Skip to main content
Log in

Circular Uncertainty method for range-only localization with imprecise sensor positions

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This study provides an effective new method to solve the range-only localization in the presence of sensor position errors. In practice, the sensors can stay only within a limited region whereas the target can be far from there. To increase the estimation capability, some peripheral measurements with moving sensors can be obtained, which results in the issue of imprecise sensor positions. In these situations, sensor positions also become unknown parameters which need to be jointly estimated together with the target location. Because of the large number of unknown parameters, reaching the global minimum becomes a significant challenge. Our study is dedicated to build a robust localization scheme for these scenarios. We propose a new search strategy, namely Circular Uncertainty which allows the localization system to safely find the global minimum of maximum likelihood cost function in case of imprecise sensor positions. Circular Uncertainty not only makes it possible to reach maximum likelihood estimation, but also significantly simplifies this task. Our solution is based on the observation that when the initial estimation is disturbed with new measurements, the disturbed estimation moves along the Circular Uncertainty which can be viewed as a circular valley along the cost surface. The new method is compared to nonlinear least squares as well as the squared range weighted least-squares algorithm which was previously designed in the literature specifically for localization with imprecise sensor positions. Since the proposed solution obtains maximum likelihood estimation, it attains Cramer Rao lower bound, where other competing methods partly fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bishop, A. N., Fidan, B., Anderson, B. D., Doğançay, K., & Pathirana, P. N. (2010). Optimality analysis of sensor-target localization geometries. Automatica, 46(3), 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Bucker, H. P. (1978). Beamforming a towed line array of unknown shape. The Journal of the Acoustical Society of America, 63(5), 1451–1454.

    Article  Google Scholar 

  • Buehrer, R. M., & Venkatesh, S. (2012). Fundamentals of time-of-arrival-based position location. In R. Zekavat & R. M. Buehrer (Eds.), Handbook of position location: Theory, practice and advances (pp. 175–212). New Jersey: Wiley.

    Google Scholar 

  • Carter, G. C. (1979). Passive ranging errors due to receiving hydrophone position uncertainty. The Journal of the Acoustical Society of America, 65(2), 528–530.

    Article  Google Scholar 

  • Chen, S., & Ho, K. C. (2014). Reaching asymptotic efficient performance for squared processing of range and range difference localizations in the presence of sensor position errors. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1419–1423).

  • Chen, J. C., Hudson, R. E., & Yao, K. (2002). Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field. IEEE Transactions on Signal Processing, 50(8), 1843–1854.

    Article  Google Scholar 

  • Hinich, M. J., & Rule, W. (1975). Bearing estimation using a large towed array. The Journal of the Acoustical Society of America, 58(5), 1023–1029.

    Article  Google Scholar 

  • Ho, K. C., Lu, X., & Kovavisaruch, L. O. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696.

    Article  MathSciNet  MATH  Google Scholar 

  • Ho, K. C., & Yang, L. (2008). On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Transactions on Signal Processing, 56(12), 5758–5772.

    Article  MathSciNet  MATH  Google Scholar 

  • Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94.

    Article  Google Scholar 

  • Li, J., Ho, K. C., Guo, F., & Jiang, W. (2014, June). Improving the projection method for TOA source localization in the presence of sensor position errors. In IEEE 8th sensor array and multichannel signal processing workshop (SAM) (pp. 45–48).

  • Li, J., Pang, H., Guo, F., Yang, L., & Jiang, W. (2015). Localization of multiple disjoint sources with prior knowledge on source locations in the presence of sensor location errors. Digital Signal Processing, 40, 181–197.

    Article  MathSciNet  Google Scholar 

  • Li, S., & Ho, K. C. (2016). Accurate and effective localization of an object in large equal radius scenario. IEEE Transactions on Wireless Communications, 15(12), 8273–8285.

    Article  Google Scholar 

  • Lui, K. W. K., Ma, W. K., So, H. C., & Chan, F. K. W. (2009). Semi-definite programming algorithms for sensor network node localization with uncertainties in anchor positions and/or propagation speed. IEEE Transactions on Signal Processing, 57(2), 752–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, Z., & Ho, K. C. (2011, May). TOA localization in the presence of random sensor position errors. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2468–2471).

  • MATLAB. (2014). The MathWorks, Inc., Natick, MA, USA. License Number: 991708.

  • Nehorai, A., & Paldi, E. (1994). Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 42(2), 376–398.

    Article  Google Scholar 

  • Olson, E., Leonard, J., & Teller, S. (2006). Robust range-only beacon localization. IEEE Journal of Oceanic Engineering, 31(4), 949–958.

    Article  Google Scholar 

  • Qu, X., & Xie, L. (2012, July). Source localization by TDOA with random sensor position errors-part I: Static sensors. In 15th international conference on information fusion (pp. 48–53).

  • Qu, X., & Xie, L. (2012, July). Source localization by TDOA with random sensor position errors-part II: Mobile sensors. In 15th international conference on information fusion (pp. 54–59).

  • Rockah, Y., & Schultheiss, P. (1987). Array shape calibration using sources in unknown locations-Part I: Far-field sources. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3), 286–299.

    Article  Google Scholar 

  • Schultheiss, P. M., & Ianniello, J. P. (1980). Optimum range and bearing estimation with randomly perturbed arrays. The Journal of the Acoustical Society of America, 68(1), 167–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Srirangarajan, S., Tewfik, A. H., & Luo, Z. Q. (2007, April). Distributed sensor network localization with inaccurate anchor positions and noisy distance information. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (Vol. 3, pp. 521–524).

  • Zhang, X., He, Z., Liao, B., Zhang, X., & Xie, J. (2017). DOA and phase error estimation using one calibrated sensor in ULA. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-017-0484-x.

Download references

Acknowledgements

This study is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) with the Project Number 115E185 and by Anadolu University with the Project Number 1606F559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seçkin Uluskan.

Appendix

Appendix

In this section, the MLE cost function of range-only localization in the presence of uncertainties of sensor positions is explained in detail. The multivariate likelihood function of all parameters in \({\vec {q}}\) based on the distance-to-target and sensor position measurements can be written as the following,

$$\begin{aligned} p\left( {\vec {D},\vec {X},~\vec {Y};\vec {q}} \right)= & {} \frac{1}{{\sqrt{\left( {2\pi } \right) ^{N} ~~\left| {C_{D} } \right| } ~}}e^{{ - ~\left( {\vec {D} - ~\vec {\mu }_{d} } \right) ~~C_{D} ^{{ - 1}} \left( {\vec {D} - ~\vec {\mu }_{d} } \right) ^{T} ~}} ~~\nonumber \\&\cdot \frac{1}{{\sqrt{\left( {2\pi } \right) ^{N} ~~\left| {C_{X} } \right| } ~}}e^{{ - ~\left( {\vec {X} - ~\vec {\mu }_{x} } \right) ~~C_{X} ^{{ - 1}} ~\left( {\vec {X} - ~\vec {\mu }_{x} } \right) ^{T} }} \nonumber \\&\cdot ~~\frac{1}{{\sqrt{\left( {2\pi } \right) ^{N} ~~\left| {C_{Y} } \right| } ~}}~~e^{{-~\left( {\vec {Y} - ~\vec {\mu }_{y} } \right) ~~C_{Y} ^{{ - 1}} ~\left( {\vec {Y} - ~\vec {\mu }_{y} } \right) ^{T} }} \end{aligned}$$
(51)

where \(C_D \), \(C_X \) and \(C_Y \) are the covariance matrices of the distance-to-target measurements as well as the measurements of x and y position of the sensors respectively. \({\vec {\mu }}_d\) is the vector of the distance-to-target values as a vector valued function of the parameters in \({\vec {q}}\),

$$\begin{aligned} \vec {\mu }_{d} = \left[ {\begin{array}{c} {\sqrt{\left( {x - x_{1} } \right) ^{2} + ~\left( {y - y_{1} } \right) ^{2} } }\\ \vdots \\ {\sqrt{\left( {x - x_{i} } \right) ^{2} + ~\left( {y - y_{i} } \right) ^{2} } } \\ \vdots \\ {\sqrt{\left( {x - x_{N} } \right) ^{2} + ~\left( {y - y_{N} } \right) ^{2} } } \\ \end{array} } \right] ^{T} \end{aligned}$$
(52)

Furthermore, \({\vec {\mu }}_x\) and \({\vec {\mu }}_y\) are the vectors of the x positions and the y positions of the sensors respectively based on the parameters in \({\vec {q}}\). Because of the measurement model that is defined in (2), (3) and (4), all measurements are independent, so the covariance matrices are diagonal ones as the followings,

$$\begin{aligned} C_D= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {\sigma _D ^{2}}&{} &{} &{}\\ &{} {\sigma _D ^{2}}&{} &{}\\ &{} &{} \ddots &{}\\ &{}&{}&{} {\sigma _D ^{2}} \\ \end{array} }} \right] _{NxN} \end{aligned}$$
(53)
$$\begin{aligned} C_X= & {} C_Y =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {\sigma _S ^{2}}&{} &{} &{}\\ &{} {\sigma _S ^{2}}&{} &{}\\ &{} &{} \ddots &{}\\ &{}&{}&{} {\sigma _S ^{2}} \\ \end{array} }} \right] _{NxN} \end{aligned}$$
(54)

Therefore, (51) can be rewritten as the following expression,

$$\begin{aligned} p\left( {\vec {D},\vec {X},~\vec {Y};\vec {q}} \right)= & {} {} \left( \frac{1}{{\sqrt{{2\pi ~\sigma _{D} ^{2} ~}}}}\right) ^{N}e^{{ - ~\frac{1}{{\left( {\sigma _{D} } \right) ^{2} }}\mathop \sum \nolimits _{{i = 1}}^{N} \left( {\sqrt{\left( {x - x_{i} } \right) ^{2} + ~\left( {y - y_{i} } \right) ^{2} } - ~D_{i} } \right) ^{2} ~}} ~\nonumber \\&\cdot \left( \frac{1}{\sqrt{{2\pi \sigma _s ^{2} } }}\right) ^{N}e^{- \frac{1}{\left( {\sigma _S } \right) ^{2}} \mathop \sum \nolimits _{i=1}^N \left( {X_i -x_i } \right) ^{2}} . \left( \frac{1}{\sqrt{{2\pi \sigma _s ^{2} }}}\right) ^{N} e^{ - \frac{1}{\left( {\sigma _S } \right) ^{2}} \mathop \sum \nolimits _{i=1}^N \left( {Y_i -y_i } \right) ^{2}}\nonumber \\ \end{aligned}$$
(55)

Finally, the log-likelihood of the all the parameters in \({\vec {q}}\) can be written as the following,

$$\begin{aligned} \ln p\left( {\vec {D},\vec {X},~\vec {Y};\vec {q}} \right)= & {} - ~\frac{1}{{\left( {\sigma _{D} } \right) ^{2} }}\mathop \sum \limits _{{i = 1}}^{N} \left( {\sqrt{\left( {x - x_{i} } \right) ^{2} + ~\left( {y - y_{i} } \right) ^{2} } - ~D_{i} } \right) ^{2}\nonumber \\&- ~\frac{1}{{\left( {\sigma _{S} } \right) ^{2} }}~\mathop \sum \limits _{{i = 1}}^{N} \left[ {\left( {X_{i} - x_{i} } \right) ^{2} + ~\left( {Y_{i} - y_{i} } \right) ^{2} } \right] + K \end{aligned}$$
(56)

where is K is a constant such that,

$$\begin{aligned} K=- N \ln \left( {\sqrt{2 \pi \left( {\sigma _D } \right) ^{2}}} \right) -2 N \ln \left( {\sqrt{2 \pi \left( {\sigma _S } \right) ^{2}}} \right) \end{aligned}$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uluskan, S., Filik, T. & Gerek, Ö.N. Circular Uncertainty method for range-only localization with imprecise sensor positions. Multidim Syst Sign Process 29, 1757–1780 (2018). https://doi.org/10.1007/s11045-017-0527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0527-3

Keywords

Navigation