Skip to main content
Log in

High-resolution three-dimensional reconstruction for precession targets based on multivariant back-projection

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

For precession targets, the complex motion and multiple unknown parameters make the three-dimensional (3D) imaging a difficult task. By taking full advantage of the micromotion and signal characteristics of the precession targets, a multivariant complex-valued back-projection method is proposed. This method can achieve the high-resolution 3D imaging and micromotion parameters estimation simultaneously. After the estimation of the precession angle, the 3D coordinates of the scatterers can be obtained and thus the image scaling can be avoided. Experimental results based on simulated data and electromagnetic computation show that the proposed method has an accurate parameter estimation and effective 3D image reconstruction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bai, X., & Bao, Z. (2014). High-resolution 3D imaging of precession cone-shaped targets. IEEE Transactions on Antennas and Propagation, 62(8), 4209–4219.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, X., Xing, M., Zhou, F., & Bao, Z. (2009). High-resolution three-dimensional imaging of spinning space debris. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2352–2362.

    Article  Google Scholar 

  • Gao, H., Xie, L., Wen, S., & Kuang, Y. (2010). Micro-Doppler signature extraction from ballistic target with micro-motions. IEEE Transactions on Aerospace and Electronics System, 46(4), 1969–1982.

    Article  Google Scholar 

  • Li, J., Ling, H., & Chen, V. (2003). An algorithm to detect the presence of 3D target motion from ISAR data. Multidimensional Systems and Signal Processing, 14(1), 223–240.

    Article  MATH  Google Scholar 

  • Liu, L., Mclernon, D., Ghogho, M., Hu, W., & Huang, J. (2012). Ballistic missile detection via micro-Doppler frequency estimation from radar return. Digital Signal Processing, 22(1), 87–95.

    Article  MathSciNet  Google Scholar 

  • Ma, C., Yeo, T. S., Zhang, W., Tan, H. S., & Wang, J. (2008). Three-dimensional ISAR imaging based on antenna array. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 504–515.

    Article  Google Scholar 

  • Martorella, M., Stagliano, D., Salvetti, F., & Battisti, N. (2014). 3D interferometric ISAR imaging of noncooperative targets. IEEE Transactions on Aerospace and Electronics System, 50(4), 3102–3114.

    Article  Google Scholar 

  • Mayhan, J. T., Burrows, M. L., Cuomo, K. M., & Piou, J. E. (2001). High-resolution 3D ‘snapshot’ ISAR imaging and feature extraction. IEEE Transactions on Aerospace and Electronics System, 37(2), 630–642.

    Article  Google Scholar 

  • Thayaparan, T., Abrol, S., & Riseborough, E. (2004). Micro-Doppler feature extraction of experimental helicopter data using wavelet and time-frequency analysis. Presented at the international conference on radar system.

  • Wang, Q., Xing, M., Lu, G., & Bao, Z. (2008). High-resolution three-dimensional radar imaging for rapidly spinning targets. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 22–30.

    Article  Google Scholar 

  • Wang, Y., & Zhao, B. (2015). Inverse synthetic aperture radar imaging of nonuniformly rotating target based on the parameters estimation of multicomponent quadratic frequency-modulated signals. IEEE Sensors Journal, 15(7), 4053–4061.

    Article  Google Scholar 

  • Wei, Y., Zhang, X., Bai, Y., & Tang, L. (2014). A novel range alignment method for ISAR based on linear T/R array model. Multidimensional Systems and Signal Processing, 25(4), 759–773.

    Article  Google Scholar 

  • Xu, L., Feng, D., Pan, X., Liu, Q., & Wang, X. (2015). An improved digital false-target image synthesizer method for countering inverse synthetic aperture radar. IEEE Sensors Journal, 15(10), 5870–5877.

    Article  Google Scholar 

  • Zhao, L., Gao, M., Martorella, M., & Stagliano, D. (2015). Bistatic three-dimensional interferometric ISAR image reconstruction. IEEE Transactions on Aerospace and Electronics System, 51(2), 951–961.

    Article  Google Scholar 

  • Zheng, J., Liu, H., Liao, G., Su, T., Liu, Z., & Liu, Q. (2016). ISAR imaging of targets with complex motions based on a noise-resistant parameter estimation algorithm without nonuniform axis. IEEE Sensors Journal, 16(8), 2509–2518.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (61571459, 61701526, 61372166).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Tong, N., Hu, X. et al. High-resolution three-dimensional reconstruction for precession targets based on multivariant back-projection. Multidim Syst Sign Process 29, 1711–1726 (2018). https://doi.org/10.1007/s11045-017-0524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0524-6

Keywords

Navigation