) The computation of covariance for d and f

$$\begin{aligned} E\left[ {df^{{*}}} \right]= & {} 2b^{2}\sigma ^{2}\sum _{n=0}^{N-1} {\sum _{m=0}^{N-1} {\sum _{k=0}^{N-1} {\left[ {\left( {n-k} \right) \left( {m^{3}-k^{3}} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) } \right. } } } \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) ^{2} \nonumber \\&\times \,\left( {\omega _0 +2\alpha _0 m+3\beta _0 m^{2}} \right) -j\left( {n-k} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) \nonumber \\&\times \,\left( {3\omega _0 m^{2}\!+\!3\omega _0 k^{2}\!+\!6\alpha _0 m^{2}k\!+\!6\alpha _0 mk^{2}\!+\!18\beta _0 m^{2}k^{2}} \right) \!+\!j\left( {m^{3}-k^{3}} \right) \left( {\omega _0 \!+\!2\alpha _0 m\!+\!3\beta _0 m^{2}} \right) \nonumber \\&\times \,\left( {\omega _0 \!+\!2\alpha _0 k\!+\!3\beta _0 k^{2}} \right) \left( {2\omega _0 \!+\!2\alpha _0 k\!+\!2\alpha _0 n\!+\!3\beta _0 k^{2}\!+\!3\beta _0 n^{2}} \right) \nonumber \\&\left. +\,\left( {3\omega _0 m^{2}\!+\!3\omega _0 k^{2}\!+\!6\alpha _0 m^{2}k+6\alpha _0 mk^{2}+18\beta _0 m^{2}k^{2}} \right) \right. \nonumber \\&\left. \times \left( {2\omega _0 +2\alpha _0 k+2\alpha _0 n+3\beta _0 k^{2}+3\beta _0 n^{2}} \right) \right] \nonumber \\\approx & {} \frac{13}{80}N^{15}b^{2}\sigma ^{2}\beta _0^4 \end{aligned}$$
(33)

(12) The computation of covariance for f and e

$$\begin{aligned} E\left[ {ef^{{*}}} \right] \!= & {} \!2b^{2}\sigma ^{2}\sum _{n=0}^{N-1} {\sum _{m=0}^{N-1} {\sum _{k=0}^{N-1} {\left[ {\left( {n^{2}-k^{2}} \right) \left( {m^{3}-k^{3}} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) } \right. } } } \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) ^{2} \nonumber \\&\times \left( {\omega _0 +2\alpha _0 m+3\beta _0 m^{2}} \right) -j\left( {n^{2}-k^{2}} \right) \left( {\omega _0 +2\alpha _0 n+3\beta _0 n^{2}} \right) \left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) \nonumber \\&\times \,\left( {3\omega _0 m^{2}\!+\!3\omega _0 k^{2}\!+\!6\alpha _0 m^{2}k\!+\!6\alpha _0 mk^{2}\!+\!18\beta _0 m^{2}k^{2}} \right) \!+\!j\left( {m^{3}-k^{3}} \right) \left( {\omega _0 \!+\!2\alpha _0 m\!+\!3\beta _0 m^{2}} \right) \nonumber \\&\times \,\left( {\omega _0 +2\alpha _0 k+3\beta _0 k^{2}} \right) \left( {2\omega _0 n+2\omega _0 k+8\alpha _0 nk+6\beta _0 nk^{2}+6\beta _0 n^{2}k} \right) \nonumber \\&+\,\left( {3\omega _0 m^{2}+3\omega _0 k^{2}+6\alpha _0 m^{2}k+6\alpha _0 mk^{2}+18\beta _0 m^{2}k^{2}} \right) \nonumber \\&\left. {\times \left( {2\omega _0 n+2\omega _0 k+8\alpha _0 nk+6\beta _0 nk^{2}+6\beta _0 n^{2}k} \right) } \right] \nonumber \\\approx & {} \frac{171}{700}N^{16}b^{2}\sigma ^{2}\beta _0^4 \end{aligned}$$
(34)

By the first-order perturbation principle and combined with above definitions, the following relationship can be set up:

$$\begin{aligned} \left\{ {\begin{array}{l} d+A\delta \omega +D\delta \alpha +E\delta \beta =0 \\ e+D\delta \omega +B\delta \alpha +F\delta \beta =0 \\ f+E\delta \omega +F\delta \alpha +C\delta \beta =0 \\ \end{array}} \right. \end{aligned}$$
(35)

Then, we can obtain (10) based on the settlement of (35) and the computations from (11) to (34).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Q. & Zhao, B. ISAR imaging of target with complex motion based on novel approach for the parameters estimation of multi-component cubic phase signal. Multidim Syst Sign Process 29, 1285–1307 (2018). https://doi.org/10.1007/s11045-017-0503-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0503-y

Keywords

Navigation