Skip to main content
Log in

Total generalized variation restoration with non-quadratic fidelity

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Total variation (TV) based Models have been widely used in image restoration problems. However, these models are always accompanied by staircase effect due to the property of bounded variation (BV) space. In this paper, we present two high order variational models based on total generalized variation (TGV) with two common and important non-quadratic fidelity data terms for blurred images corrupted by impulsive and Poisson noises. Since the direct extension of alternative direction method of multipliers (ADMM) to solve three-block convex minimization problems is not necessarily convergent, we develop an efficient algorithm called Prediction–Correction ADMM to solve our models and also show the convergence of the proposed method. Moreover, we extend our models to deal with color images restoration. Numerical experiments demonstrate that the proposed high order models can reduce staircase effect while preserving edges and outperform classical TV based models in SNR and SSIM values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bovik, A. (2000). Handbook of image and video processing. New York: Academic.

    MATH  Google Scholar 

  • Bredies, K. (2014). Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. Global Optimization Methods, LNCS, 8293, 44–77.

    Google Scholar 

  • Bredies, K., Kunisch, K., & Pock, T. (2010). Total generalized variation. SIAM Journal on Imaging Sciences, 3, 92–526.

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies, K., & Sun, H. P. (2015). Preconditioned Douglas-Rachford algorithms for TV and TGV regularized variational imaging problems. Journal of Mathematical Imaging and Vision, 52(3), 317–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Bredies, K., & Valkonen, T. (2011). Inverse problems with second-order total generalized variation constraints. In Proceedings of SampTA 2011-9th international conference on sampling theory and applications, Singapore.

  • Bresson, X., & Chan, T. F. (2008). Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2, 455–484.

    Article  MathSciNet  MATH  Google Scholar 

  • Brune, C., Sawatzky, A., & Burger, M. (2009). Bregman-EM-TV methods with application to optical nanoscopy. LNCS, 5567, 235–246.

    MATH  Google Scholar 

  • Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40, 120–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., & Esedoglu, S. (2005). Aspects of total variation regularized L1 function approximation. SIAM Journal on Applied Mathematics, 65, 1817–1837.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., Kang, S. H., & Shen, J. H. (2001). Total variation denoising and enhancement of color images based on the CB and HSV color models. Journal of Visual Communication and Image Representation, 12, 422–435.

    Article  Google Scholar 

  • Chan, T. F., Marquina, A., & Mulet, P. (2000). High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 22, 503–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, R. H., Yang, J. F., & Yuan, X. M. (2011). Alternating direction method for image inpainting in wavelet domain. SIAM Journal on Imaging Sciences, 4, 807–826.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C. H., He, B. S., Ye, Y. Y., & Yuan, X. M. (2013). The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 155(1), 57–79.

    MathSciNet  MATH  Google Scholar 

  • Eckstein, J., & Bertsekas, D. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming, 55.

  • Esser, E. (2009). Applications of Lagrangian-based alternating direction methods and connections to split Bregman. UCLA CAM Report, 09-31

  • Goldstein, T., ODonoghue, B., & Setzer, S. (2012). Fast alternating direction optimization methods. CAM report, pp. 12–35.

  • Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized prolbems. SIAM Journal on Imaging Sciences, 2, 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • He, B. S. (2009). Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities. Computational Optimization and Applications, 42, 195–212.

    Article  MathSciNet  MATH  Google Scholar 

  • He, B. S., Yang, H., & Wang, S. L. (2000). Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities. Journal of Optimization Theory and Applications, 106, 349–368.

    Article  MathSciNet  Google Scholar 

  • Le, T., Chartrand, R., & Asaki, T. J. (2007). A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging and Vision, 27, 257–263.

    Article  MathSciNet  Google Scholar 

  • Lysaker, M., Lundervold, A., & Tai, X. C. (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 12, 1579–1590.

    Article  MATH  Google Scholar 

  • Ng, M. K., Wang, F., & Yuan, X. M. (2011). Inexact alternating direction methods for image recovery. SIAM Journal on Scientific Computing, 33(4), 1643–1668.

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M. (2004). A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision, 20, 99–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 61–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Setzer, S. (2009). Split Bregman algorithm, Douglas-Rachford splitting, and frame shrinkage. Lecture Notes in Computer Science, 5567, 464–476.

    Article  Google Scholar 

  • Setzer, S., Steidl, G., & Teuber, T. (2010). Deblurring Poissonian images by split Bregman techniques. Journal of Visual Communication and Image Representation, 21, 193–199.

    Article  Google Scholar 

  • Steidl, G., & Teuber, T. (2010). Removing multiplicative noise by Douglas-Rachford splitting methods. Journal of Mathematical Imaging and Vision, 36, 168–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Tai, X. C., Hahn, J., & Chung, G. J. (2011). A fast algorithm for Eulers elastica model using augmented lagrangian method. SIAM Journal on Imaging Sciences, 4, 313–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Valkonen, T., Bredies, K., & Knoll, F. (2013). Total generalized variation in diffusion tensor imaging. SIAM Journal on Imaging Sciences, 6, 487–525.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612.

    Article  Google Scholar 

  • Wu, C. L., & Tai, X. C. (2010). Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences, 3, 300–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Zhang, J. Y., Duan, Y. P., & Tai, X. C. (2012). Augmented Lagrangian method for total variation based image restoration and segmentation over triangulated surfaces. Journal of Scientific Computing, 50(1), 145–166.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C. L., Zhang, J. Y., & Tai, X. C. (2011). Augmented Lagrangian method for Total Variation Restoration with Non-quadratic Fidelity. Inverse Problems and Imaging, 5, 237–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J. F., Yin, W. T., Zhang, Y., & Wang, Y. L. (2009). A fast algorithm for edge-preserving variational multichannel image restoration. SIAM Journal on Imaging Sciences, 2, 569–592.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J. F., & Zhang, Y. (2011). Alternating direction method for l1-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1), 250–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J. F., Zhang, Y., & Yin, W. T. (2009). An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM Journal on Scientific Computing, 31, 2842–2865.

    Article  MathSciNet  MATH  Google Scholar 

  • Yin, W., Goldfarb, D., & Osher, S. (2007). The total variation regularized L1 model for multiscale decomposition. Multiscale Modeling and Simulation, 6, 190–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, W., & Chan, T. F. (2012). Image denoising using mean curvature of image surface. SIAM Journal on Imaging Sciences, 5, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiming Gao or Xiaoping Yang.

Additional information

This work is supported by National Nature Science Foundation of China (Nos. 91330101, 11531005 and 11501292).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, F. & Yang, X. Total generalized variation restoration with non-quadratic fidelity. Multidim Syst Sign Process 29, 1459–1484 (2018). https://doi.org/10.1007/s11045-017-0512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0512-x

Keywords

Navigation