Skip to main content
Log in

Algebraic technique for computationally efficient Hahn moment invariants

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In image processing applications such as scene analysis problems, moments are used as image descriptors of three dimensional objects. These moments may be sensitive to several transformations such as translation and scaling. Three-dimensional moment invariants are possible solution to such problems. Recently, Tchebichef and Krawtchouk moments and their invariants are proposed. These moment invariants are obtained using indirect method or image normalisation method. Perfect invariance cannot be achieved when moment invariants are not obtained from their corresponding polynomials. In this paper, the translation and scale invariance of Hahn moments for two and three dimensional symmetrical and non symmetrical images are derived directly from discrete orthogonal Hahn polynomials using algebraical method. This also enhances the computational efficiency in terms of processing time as compared to the method based on geometric moment invariants. The performance of proposed descriptor is evaluated using binary characters and 3D images. Hahn moment which is generalization of Tchebichef and Krawtchouk moment, give better results with translation and scale invariance and classification problems under clean and noisy image conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alghoniemy, M., & Tewfik, A. H. (2000). Image watermarking by moment invariants. In International conference on image processing (ICIP) (Vol. 2, pp. 73–76, 10–13).

  • Chen, Z., & Sun, S. K. (2010). A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 19(1), 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Chong, C.-W., Raveendran, P., & Mukundan, R. (2004). Translation and scale invariants of Legendre moments. Pattern Recognition, 37, 119–129.

    Article  MATH  Google Scholar 

  • Christopher, L. A., William, A., & Cohen-Gadol, A. A. (2013). Future directions in 3-dimensional imaging and neurosurgery: Stereoscopy and autostereoscopy. Neurosurgery, 72, A131–A138.

    Article  Google Scholar 

  • Comtet, L. (1974). Advanced combinatorics: The art of finite and infinite expansions. Dordrecht, The Netherlands: D. Reidel.

    Book  MATH  Google Scholar 

  • Dudani, S. A., Breeding, K. J., & McGhee, R. B. (1977). Aircraft identification by moment invariants. IEEE Transactions on Computers, 26(1), 39–46.

    Article  Google Scholar 

  • Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. CVPR workshop on generative-model based vision.

  • Flusser, J. (1993). Pattern recognition by affine moment invariants. Pattern Recognition, 26(1), 167–174.

    Article  MathSciNet  Google Scholar 

  • Fu, B., Zhou, J.-Z., Chen, W.-Q., & Zhang, G.-J. (2005). Translation invariants of modified Chebyshev moments. In Proceedings of the fourth international conference on machine learning and cybernetics. Guangzhou, August 18–21, 2005.

  • Goh, H. A., Chong, C. W., Besar, R., Abas, F. S., & Sim, K. S. (2009). Translation and scale invariants of Hahn moments. International Journal of Image and Graphics, 9(2), 271–285.

    Article  Google Scholar 

  • Gonzalez, M., Dinelle, K., Vafai, N., Heffernan, N., McKenzie, J., Appel-Cresswell, S., et al. (2013). Novel spatial analysis method for PET data using 3D moment invariants: Applications to Parkinson’s disease. Neuroimage, 68, 11–21.

    Article  Google Scholar 

  • Goshtasby, A. (1985). Template matching in rotated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–7, 338–344.

    Article  Google Scholar 

  • Heywood, M. I. (1995). Fractional central moment method for moment-invariant object classification. Proceedings of the Institution of Electrical Engineers, 142(4), 213–219.

    MathSciNet  Google Scholar 

  • Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transaction on Information Theory, 8, 179–187.

    MATH  Google Scholar 

  • Khotanzad, A., & Hong, Y. H. (1990). Invariant image recognition by Zernike moments. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12(5), 489–497.

    Article  Google Scholar 

  • Kim, H. S., & Lee, H. K. (2003). Invariant image watermark using Zernike moments. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 766–775.

    Article  Google Scholar 

  • Koekoek, R., Lesky, P., & Swarttouw, R. (2010). Hypergeometric orthogonal polynomials and their q-analogues, Springer monographs in mathematics. Berlin: Springer-Verlag.

  • Liao, S. X., & Pawlak, M. (1998). On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1358–1364.

    Article  Google Scholar 

  • Mahdian, B., & Saic, S. (2007). Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International, 171(2–3), 180–189.

    Article  Google Scholar 

  • Mukundan, R., Ong, S. H., & Lee, P. A. (2001). Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 10(9), 1357–1364.

    Article  MathSciNet  MATH  Google Scholar 

  • Nikiforov, A. F., Suslov, S. K., & Uvarov, V. B. (1991). Classical orthogonal polynomials of a discrete variable. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Ong, L. Y., Chong, C. W., & Besar, R. (2006). Scale invariants of three-dimensional Legendre moments. In Proceedings of the \(18^{th}\) international conference on pattern recognition (ICPR06) (pp. 141–144).

  • Pandey, V. K., Singh, J. & Parthasarathy, H. (2016). Translation and scale invariance of 2D and 3D Hahn moments. In 3rd IEEE International Conference on Signal Processing and Integrated Networks (SPIN). Noida, India.

  • Papakostas, G. A., Boutalis, Y. S., Karras, D. A., & Mertzios, B. G. (2007). A new class of Zernike moments for computer vision applications. Information Sciences, 177(13), 2802–2819.

    Article  MathSciNet  MATH  Google Scholar 

  • Shabanifard, M., Shayesteh, M. G., & Akhaee, M. A. (2013). Forensic detection of image manipulation using the Zernike moments and pixel-pair histogram. IET Image Processing, 7(9), 817–828.

    Article  Google Scholar 

  • Spanier, J., & Oldham, K. B. (1987). The Pochhammer polynomials \((x)_n\). In Ch. 18 in an atlas of functions (pp. 149–165). Washington, DC: Hemisphere.

  • Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of the Optical Society of America, 70, 920–930.

    Article  MathSciNet  Google Scholar 

  • Wu, H., Coatrieux, J. L., & Shu, H. (2013). New algorithm for constructing and computing scale invariants of \(3D\) Tchebichef moments. Mathematical problems in engineering, 2013, 813606. doi:10.1155/2013/813606.

  • Yap, P.-T., Paramesran, R., & Ong, S.-H. (2003). Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing, 12(11), 1367–1377.

    Article  MathSciNet  Google Scholar 

  • Yap, P. T., Paramesran, R., & Ong, S. H. (2007). Image analysis using Hahn moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2057–2062.

    Article  Google Scholar 

  • Zhou, J., Shu, H., Zhu, H., Toumoulin, C., & Luo, L. (2005). Image analysis by discrete orthogonal Hahn moments. In Proceedings of second international conference image analysis and recognition (pp. 524–531).

  • Zhu, H. Q., Shu, H. Z., Xia, T., Luo, L. M., & Coatrieux, J. L. (2007). Translation and scale invariants of Tchebichef moments. Pattern Recognition, 40, 2530–2542.

    Article  MATH  Google Scholar 

  • Zunic, J., & Rosin, P. L. (2011). Measuring linearity of open planar curve segments. Image and Vision Computing, 29(12), 873–879.

    Article  Google Scholar 

  • Zunic, D., & Zunic, J. (2014). Shape ellipticity from Hu moment invariants. Applied Mathematics and Computation, 226, 406–414.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Singh.

Appendix

Appendix

Proof of (24) Substituting the value of \(H_{n-k}\) from (10) in (23), following equation is obtained

$$\begin{aligned} H_{n}(x+x')=\sum _{k=0}^{n}v_{n(n-k)}(x')\sum _{l=0}^{n-k}B_{(n-k)l}\langle x\rangle _{l} = \sum _{k=0}^{n}\sum _{l=k}^{n}B_{lk}v_{nl}(x')\langle x\rangle _k \end{aligned}$$
(61)

Extracting coefficient of \(\langle x\rangle _{n-k}\) from (61),the value obtained is

$$\begin{aligned} coeff. \quad of \quad \langle x\rangle _{n-k}=\sum _{i=0}^{k}B_{(n-i)(n-k)}v_{n(n-i)}(x') \end{aligned}$$
(62)

Comparing (62) with (22), we get

$$\begin{aligned} B_{(n-k)(n-k)}v_{n(n-k)}(x')=\sum _{l=0}^{k}{n-l \atopwithdelims ()k-l}B_{n(n-l)}\langle x'\rangle _{k-l} - \sum _{i=0}^{k-1}B_{(n-i)(n-k)}v_{n(n-i)}(x') \end{aligned}$$
(63)

putting \(l=k-l'\) in (63), following expression is obtained

$$\begin{aligned} B_{(n-k)(n-k)}v_{n(n-k)}(x')=\sum _{l=0}^{k}{n-k+l \atopwithdelims ()l}B_{n(n-k+l)}\langle x'\rangle _{l} - \sum _{i=0}^{k-1}B_{(n-i)(n-k)}v_{n(n-i)}(x')\nonumber \\ \end{aligned}$$
(64)

Hence, the expression (24) is obtained.

Proof of (27) For evaluating value of \(f_{i}(n,k)\), substitute the value of \(B_{nk}\) from (11) in (24) and compare with (26)

$$\begin{aligned} \sum \limits _{i=0}^{k-1}f_{i}(n,k)\langle x'\rangle _{k-i}= & {} \frac{(\alpha +\beta +n-k)!}{(2n+\alpha +\beta -2k)!}\bigg [\sum \limits _{l=0}^{k} \frac{(\beta +n)!(2n+\alpha +\beta -k+l)!}{(\alpha +\beta +n)!(k-l)!(n+\beta -k+l)!}\langle x'\rangle _{l}\nonumber \\- & {} \,\sum \limits _{m=0}^{k-1}\frac{(\beta +n-m)!(2n+\alpha +\beta -k-m)!}{(\beta +n-k)!(n+\alpha +\beta -m)!}\sum \limits _{j=0}^{m-1}f_{j}(n,m)\langle x'\rangle _{m-j}\bigg ]\nonumber \\ \end{aligned}$$
(65)

Extracting the coefficient of \(\langle x'\rangle _{k-i}\) from (65), we get

$$\begin{aligned} coeff. \; of \; \langle x'\rangle _{k-i}&= \frac{(\alpha +\beta +n-k)!}{(2n+\alpha +\beta -2k)!}\bigg [\frac{(\beta +n)!(2n+\alpha +\beta -i)!}{(\alpha +\beta +n)!(i)!(n+\beta -i)!} \nonumber \\&-\,\sum _{m=k-i}^{k-1}\frac{(\beta +n-m)!(2n+\alpha +\beta -k-m)!}{(\beta +n-k)!(n+\alpha +\beta -m)!}f_{m+i-k}(n,m)\bigg ]\nonumber \\ \end{aligned}$$
(66)

Putting \(m=m'+k-i\) in the last term of (66), we get coefficient of \(\langle x'\rangle _{k-i}\)

$$\begin{aligned} f_{i}(n,k)&= \frac{(\alpha +\beta +n-k)!}{(2n+\alpha +\beta -2k)!}\bigg [\frac{(\beta +n)!(2n+\alpha +\beta -i)!}{(\alpha +\beta +n)!(i)!(n+\beta -i)!}\nonumber \\&-\,\sum _{m'=0}^{i-1}\frac{(\beta +n-m'-k+i)!(2n+\alpha +\beta -2k-m'+i)!}{(\beta +n-k)!(n+\alpha +\beta -m'-k+i)!}f_{m'}(n,m'+k-i)\bigg ]\nonumber \\ \end{aligned}$$
(67)

As can be seen from (67), that \(f_{i}(n,k)\) can be obtained using recursive equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, V.K., Singh, J. & Parthasarathy, H. Algebraic technique for computationally efficient Hahn moment invariants. Multidim Syst Sign Process 29, 1529–1552 (2018). https://doi.org/10.1007/s11045-017-0516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0516-6

Keywords

Navigation