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Received: date / Accepted: date
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1 Introduction

Non-linear systems’ are ubiquitously present among engineering applications, partic-
ularly in those involving electronics (e.g., Crespo-Cadenas et al (2014); Soumitro Baner-
jee (2001)) and optics (e.g., Agrawal (2007)). For this reason they receive great at-
tention from the signal processing community. Still, the number of open questions
related to them is overwhelming.

Authors have proposed multiple solutions for the evaluation and characterization
of these systems through-out the years. From the Volterra formulation of the nonlinear
convolution integral and Wiener’s analysis Schetzen (1980); Rugh (1981); Parente
(1970); Casey and Walnut (1994); van Hemmen et al (2000); Orcioni et al (2005),
to the use of pseudorandom sequences for non-parametric identification Bose and
Mitra (1992); Nowak and Van Veen (1994); improvements have continuously been
reported. All of these focus on the ability of Volterra and Wiener series to represent
nonlinear systems matching definitions in Boyd and Chua (1985). To these we will
refer as Volterra-Wiener systems.

Nowadays, reliable models may be computed that remarkably resemble the sys-
tem under test. However, regardless of the selected technique Schetzen (1980); Lin
(2006); Jing (2012), identification still requires early estimates of at least two param-
eters: the nonlinearity (N) and the duration of the system memory (Θ ). In Schetzen
(1980) the author already discussed the connection between these two and the du-
ration of test sequences needed for identification. Considering a discretized system
(i.e., M = dΘ/Fse with sampling frequency Fs), the total number of samples required
for the shortest possible input sequence is given by ∑

N
n=1
(M+n

n

)
. When addressing

nonparametric identification this number varies; but anyhow, in all cases this must be
increased. To avoid both time-alliasing, caused by underestimating M, and inter-ker-
nel aliasing introducing artificial intermodulation products, due to an underestimated
N. Restimation of N and M has been addressed, but still demands the reiterated com-
plete identification of the system starting from an initial guess, Billings (1980).

In this work we focus on nonlinear systems amenable to the multidimensional,
Volterra representation Sharma (2010), covering most static, physical processes Sand-
berg (1990). A number of different structures match this definition, including those
combining memory and continuous nonlinearity blocks —e.g., Hammerstein and
Wiener systems or sandwich structures. Readers may refer to Cheng et al (2017)
for an exhaustive review on these, including references to applications in electrical
and mechanical engineering. Specifically on Hammerstein systems with a weak non-
linearity, in Farina (2000) the author reported that outputs to an exponential sweep
excitation are highly informative of the system structure itself, and a simple iden-
tification procedure was proposed. Authors in Novák et al (2010) and Rébillat et al
(2011) extended this work and suggested that the entire identification procedure could
be covered by such analysis on an extended definition of Hammerstein systems.

Here we extend previous contributions on these (generalized) Hammerstein sys-
tems, and prove that for any system admitting a multidimensional, Volterra series
expansion, one may obtain rough, but reliable, estimates on the nonlinearity order
and system memory length, based on its output to an exponential sweep excitation.
Through the analysis of these signals, one may identify individual, order-dependent,
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frequency-bounded packets of information in the form of chirplets. These chirplets
may only be revealed through the instantaneous analysis of input and output, provide
reliable insights on the system under test and are being partially parameterized by the
input excitation.

To extract system-specific pieces of information we first need to evaluate the out-
put of a Volterra-Wiener system to an exponential sweep. In Sect. 2 we derive the
instantaneous form of the system output under such excitation, and include time and
frequency analyses. From these we define a series of input- and system-dependent
parameters that support the proposed estimation procedures. System output is post-
processed in Sect. 3 attending to the input excitation and focusing on instantaneus
time and frequency content. We derive closed forms for all signals involved, including
the post-processed output. By reformulating the Volterra integral in the latter expres-
sion, in Sect. 4 we proof the existence and reveal the nature of the aforementioned,
time-shifted chirplets Mann and Haykin (1995), which in essence are similar to func-
tionals in the work by Schetzen (1985). We prove that the number of these relates
to the order of the nonlinearity, and their duration to the memory length. In Sect. 5
we comment on the input excitation parameters’ selection and the estimation algo-
rithms. One must adequately choose these for the procedure to deliver meaningful
results, and be able to conveniently rearrange them when failing. Tests running on
the proposed procedure are included in Sect. 6 to assess performance, by addressing
different scenarios. Finally, we describe our results in Sect. 7 and discuss them in
Sect. 8 including our final remarks on memory- and order-fading systems.

2 System output analysis for exponential sweep excitations

We start with an exponential sweep of duration T , covering the frequency range f0 ≤
f ≤ f1, which can be generated using a signal generator or a general purpose DAC.
This is fully mathematically described by the following equations:

x(t) = cos(φ(t)), φ(t) = 2π f0
ln(k) (k

t−t0 −1)+φ0 (1)

where t0 and φ0 are the initial values for time and phase, respectively; and k is the rate
of exponential increase, k = ( f1/ f0)

1/T , instantaneously producing a single mono-
component at frequency f (t) = f0 · kt−t0 .

The output that is to be expected from a causal system amenable to the Volterra
model to some excitation x(t) attending to its definition may be written as

y(t) = h0 +
N

∑
n=1

+∞∫
0

hn (θ1, . . . ,θn)
n

∏
i=1

x(t−θi) dθ̄ (2)

where hn (θ1, . . . ,θn) = hn
(
θ̄
)

is the n-th Volterra kernel defined as n-dimensional
tensor, and {θi} are all time dimensions considered, which we group into a single
vector θ̄ = (θ1, . . . ,θn) for easy of notation.
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In deriving an specific form for y(t) when x(t) is an exponential sweep, let us
first focus on the product of time-shifted versions of the input, to the right of the in-
tegral definition. Based on Abramowitz and Stegun (1964), for an exponential sweep
excitation this may be rewritten as follows

n

∏
i=1

x(t−θi) =
1

2n−1 ∑
ε̄∈Sn

cos
(
φε̄(t, θ̄)

)
(3)

Here ε̄ ∈ Sn is a vector formed from all possible binary multicombinations of
length n, the elements of which are: ε1 = 1, εi = ±1, 1 < i ≤ n; and phase function
φε̄(t, θ̄) are given by

φε̄(t, θ̄) =
2π f0

ln(k)
(
ζε̄ · kt+τε̄ −1

)
+φ0,ε̄ (4)

including an initial phase term of the form

φ0,ε̄ =
[
φ0− 2π f0

ln(k)

] n

∑
i=2

εi +φ0 (5)

One may rewrite phase functions in (4) by means of the exponential sweep fun-
damental phase property derived in Rébillat et al (2011)

φε̄(t, θ̄) = ζε̄ ·φ(t + τ̂ε̄)+ φ̂0,ε̄ (6)

where we introduce (i) time-shifts

τε̄ = τ̂ε̄ − t0 = logk

∣∣∣ n

∑
i=1

εik−θi
∣∣∣− t0 (7)

which may be written attending to

Nε̄(θ̄) = ∑
n
i=1 εik−θi

τε̄ = logk

∣∣∣Nε̄(θ̄)
∣∣∣− t0

(8)

and (ii) the initial, constant phase

φ̂0,ε̄ =

[
φ0−

2π f0

ln(k)

]
·

(
n

∑
i=1

εi−ζε̄

)
(9)

with scalar ζε̄(N ) = 1 if Nε̄(θ̄)≥ 0 and −1 otherwise.
Hence, applying this into (2), it appears that the system output is itself a linear

combination of multiple, phase-transformed, exponential sweeps. The argument of
the cosine function has been rewritten here attending to the latter’s even symmetry
property and (6)

y(t) = h0 +
N

∑
n=1

+∞∫
0

hn
(
θ̄
)

2n−1 ∑
ε̄∈Sn

cos
(
φ(t + τ̂ε̄)+ζε̄ · φ̂0,ε̄

)
dθ̄ (10)
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This daunting formulation simply addresses the general form of the system out-
put, which otherwise would naturally be produced by recording the system’s output
to some exponential sweep excitation. However, it is simply too complex to extract
information directly from it. To do so one must analyse the instantaneous information
embedded in model parameters: ε̄ , ζε̄ , φ̂0,ε̄ and τ̂ε̄ ; and elaborate it to gain insights
into energy distribution on the system output, both along time and frequency domains.

2.1 Interpretation of model parameters: vector ε̄

In (3) we introduced vector ε̄ ∈Sn with elements ε1 = 1, εi = ±1 for 1 < i ≤ n, to
reformulate the product of time-shifted inputs in the Volterra definition (2), resulting
in a summation of (i) phase- (ζε̄ · φ̂0,ε̄ ) as well as (ii) time- (τ̂ε̄ ) shifted tones. Due
to these and sweeps’ intrinsic time-frequency dependence, these two automatically
result in (iii) ε̄-dependent frequency variations.

ε̄-dependent monocomponents appearing in (10) play a similar role as sinusoidal
monocomponents would do for a linear system. However, in this case each order-
dependent impulse response —i.e., the Volterra kernels— impacts on different com-
ponents. Vectors ε̄ characterize each multi-dimensional, cross-product delivered by
the system nonlinearity. And by covering set Sn we ensure that all multicombina-
tions up to nonlinearity order n are addressed. Properties of ε̄ ∈Sn directly impact
on the forespoken monocomponents and must be worked out to later discuss their
individual phase, time and frequency contributions.

First, the cardinality of Sn is 2n−1; but set Sn may be partitioned attending to
vectors’ sums. Let us define m = ∑

n
i=1 εi with the following properties

1. there are only n possible values for m, which are {n,n−2,n−4, . . . ,2−n};
2. m displays the same parity as n.

From this we define subsets

Sn〈m〉 =
{

ε̄ ∈Sn

∣∣∣ n

∑
i=1

εi = m
}

(11)

Trivially, one may prove that for some given n:

1. Sn〈n〉 contains only one vector that matches an all-ones sequence;
2. sets {Sn〈m〉} form a complete partition of Sn:

∪n
m=1Sn〈m〉 = Sn and Sn〈m〉∩Sn〈r〉 = /0, with r 6= n

3. the cardinality of the k-th subset, associated to the k-th value of m, is
(n−1

k−1

)
;

4. for some n′> n, same parity as n, cardinality of Sn〈m〉 is lesser than that of Sn′〈m〉.

Second, for any ε̄ ∈ Sn〈m〉, as long as k > 1 (this is, f1 > f0), the following
inequalities hold for θ̄ ∈ Rn

Nε̄(θ̄) = ∑
n
i=1 εik−θi ≤ m (12)
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(
1−

n

∑
i=2

kθ1−θi

)
≤ Nε̄(θ̄)

k−θ1
≤

(
1+

n

∑
i=2

kθ1−θi

)
(13)

Here we assume, without loss of generality, that time dimension θ1 ∈ [0,Θ ] dis-
plays the largest memory, and take it as a reference. Hereafter, the memory-length of
the system, Θ , is assimilated to the longest duration of a Volterra kernel hn(θ̄) along
a single time dimension, θ1. Thus, we may restrict our analysis to ranges 0≤ θi ≤Θ

for all 1≤ i≤ n, assuming that the Volterra kernel outside this compact ball has no
effective response. Further discussion on Θ is included in Sect. 8, accompanying the
proposed system memory estimation.

Attending to (13), rather than considering each individual time dimension, we
may evaluate differences between these and the reference one. In doing so, we define
∆̄ = (0,∆2,∆3, . . . ,∆n) with ∆i = θ1−θi, and introduce

Rε̄(∆̄) =
n

∑
i=2

εik∆i (14)

Note that (θ1, ∆̄) formulation has direct implications on the integration of the
Volterra kernels in (10). For instance, integration along vector ∆̄ = 0n (all-zeros) rep-
resents integration along the n-th Volterra kernel’s diagonal. All other dimensions for
integration in (10) may also be encoded using (θ1, ∆̄), satisfying constraint |∆i|<Θ .
From these we derive the following inequalities regarding Rε̄(∆̄).(

m+k−Θ −m−kΘ

)
≤Rε̄

(
∆̄
)
≤
(

m+kΘ −m−k−Θ

)
(15)

where m± are respectively the number of ±1 in vector ε̄ , so m = m+−m− and n =
m++m−. Hence,

(mR++nR−)/2≤Rε̄

(
∆̄
)
≤ (mR+−nR−)/2 R± = k−Θ ± k+Θ (16)

When computed on different vectors we observe relevant trends. For ε̄1, ε̄2 ∈Sn,
one of the following conditions must hold:

1. if ε̄1 = ε̄2, then:

Rε̄1 −Rε̄2 = 0 (17a)

2. if ε̄1 6= ε̄2 but ε̄1, ε̄2 ∈Sn〈m〉, then:

|Rε̄1 −Rε̄2 | ≤ nR− (17b)

3. if ε̄1 ∈Sn〈m〉, ε̄2 ∈Sn〈m−p〉 with p > 0, then:

[Rε̄1 −Rε̄2 ]≥ pR+/2−nR− (17c)
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Thus, attending to (17b) values of Rε̄ for vectors with the same m cluster un-
evenly around some value. And based on (17c), for a given order n and any two
consecutive subsets (p = 2), there may exist a gap in the values of Rε̄ , which sepa-
rates the two clusters. Furthermore, when comparing two consecutive orders, n and
n+1, values for m may differ by p = 1; and gaps among clusters may still exist.

These results are better explained by looking at the probability distribution of the
values for Rε̄ . Figure 1a displays histograms corresponding to these for nonlinearity
orders 2 to 6, some simulated, Volterra-Wiener system and specific values of the input
sweep parameters. Vectors ε̄ are deterministic and {∆i} assumed to be uniformly and
independently distributed along time dimensions {θi}, producing in Figure 1a the
expected clusters with their respective centres of gravity for Rε̄ clusters locate at

R̄(m) = (m−1) · r̄ (18)

with r̄ = (R+−2)/(Θ ln(k))2. This does not directly depend on order, n, but on mem-
ory length Θ and the excitation parameters through k. Differently, their variances
(clusters’ deviations), given by

Var [Rε̄ ] = r̄2 ·

[
(n−1)+2

n−1

∑
i=2

n

∑
j=i+1

εiε j

]
(19)

are order- and ε̄-dependent, as one may notice on Figure 1a. This reinforces the same
idea as (17b) that gaps in Rε̄ (low probability regions on the histograms) are order-
dependent. Probability distributions in Figure 1a become gaussian-like as order in-
creases, as suggested by the central-limit theorem; while spreading in the form estab-
lished by (19).

Clusters are slightly asymmetrical towards the larger values of |∆i| and the relative
maxima on the histogram are proportional to the cardinality of Sn〈m〉. Gaps appear
along every histogram depicted in Figure 1a, for the selected values of the system
and excitation parameters. However, while comparing consecutive orders through the
aggregated distribution on the back plane, it appears that for n≥ 6 and |m| ≥ 5 values
of Rε̄(∆̄) do overlap —see the very close, outer humps. In this case clusters, are just
slightly overlapped. One could possibly adapt the excitation parameters to avoid this.
For instance by increasing T , rate k will change, at the expense of larger excitations
and realizing that for some larger m this exact situation may reproduce.

Bearing this in mind, we now address the monocomponents in (10). In particular,
considering (i) phase shifts, as well as (ii) time (iii) instantaneous frequency content.

2.2 Phase shifts: φ̂0,ε̄

Considering our previous discussion on ε̄ and the expression for phases φ̂0,ε̄ in (9),
the interpretation of the latter is straightforward: these are order-dependent, initial
phase values depending on ε̄ . One may reformulate these in terms of m, noticing that
only two different values are allowed for a given m; and considering that the sign of
Nε̄(θ̄) is the same as the sign of 1+Rε̄(∆̄).

ζε̄ · φ̂0,ε̄ =

[
φ0−

2π f0

ln(k)

]
· (ζε̄ m−1) (20)
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Fig. 1 Histograms for different nonlinearity orders. The aggregated histogram is displayed on the back
plane. The excitation parameters used were: f0 = 200Hz, f1 = 20kHz and T = 1500ms; and the system
parameters: Θ = 50ms, covering nonlinearity orders n 2 to 6. Histograms were computed assuming i.i.d.
dimensions {∆i} resulting from uniformly distributed {θi}. In (a), histograms on Rε̄ (∆̄), all are comb-like
functions including n peaks that actually group values for vectors from the same subset Sn〈m〉. In (b),
histograms on τ̂ε̄ +θ1, we get bn/2c+1, unevenly-distributed peaks, grouping vectors from subsets Sn〈m〉
and Sn〈−m〉. Also notice the wide, low-probability hump towards negative values of τ̂ε̄ +θ1.

with ζε̄ = 1 if Rε̄(∆̄)≥ 1 and −1 otherwise. Only when φ0 equals 2π f0/ ln(k) order
dependence disappears and we have no phase shift.

2.3 Time analysis: τ̂ε̄(θ̄) shifts

Identified times shifts along the individual monocomponents in (10) also depend on
ε̄ . One may reformulate these based on (7) and (14) as

τ̂ε̄(θ̄) = logk |1+Rε̄(∆̄)|−θ1 (21)

According to (17b)-(17c) and histograms in Figure 1a, we know that the values
for Rε̄(∆̄) tend to cluster. This result reappears on the distribution of τ̂ε̄(θ̄), which is
better understood considering τ̂ε̄(θ̄)+ θ1. Histograms on these are depicted in Fig-
ure 1b. Peaks are still present as in Figure 1a, but in a different number and distri-
bution. Their locations flow logarithmically, and their number is reduced due to the
absolute-value function down to bn/2c+1. In other words, we get bn/2c+1 groups,
which combine clusters formed from vectors ε̄ in subsets Sn〈m〉 and Sn〈−m〉.

Gaps between consecutive clusters may still exist, depending of the actual values
of the system and excitation parameters. Attending to (15) and the monotonous, log-
arithmic transformation in (21), for ε̄1 ∈ Sn〈m〉, ε̄2 ∈ Sn〈m−p〉 with p > 0, distance
between consecutive clusters is

Dn,m(p) = logk

∣∣∣∣∣ mR++nR−
(m− p)R+−nR−

∣∣∣∣∣ (22)

Thus, one may arrange the excitations’ parameters to produce dead regions (gaps)
among the values of τ̂ε̄ + θ1, with some specific width (D) and for some order (m).
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Parameter k could potentially take any positive value by adequately selecting the
excitation parameters: f0, f1 and T . In particular, assuming that we are interested in a
limited frequency band, by monotonically increasing T , Dn,m(p) increases and dead
zones become wider.

Additionally, attending to (22), one may proof that

∀p Dn.m(p)≥ Dn′,m(1)
∣∣
n′>n (23)

implying that consecutive (p = 1) dead zones’ widths monotonically decrease, and
their minimum is given by the separations associated to the highest order, ultimately
the nonlinearity order it-self. By increasing T one may then produce the desired gaps
up to any nonlinearity order, and observe the m-dependent clusters.

Finally, the fact that τ̂ε̄ incorporates additively the reference time dimension im-
plies that while computing the θ1 time-integral in (10), some form of linear phase shift
is produced. This very particular effect is specific of exponential sweeps and is only
revealed while addressing the instantaneous time response of underlying Volterra-
Wiener systems.

Time shifts are particularly easy to observe on purely diagonal Volterra kernels,
by following the analysis in Rébillat et al (2011). This is, when ∆̄ = 0̄n, causing
Var [Rε̄ ] = 0. As an example, considering the simplest, n-order, memory-less system
of this kind, y(t) = xn(t), then

y(t) = cosn
(

2π f0
ln(k) (k

t−t0 −1)+φ0

)
=

n

∑
m=1

cn,m · cos
(

m ·
(

2π f0
ln(k) (k

t−t0 −1)+φ0

)) (24)

where cn,m = 1
2n−1 ∑

n
m=1

(n−1
m−1

)
, which coincide with the Chebyshev polinomials’ co-

efficients as derived in Rébillat et al (2011). From this

m ·φ(t) = 2π f0
ln(k)m(k−t0 −1)+mφ0

= 2π f0
ln(k) (k

t−t0+logk m−1)+φ0,m, t0 ≤ t ≤ (to +T )
(25)

with τ̂m = logk m and φ0,m = mφ0− (m−1). Here, through the instantaneous analysis
of the signals, one may realize that systematic deviations are to be found on the phase
of the individual contributors to the system output. These we note throughout this
contribution in the convenient form of time shifts τ̂ε̄ .

2.4 Instantaneous frequency analysis

Focusing on the standard definition of the instantaneous frequency for sinusoids, one
may evaluate from (10) the excited frequencies on the individual contributors. These
equate the normalized first-time derivative of the phase, as opposed to Fouriers’ fre-
quency definition. Starting from φ(t), we already obtained

f (t) =
1

2π

∣∣∣∂ φε̄

∂ t
(t)
∣∣∣= f0 · kt−t0 t0 ≤ t ≤ t0 +T (26)
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and for φε̄(t, θ̄)

fε̄(t) =
1

2π

∣∣∣∂ φε̄

∂ t
(t, θ̄)

∣∣∣= f0 · kt−t0+τ̂ε̄ t0 ≤ t ≤ t0 +T (27)

We verify that the individual monocomponents are exponential sweeps (i.e., narrow-
band signals at any specific time stamp), only affected by time shifts τ̂ε̄(θ̄). Addition-
ally, baring in mind (7) one realizes that this is merely equal to

fε̄(t) =
∣∣∣Nε̄

∣∣∣ · f0 · kt−t0 t0 ≤ t ≤ t0 +T (28)

matching the exact frequency ranges derived in Lang and Billings (1996) for Volterra-
Wiener systems’ responses.

Results derived in Section 2 evidence the connection between the outcoming sig-
nal (y(t)) and both the exciting sweep (x(t)) and the system under test (SUT). Here-
after, we like to disentangle these expressions to focus just on the system; and only to
derive informed estimators for the memory-length and nonlinearity order parameters.

3 Output postprocessing

The expected system output to an exponential sweep given in (10) is ultimately an
integral form in N-dimensional time, θ̄ = (θ1,θ2, . . . ,θN), involving functions τ̂ε̄(θ̄)

and ζε̄ φ̂0,ε̄ . Through the post-processing of the system output one could possibly
extract relevant information on the SUT. We propose the following procedure based
on instantaneous, time and frequency analysis, and involving an adapted filter. The
latter is derived hereafter.

SUT ν(t)∗ x(−t)
x(t) y(t) e(t)

Fig. 2 Block diagram for the evaluation procedure: x(t) is the sweep used to excite the system under test
(SUT), and ν(t) is the impulse response used to decolorize the system output.

Figure 2 describes the structure of our test. The system output, y(t), is here post-
processed based on a linear filter that conveys the effect of the time-reversed input,
x(−t), and an inverse filter, ν(t). The latter only depends on the system input and its
role is to enhance energy compaction along time and whiten frequency response. For
the rest of this section, we analyze the two of these hereafter, to derive the instanta-
neous form of e(t). From this we will extract the desired system parameters and their
estimators. Readers may direct to Section 5 for the final form of the postprocessed
output and the proposed estimation methods.
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Table 1 Instantaneous frequencies estimated for the individual phase contributors in αε̄−(t, θ̄).

Time interval Phase functions Inst. freq. ( fi,ε̄ ) fi,ε̄ (t =−T ) fi,ε̄ (t =−τ̂ε̄ ) fi,ε̄ (t = 0) fi,ε̄ (t =+T )

−T ≤ t ≤ 0 φ1,ε̄ = αε̄−(t) · kT+t f1,ε̄ = f1 · kt+τ̂ε̄ Nε̄ (θ̄) · f0 f1 Nε̄ (θ̄) · f1 —
φ2,ε̄ = αε̄−(t) f2,ε̄ = f0 · k−t f1 Nε̄ (θ̄) · f0 f0 —

0≤ t ≤+T φ1,ε̄ = αε̄−(t) · kT f1,ε̄ = f1 · k−t — — f1 f0
φ2,ε̄ = αε̄−(t) · kt f2,ε̄ = f0 · kt+τ̂ε̄ — — Nε̄ (θ̄) · f0 Nε̄ (θ̄) · f1

3.1 Post-processed output formulation

Focusing on the effect of the time-reversed sweep, we evaluate

ẽ(t) = y(t)∗ x(−t) = h0 +
N

∑
n=1

∫ +∞

0

hn
(
θ̄
)

2n−1 ∑
ε̄∈Sn

uε̄(t, θ̄) dθ̄ (29)

where uε̄(t, θ̄) are windowed functions given by:

uε̄(t, θ̄) =w(t) ·

output contributor︷ ︸︸ ︷
cos
(
φ(t + τ̂ε̄)+ζε̄ · φ̂0,ε̄

)
∗

time-reversed input︷ ︸︸ ︷
cos
(
φ(−t)

)
=

=
+∞∫
−∞

w(τ− t) · cos(φ(τ− t)) ·
n
∏
i=1

w(τ−θi) ·

· [cε̄ cos(φ (τ + τ̂ε̄))− sε̄ sin(φ (τ + τ̂ε̄))] dτ

(30)

Here we introduce τ-independent functions cε̄ = cos(ζε̄ φ̂0,ε̄), sε̄ = sin(ζε̄ φ̂0,ε̄),
and auxiliary rectangular window, w(t), being the boxcar function with limits match-
ing those of the input excitation t0 ≤ t ≤ T + t0 and satisfying wi(t) = w(t), ∀i > 0.

Attending to all this, the integral in (30) may be formulated as

uε̄(t, θ̄) · [2ln(k)] =



cε̄ (T − τε̄) · ln(k) if t =−τε̄(
cε̄

[
Ci
(
αε̄−kT+t

)
−Ci(αε̄−)+

+Ci
(
αε̄+kT+t

)
−Ci(αε̄+)]+

+sε̄

[
Si
(
αε̄−kT+t

)
−Si(αε̄−)+

+Si
(
αε̄+kT+t

)
−Si(αε̄+)]

)
if
−T < t<0

(
cε̄

[
Ci
(
αε̄−kT

)
− Ci(αε̄−kt)+

+Ci
(
αε̄+kT

)
−Ci(αε̄+kt)]+

+sε̄

[
Si
(
αε̄−kT

)
− Si(αε̄−kt)+

+Si
(
αε̄+kT

)
−Si(αε̄+kt)]

)
if
0≤ t < T

0 otherwise

(31)

with ε̄-dependent, phase functions αε̄±(t, θ̄) and βε̄(t, θ̄ = (t + τ̂ε̄)/2,

αε̄±(t, θ̄) = 2π f0k+βε̄−t
(
k+βε̄ ± k−βε̄

)
/ ln(k).

Operating on uε̄(t, θ̄) one may rewrite these to separately address αε̄±(t, θ̄) as in

uε̄(t, θ̄) = ũε̄(t, θ̄)+ρε̄(t, θ̄).
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Terms in αε̄+(t) are grouped into ρε̄(t, θ̄), and those in αε̄−(t) go to ũε̄(t, θ̄). The
rationale for this lays with the properties of these functions which we include in
Appendix A (see also Abramowitz and Stegun (1964), p. 231). Due to the negligible
effect of ρε̄(t, θ̄), one may indistinctively refer to uε̄(t, θ̄) or ũε̄(t, θ̄).

Functions {ũε̄(t, θ̄)} are impulsive chirplets, oscillating at a varying frequency
along −T ≤ t ≤ T , and may be assimilated to amplitude and phase modulated sinu-
soids. Differences among them are due to (i) time-shifts τ̂ε̄ (see Sect. 2.3), which also
affect (ii) instantaneous frequency content (see Sect. 2.4); while they do not display
spectral zeros within the frequency range of interest. Table 1 includes representative
values of their instantaneous frequency content after the τ-integral has been evalu-
ated. Dependence on Nε̄(θ̄) is then evident. Moreover, their envelopes display an
impulsive shape with maxima at τ̂ε̄ causing them to cluster following rules in (17).

Attending to this last effect, let us now define:

u〈m〉(t, θ̄) =
{

uε̄(t, θ̄) | ε̄ ∈Sn〈m〉
}

[m-th cluster] (32)

um(t, θ̄) =
{

uε̄(t, θ̄)|ε̄ = 1̄m
}
= w(t) · cos(mφ(t))∗ cos(φ(−t)) (33)

τ̂m =
{

τ̂ε̄ | ε̄ = 1̄m
}
=− logk m [m-th cluster center] (34)

From the definition of ε̄ ∈ {Sn,〈m〉∀n|m} we know that um(t, θ̄) is unique for or-
der m, has an associated time shift τ̂m, displays the property N

n
(θ̄)≤ n and may

be computed in advance from the input excitation, regardless of the SUT. Contrarily,
<m>(t, θ̄) defines a clustered, SUT-dependent set fully determined by corresponding

vectors ε̄ ∈ {Sn,〈m〉|∑n
i=1 εi = m}. Interestingly, each of these sets contains a single

um(t, θ̄) with ε̄ = 1̄m, playing a relevant role in the coming discussions.
In summary, one may identify a sets of functions {ũε̄(t, θ̄)} depending both on

the underlying system and the input used to excite it. These are frequency-bounded,
impulsive functions, clustering around {τ̂m}.

3.2 Inverse Filtering

In (29), spectral coloring due to uε̄(t, θ̄) may be mitigated by considering some form
of inverse filtering. In doing so, we may be able to focus straightly on the time-shifted,
Volterra kernels, i.e., the structural elements of the model for the system under test.
Without loss of generality we hereafter focus on the cosine part of (31), affected by cε̄ .
By appropriately selecting the parameters of the excitation —in this case, the initial
value of the excitation’s phase (φ0), and/or the duration of the excitation (T )— one
may cause that φ̂0,ε̄ = 0 eliminating the sine part. Authors in Novák et al (2010) and
Rébillat et al (2011) also discuss these parameters with a similar interest. The same
conclusions included hereafter apply to the sine part and the aggregated function. We
shall only focus on the former for simplicity.

Let us define time- and frequency-fading signal ν(t), covering −T ≤ t ≤ +T ,
f0 ≤ f ≤ f1 and satisfying definition

ν(t) ∗ uε̄(t, θ̄) = dε̄

(
t + τε̄(θ̄)

)
(35)
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so that {dε̄ (t + τε̄)} retain the same clustered structure as {uε̄(t, θ̄)} and when ap-
plied to the test output as in Figure 2 the cosine part in (29) equals

ec(t) = h0 +
N

∑
n=1

+∞∫
0

hn(θ̄)

2n

n

∑
m=1

∑
ε̄∈Sn〈m〉

cε̄ dε̄

(
t + τε̄(θ̄)

)
︸ ︷︷ ︸

order n contributors to m-th cluster

dθ̄ (36)

The result holds for any system amenable to the Volterra representation; and re-
sembles a convolution integral involving the multidimensional Volterra kernels and
a set of multidimensional, time-shifted functions. Thus, in looking for ν(t), we look
for a multidimensional linear convolution, with dε̄(t) playing a similar role to Dirac’s
delta δ (t) to minimize dependence of (36) on the excitation.

Considering the specifications for ν(t) and the properties of {uε̄(t, θ̄)}, it is sim-
ply not possible to obtain a filter such that dε̄

(
t + τε̄(θ̄)

)
equal pure, τε̄ -shifted Dirac

deltas —see Theorems 2.8 and 3.1 of Casey and Walnut (1994). Nevertheless, under
the assumption that the system frequency response falls into f0 ≤ f ≤ f1, one could
still formulate a filter that is limited to this frequency range, and that produces an
impulsive output, at least for one of these functions.

If ν(t) is a good approximation to u−1
1 (t, θ̄) and goes to zero outside the frequency

range of interest, previous conditions hold for the first order (m = 1), producing

ν(t)∗u1(t, θ̄)≈ δ (t). (37)

Still, we must check whether this may be computed, and evaluate ν(t) ∗ ũε̄(t, θ̄) for
any ε̄ ∈Sn〈m〉 to assess its impact on (36).

1. this is a continuous, monocomponent, completely defined in −T ≤ t ≤+T ,
2. it displays no spectral zeros or singularities within f0 ≤ f ≤ f1, and has a smooth

response within this range.

Consequently, u1(t, θ̄) is invertible, and ν(t) could always be computed, for in-
stance in Fourier’s domain, down to an arbitrary degree of precision. Furthermore,
regarding the result of ν(t) ∗ ũε̄(t, θ̄), due to the frequency-bounded responses of
the signals involved, (i) output response must go to zero outside frequency range
(Nε̄ · f0,Nε̄ · f1)∩ ( f0, f1). Additionally, (ii) since uε̄(t, θ̄) are smooth, continuous
and of the same form, their individual frequency responses differ by their respective
support functions, and an ε̄-dependent, t-independent time-shift.

From these we conclude that functions {dε̄(t, θ̄)} are frequency-bounded, τε̄ -
shifted, whitened, impulsive functions; and that they also cluster around τε̄ . Still,
(36) is a nonlinear convolution in θ̄ . We must reformulate the integral to derive the
desired closed, seemingly linear form.

4 Reformulation of the test output

The daunting form of the n-dimensional nonlinear convolution in (36), implicitly
computed during the system output postprocessing, may be overtaken by means of
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Table 2 Summary of the transformations applied to the n-dimensional hyper-space

Coordinate system Transformation Range

θ̄ = (θ1,θ2, . . . ,θn) θi ∈ (0,Θ)

(θ1, ∆̄) = (θ1,∆2, . . . ,∆n) ∆i = θi−θ1, ∀i > 1 θ1,∆i ∈ (−Θ ,Θ)

(θ1,r, ϕ̄) =

= (θ1,r,ϕ1, . . . ,ϕn−1)


k∆1/2 = r cos(ϕ1)

k∆ j/2 = r ∏
j−2
m=1 sin(ϕm)cos

(
ϕ j−1

)
k∆n/2 = r sin(ϕ1) · · ·sin(ϕn−1)


θ1 ∈ (0,Θ)

r ∈ (rm,rM) a

ϕi ∈ (0,π/2)

(θ1,s, ϕ̄) =

= (θ1,s,ϕ1, . . . ,ϕn−1)


s = 2logk (r)

σε̄ (ϕ̄) = logk

∣∣∣∣∣∣∣∣
cos2(ϕ1)+ εn

n−1
∏

m=1
sin2 (ϕm)+

+
n
∑

i=2
εi · cos2 (ϕi−1) ·

i−2
∏

m=1
sin2 (ϕm)

∣∣∣∣∣∣∣∣


θ1 ∈ (0,Θ)

s ∈ (logk rm, logk rM)

ϕi ∈ (0,π/2)

a Constants rm and rM are given by (15) and equate,
√
|mR+±nR−|, respectively.

a complete and informed transformation of the integration space. In the transformed
space, the same finite number of time-frequency contributors should be expected, and
time shifts ought to be equispaced. In this section we define this series of transforma-
tions only to analyze the properties of (36) in a more convenient space.

Let us consider the following sequence. First, focusing on time dimension θ1, we
already subtracted its influence from the rest of variables, introducing ∆̄ . We regard
these as deviations of the time dimensions, centered around ∆̄ = 0̄.

Second, based on the structure of the resulting exponential space, one may rely on
the generalized n-dimensional spherical coordinate system to express the former time
deviations. Taking one dimension to measure magnitude —in this case, the magnitude
of time deviation— in the form of a non-negative radius, r, on which a logarithmic
transformation is then applied; and the remaining n−1 dimensions as the generalized
positioning angles φ̄ = (φ1, . . . ,φn−1), we obtain a convenient form for time delays in
(36). The complete set of transformations are summarized in Table 2.

For ease of interpretation we now describe how these would affect two basic vol-
umes for a 3rd-order system. In Figure 3a we present transformations on a 3D sphere
originated in the θ̄ -space transformed into the (θ1,s,ϕ)-space. The result is a de-
formed sphere in the first quadrant, as expected for a causal system. In Figure 3b
we represent the result of the inverse transformations on a set of cubes in the trans-
formed space. The result is a cylindrical structure evidencing coefficients concentra-
tion around kernel’s diagonal.

In applying all these transformations into (36) we have that τε̄ = −θ1 + s +
σε̄(ϕ̄)− t0, where σε̄ (ϕ̄) groups the combined effects of ϕ̄ and ε̄ , including (i) vari-
ability due to the nonlinearity and (ii) rotational symmetry in kernel coefficients.
Specifically, s is an order-dependent, linear time dimension describing kernels’ spar-
sity outside the diagonal.

From these, instead of the n-volume integral in θ̄ , one may write (36) as:

ec(t) = h0 +
N

∑
n=1

n

∑
m=1

∑
ε̄∈Sn〈m〉

ĉε̄

∞∫
0

π
2∫

0

∞∫
0

hn(θ1,s, ϕ̄) ·dε̄ (t− t0−θ1 + s+σε̄)

sin(2ϕ1) · · ·sin(2ϕn−1)
dθ1dϕ̄ds

(38)



Informed selection of memory-length and nonlinearity-order 15

0
11

2

0.6

0.8

1

θ1
θ2

θ3

θ1

s

ϕ

(a) Direct transform

−2
−1
0

1

−2−101

−2

−1

0

1

θ1

θ1

θ2

θ 3

(b) Inverse transform

Fig. 3 Results of the proposed transformations for k = 1.5, applied on: (a) a sphere of radius 1
2 centered

at ( 1
2 , 1

2 , 1
2 ) in the θ̄ -space, (b) a set of shifted cubes in the transformed space: ϕ ∈

[
0, π

2

]
, s ∈

[
0, 2
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]
;

extremes, s ∈
[
0, 3

5

]
: central, shifted along θ1.

The L2-projections of the order-dependent response kernels, {hn(θ1,s, φ̄)} for 1≤
n≤ N, on integration kernels {dε̄(t,θ1,s, φ̄)}, ε̄ ∈Sn, are easy to interpret whenever
these could be used to expand the transformed system response Larson et al (2008).
Particularly in this case, where the latter functions are intrinsically impulsive, time-
shifted and frequency-bounded functions. Attending to this very specific nature, one
may write

ec(t) = h0 +
N

∑
m=1

∑
n≤m

∑
ε̄∈Sn〈m〉

+∞∫
0

ĉε̄

 π/2∫
0

h̃n(t− t0 + s+σε̄ ,s, ϕ̄)
sin(2ϕ1) · · ·sin(2ϕn−1)

dϕ̄

ds

 (39)

where ĉε̄ proportional to cε̄ and (lnk)1−n. By integrating along ϕ̄ and s in (39), we ob-
tain linear combinations of chirplets in m, resulting from all (n−1)-multicombinations
due to the NLS structure. Each of this is centered around fixed time stamp τ̂ε̄ , related
to (t0− s) and σε̄ , clusters around some τ̂m and are intimately related to the Volterra
kernels, providing direct access to relevant information on the underlying system.

5 Informed estimation of order and memory

Attending to (39), the output of this procedure, e(t), may be described as N consec-
utive, order-dependent packets, located around fixed time stamps τ̂m = logk(m) de-
pending on the input excitation parameters, as well as the SUT memory (Θ ) and order
(N). We now intend to compute rough, but reliable estimates on the latter, bearing in
mind the values assigned at the input to f0, f1, T and φ0; only when the following
conditions hold:

1. e(t) resembles a sequence of discrete packets located around τ̂m,
2. we observe dead-zones (energy gaps) between packets —i.e., kernels have finite

responses.
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In any other circumstance, the parameters of the excitation must be rearranged,
aiming for the required gaps. Typically, by increasing the duration of the excitation
(T ) and/or varying the frequency range (decreasing ln( f1/ f0)), values for τ̂m readjust,
widening the gaps between order-dependent packets. Only when kernel responses
may not be finitely approximated, rearrangements will not produce the desired result
and the proposed scheme will fail.

Assuming that we appropriately adjusted our excitation, we may proceed with the
estimation. Let us formulate e(t) in compact form based on our previous analysis

e(t) =
N

∑
m=1

gm(t+τm) = h0+
N

∑
m=1

 ∑
ε̄∈Um

ĉε̄

+∞∫
0

π/2∫
0

h̃n(t− t0 + s+σε̄ ,s, ϕ̄)
sin(2ϕ1) · · ·sin(2ϕn−1)

dϕ̄ ds

 (40)

where τm = logk(m)− t0, coinciding with the time instants around which functions
um(t, θ̄) = w(t) · cos(mφ(t))∗ cos(φ(−t)) cluster; and Um =

{
ε̄ ∈ ∪N

n=1Sn〈m〉
}

. At-
tending to this, one may formulate the estimation of N and Θ as a pair of detection
and estimation problems, stating that:

1. nonlinearity order equals N iff (i) we detect packet gN(t+τN) in e(t) and (ii) there
is no higher value of m for which a packet is detected;

2. the memory-length Θ is upper bounded by packets’ durations.

Despite the actual Volterra kernels being completely unknown to us, the signal
formed from chirplets {dm(t)} may be precomputed off-line. Non-overlapping dead
zones must exist around the order-dependent packets in intervals:

− [τm+] ≤ t ≤ − [τm−−Θ ] (packet)
− [τ̂m+1−−Θ ] ≤ t ≤ − [τ̂m+] (dead zone) (41)

where 1 ≤ m ≤ N indexes the consecutive packets, and the upper and lower bounds
are given by:

τm∓ = logk
(∣∣mR+±nR−

∣∣/2
)
+ t0 (42)

Figure 4 depicts an example on these upper and lower bounds using the same
system and excitation parameters as on Figure 1a. Results evidence how higher orders
in n project on the lower ones depending on m. Additionally, as n or Θ increase,
clusters become wider, strangling the dead zones. Contrarily, adjustments on k also
affect time warping (i.e., the base of the dead zone triangles in Figure 4), but may
be used to enhance separability by simply increasing sweep duration T . In Schetzen
(1980) the author already commented on the need to monotonically increase the du-
ration of excitation sequences to mitigate the impact of estimation error during iden-
tification. The key here is to ensure that the process does not require complete iden-
tification of the system to produce reliable estimates on N and Θ .

Time boundaries for packets corresponding to orders l and l+1 for a nonlinearity
of order N, τ̂N(l), are marked in Figure 4 along with their associated memory values,
Θ ∗N(l). These were computed as the non-negative roots of pm,N (r) with r = kΘ∗N(l)

(see dashed line in Figure 4) involving third-order polynomial

pm,n(r) = (m+n)r3 +(n−m−1)r2− (n−m)r− (m+n+1) (43)
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From these, the duration of the m-th packet, gm(t), must be

T̃m = ∆τ̂m +Θ 0≤ τ̂m ≤ [τ̂m+]− [τ̂m−] (44)

where ∆τ̂m depends on the nonlinear structure of the underlying system and the sys-
tem memory itself. It follows from our analysis that the shape of gm(t), and its dura-
tion ∆τ̂m as well, are affected by all contributors projecting on a particular order. For
some order n involving all multicombinations delivering vectors ε̄ ∈Sn, each vector
belongs to one, and only one subset Sn〈m〉, which contributes to the m-th packet. This
is centered around time delay τ̂m and involves multiple contributors up to a total of

2
N

∑
n=1

(
n−1
n−m

2

)
[(n+m+1) (mod 2)] . (45)

In particular, the higher orders (even or odd) project on either one of the lower
two (i.e., n ∈ {1,2}). Consequently, {T̃1, T̃2} must provide rough but reliable upper
bounds to the system memory

Θ ≤ max
1≤m≤N

{
T̃m
}
= max

m∈{1,2}

{
T̃m
}

. (46)

Packets’ average power is also affected by the number of contributors. This neces-
sarily affects packet detection probability, suggesting that a joint approach should be
followed for nonlinearity order and memory length estimation.

5.1 The packet detection approach

Attending to the order-dependent decomposition in e(t) given by (40), order-dependent
packets, gm(t + τ̂m), mark the nonlinearity order (presence) and memory (duration)
for the SUT, which we intend to characterize.
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Hereafter, we formulate order (N) and memory (Θ ) estimation in terms of an
energy detection problem for arbitrary signals in noise. In doing so we consider time
and energy distributions of e(t), formed from order- and excitation-dependent pulses
(41). Other approaches may exist that outperform the one described here. Anyhow,
our only aim is to take advantage of the structure identified in this contribution, and
provide reliable and early estimates on these parameters that are of practical use, all
through a supervised procedure.

Let us consider ẽ(t), the result of the test for the system output in noise —i.e.,
y(t)+η(t):

ẽ(t) = [y(t)+η(t)]∗ [ν(t)∗ x(−t)] = e(t)+η(t)∗ [ν(t)∗ x(−t)] =
= ∑

N
m=1 gm(t + τm)+ η̃(t)

(47)

We assume that the perturbation at the system output, η(t), is some additive noise,
and η̃(t) is some form of coloured noise, affected by the post-processing.

Let us focus on test output e(t) along the interval between the m-th and (m+1)-th
packets; within which an energy gap is assumed to exist. Attending to (47), the test
output within this interval may be decomposed into the following[

gm(t + τm)+gm+1(t + τm+1)
]
+∑

l
gl(t + τl)+ η̃(t) − τ̂m+1 ≤ t ≤−τ̂m (48)

where 1 ≤ l ≤ N and l 6= {m,m+1}. Three major contributors are here present: the
two associated to the m-th and (m+ 1)-th packets, respectively; and the energy gap
(dead zone, or low energy region) in between those, degraded by the underlying noise
and neighboring packets’ tails.

We assume that excitation parameters were selected so that energy gaps may be
observed. Contrarily, the packet-related events may appear or not depending on the
SUT, and no cross-dependence exists on projections with different parities. Hence,
within time interval −τm+1 ≤ t ≤ −τm one of three different scenarios takes place:
that the energy gap is observed, or not; and that packets, m-th and/or (m+1)-th, are
present, or not.

We propose a sequential approach based on the analysis of the energy distribution
around consecutive packet pairs —and the adjoining dead zone. One may evaluate
energy distribution via the following integral, energy operator,

E(s′m+1,sm) =
∫ sm

s′m+1

ẽ2(t) dt (49)

where−τm+1 ≤ s′m+1 ≤ t ≤ sm ≤−τm ≤ 0; 0< E(s′m+1,sm)<∞ —see sect. Operator
Theory and Modulation Spaces in Larson et al (2008). Whenever integration limits
approach values {τm} from the left (s′m+1 →−τm+1) or the right (sm →−τm), one
will incorporate energy content from the order-dependent packets. Contrarily, while
moving outside their influences mitigate, and low energy levels should be expected.
We hereafter assume that as long as (s′m+1,sm) define intervals of significant width
within dead zones defined by (41), energy levels must certainly be low —i.e., fading-
memory. Then, by considering interval s̄∓∆s one may evaluate E(s′m+1,sm) along
∆s and compute

Λ (s̄,∆s) = 10log10 (E(s̄−∆s, s̄+∆s)/E∞) (50)
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contributors separability and detectability. Attending to this, one may state the order N = 4, as this is the
higher order for which energy is detected, and look at the curves obtained for s′2,1 constants to determine
packets’ durations.

where E∞ is obtained from (49) for s(m+1),m→∓∞, representing the total amount of
energy in ẽ(t), fractions of which we associate to the individual orders. This measure
(i) is upper-bounded by 0dB, representing the total energy of the signal; (ii) displays
its maxima around axes (s′m+1,sm), and (iii) it is lower-bounded by the minimum de-
tectable energy, λ , depending on the representativeness of the order-dependent pack-
ets and experimentation conditions. Attending to this one may proceed as follows:

1. extract interval −τm+1 ≤ t ≤−τm out of ẽ(t),
2. evaluate 0 > Λ (s̄,∆s)≶ λ ∗, assuming that contributions below the threshold are

negligible,
3. associate contributions to either one of the two order-dependent packets.

We shall then discuss the selection of λ ∗ and the association of the contributions
to individual packets.

5.2 Practical use: the supervised procedure

For the practical use of the proposed solution one must turn to fuzzy concepts such
as estimates’ reliability and relevance towards system modelling.

In real world applications, limitations concerning every parameter of a system
are naturally present. Bearing this in mind, our intend is to minimize estimation er-
ror while providing the simplest (less demanding) possible model parameters that are
descriptive of the system behavior. Those criteria require that we (i) maximize the
utility of memory representation (i.e., we use the fewer coefficients possible to repre-
sent the system), and (ii) ensure that all relevant contributors are present in our model
—i.e., include as many nonlinearity orders as required.

Performance is then conditioned by energy and time dispersion of the order-
dependent kernels, which will be detected or not depending on the significance of
their contributions. Hence, we assume that when signals x(t) and y(t) in Figure 2
were respectively generated and recorded, sensible experimentation conditions were
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met. This is, low noise level, enough bits for samples’ encoding and full vertical
range, resulting in a sensible signal-to-noise ratio, ρ .

Let us assume that full range was satisfactorily set, that it took B bits of the
analog-to-digital converter with perfect, uniform bit distribution to encode samples,
and that we obtained a ρ signal-to-noise power ratio. Then, for an additive noise
affecting y(t) in (47), the average noise energy level is

10λ/10 =
∫ s̄+∆s

s̄−∆s
|η̃(t)|2/E∞dt ≈ 1/(2T )

1+ρ
(51)

where the final equation requires a stationary, noise process. Here we assume that this
condition holds, that the number of bits is ‘enough’, and quantization noise is below
measuring noise. By taking λ ∗ = λ +β as the detector threshold one may adapt the
performance of the system considering noise statistics, in account for the unknown
signal statistics.

Figure 5 describes the results of the energy detector on a 4-th order, Volterra-
Wiener system, for a 20 dB SNR and a 12-bit DAC. The individual triangular ar-
eas contain the dead zones between consecutive packets, located around time-stamps
given by the input excitation. Within these one may find dark areas eminently parallel
to one of the axes, associated to one of the surrounding packets. These appear for the
lower orders up to N = 4 (higher values of τ̃m) but not for the higher ones. Concluding
that at least a 4-th order nonlinearity should be used for modelling the system.

Furthermore, the upper bound to the system memory length may be estimated
as the maximum duration associated to packets 1 or 2 —see (46). On Figure 5, we
assume that the darker area is the contribution of the 2-nd order packet, the duration
of which is given by its projection on s1.

5.3 The proposed procedure

Despite the complexity of previous derivations, the proposed algorithms for memory
length and nonlinearity order estimation are actually simple an easy to use. Hereafter
we include the list of steps one must follow, and that we used for experiments in the
coming sections.

Let us test some nonlinear system that we assume to be representable by Volterra’s
or Wiener’s series. No prior information is available regarding the length of its mem-
ory, Θ , or the order of the nonlinearity, N. We may like to focus on some frequency
range f0 ≤ f ≤ f1, and look for early estimates on these parameters prior to any kind
of identification. The procedure is then:

1. make an initial guess on T ;
2. compute the rate of exponential increase k = ( f1/ f0)

1/T ;
3. compute phase function and produce the sweep excitation

φ(t) = 2π f0
ln(k) (k

t−t0 −1)+ 2π f0
ln(k) (52)

x(t) = cos(φ(t)) (53)

4. compute u1(t) = x(t)∗ x(−t) and produce best possible ν(t)≈ u−1
1 (t);
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5. excite the system with x(t) and record its output ỹ(t) in the best possible noise
conditions while aiming to satisfy Nyquist criterion Fs ≥ N · f1;

6. compute the post-processed output ẽ(t) = ỹ(t)∗ [ν(t)∗ x(−t)];
7. evaluate ẽ(t): we look at the order-dependent time shifts τ̂m = logk(m) for the

expected packets: gm(t + τm), and the desired energy dead zones. If consecutive
packets do not display the necessary gaps, the input excitation, T , must be in-
creased and the process continues from Step 1. If the result is positive:

8. estimate signal to noise ratio on ỹ(t) and for order m compute

E(s′m+1,sm) = ∑
s′m
r=s′m+1

ẽ2[r] (54)

with −bτm+1/Fsc ≤ s′m+1 ≤ r ≤ sm ≤ −bτm/Fsc, as well as the total energy of
the postprocessed output E∞ = ∑r ẽ2[r]; and along s′m+1 = s̄−∆s and sm = s̄+∆s

Λ (s̄,∆s) = 10 · log10 (E(s̄−∆s, s̄+∆s)/E∞) (55)

λ
∗ = 10 · log10

1/(2T )
1+ρ

; (56)

9. compute T̃m = |τm+−τm−| where one must evaluate bτm+1/Fsc ≤ s̄≤ bτm−1/Fsc,
τ0 = T and τm− = min(s̄), τm+ = max(s̄) satisfying constraints

Λ(s̄,∆s)≥ λ ∗ ∀(s̄,∆s)
τm− ≤ τm ≤ τm+

. (57)

From {T̃1, T̃2} one may compute a reliable estimate of the system memory length

Θ ≤ max
m∈{1,2}

{
T̃m
}

; (58)

10. determine highest detectable order, this is T̃m > 0. Then N = m.

6 Experiments

To exemplify on the structure of e(t) and test the performance of the proposed scheme,
we have simulated a series of Volterra-Wiener systems with specified parameters, and
computed the proposed estimations on nonlinearity order and memory length. We
report results on two different scenarios: (1) purely illustrative examples involving
short, discrete, nonlinear systems, and (2) examples emulating real, continuous-time,
nonlinear systems. Since the key to our analysis is the dispersion of coefficients for
an unknown system structure, on each scenario we evaluate three different structures
corresponding to: (i) a memoryless system, (ii) a Hammerstein structure where co-
efficients outside the main diagonal equal zero, and (iii) a Volterra-Wiener system
displaying maximum kernel dispersion. Readers may refer to scenario 1 to deepen
into our work, and to scenario 2 for a broader view on its applications.

On scenario 1, we evaluate h1[n] = [−.25 .50 − .25], a three coefficients-long,
low-pass filter. Contrarily, on scenario 2 we used a longer filter to emulate a con-
tinuous-time system. Here, h2[n] is a digital filter obtained from the integration of
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Fig. 6 Outputs of the test described in Figure 2 for several, 2-nd order, nonlinear systems and a particu-
lar exponential sweep excitation considering discrete time analysis. The systems implemented are those
described in Scenario 1, introduced in Sect. 6, and include: (i) a memory-less, nonlinear system, (ii) a
Hammerstein system, (iii) a Volterra-Wiener system. All outputs are depicted in the upper graph, where
one may identify the two packets predicted by (39), located around {mi}1,2 samples —marked by the
triangles. The individual packets corresponding to orders m = 1,2 for the Volterra-Wiener systems are de-
picted below. Differences are noticeable on the second order, and are explained by the different underlying
nonlinear structures.

the 127-order (128 coefficients-long), band-pass, Butterworth filter, with a 1dB rip-
ple, 60dB stop-band attenuation and cut-off frequencies f0 = fs/800 and f1 = fs/8.
The systems implemented for scenarios 1 and 2 were obtained attending to Table 3
and Table 4, respectively. Additionally, for scenario 2 on Volterra-Wiener systems
coefficients truncation was applied to evidence the role of the memory length sys-
tem parameter and to test our estimation procedure. Interested readers may refer to
Appendix B for an exhaustive description on the systems implemented, for both sce-
narios and all structures, including the exact coefficients of the filters.

Table 3 Summary of nonlinear systems implemented for Scenario 1

Memory-less Hammerstein Volterra-Wiener

y[n] x[n]+ x2[n] z1[n]+ z2[n] = h1[n]∗
(
x[n]+ x2[n]

)
z1[n]+ z1[n] · z1[n−6]+ z2[n]

with zi[n] = h1[n]∗ xi[n] used to produce Hammerstein’s and Wiener’s structures.

Figure 6 displays signals e(t) for scenario 1, computed according to the proposed
methodology (steps 1 to 6). The discrete-time input sequence was produced to include



Informed selection of memory-length and nonlinearity-order 23

−6 −5.5

−5

0

5

·10−6

τ4

−5 −4.5 −4
−2

0

2

·10−6

τ3

−3 −2.5 −2
−2

−1

0

1

·10−5

τ2

0 1

0

2

·10−6

τ1

−10 −8 −6 −4 −2 0 2
−4

−2

0

2

4

6
·10−7

Time (ms)

(m
em

or
y-

le
ss

,H
am

m
er

st
ei

n)

−2

−1

0

1

2

3
·10−5

(V
ol

te
rr

a-
W

ie
ne

r)

memory-less Hammerstein

Volterra-Wiener:
Θ = 0.17ms Θ = 0.23ms Θ = 0.29ms Θ = 0.36ms Θ = 0.42ms

Θ = 0.48ms Θ = 0.55ms Θ = 0.61ms Θ = 0.67ms Θ = 0.73ms

Θ = 0.80ms

Fig. 7 Outputs of the test described in Figure 2 for various 4-th order, nonlinear systems and a particular
exponential sweep excitation. Systems are: (i) a memory-less, nonlinear system, (ii) a Hammerstein sys-
tem, (iii) a set of Volterra-Wiener systems with varying memory lengths. Excitation parameters were set
to: f0 = 200Hz, f1 = 20kHz and T = 20ms. All outputs are depicted in the upper graph, where one may
identify the four packets predicted by (39), located around {τi}1...4 time stamps —marked by the triangles.
The individual packets corresponding to orders m = 1, . . . ,4 for the Volterra-Wiener systems are depicted
below. Time bounds for the lower figures are marked by the shadowed areas in the top one. These are, for
order m: min{−τ̂ε̄ |ε̄ ∈Um} ≤ t ≤max{−τ̂ε̄ |ε̄ ∈Um}+Θ .

L = 3200 coefficients and excite frequencies ω0 = 1/800 rad/s, ω1 = 1/8rad/s. Up-
sampling and downsampling with factor×8 were introduced during implementation.

In the same way, Figure 7 displays signals e(t) for all simulated systems cor-
responding to scenario 2, in noiseless conditions, along frequency range 200 Hz ≤
f ≤ 20 kHz and using a sample rate of fs = 160kHz for acquisition. One may ob-
serve well-defined energy concentrations followed by low-energy valleys. Packets are
located around their expected locations regardless of the system structure, whereas

Table 4 Summary of the kernels’ construction for Scenario 2. We evaluate 1≤ i≤ 4 (i.e., N = 4).

Memory-less Hammerstein Volterra-Wiener

hi(θ̄) δ (θ̄)

{
h(θ), θ1...i =θ

0 otherwise
×i

j=1h(θ j)
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slight shifts towards the left-side appear on Wiener systems, which are absent from
the Hammerstein one.

7 Results

On Figures 6 and 7, one may observe the postulated order-depedent packets are
present, with the required energy gaps between them to continue our analysis. Should
it happen that signals e(t) do not display such pattern, following the proposed proce-
dure T ought to be increased, and steps 1 to 6 repeated.

We now include further analysis on the test outputs attending to SUT structures.

7.1 Memoryless, nonlinear systems

The memoryless nonlinear structure is essentially a mathematical formulation with
limited real-life applications due to its infinite bandwidth. Still, is quite informative
for the kind of results one should expect from our analysis, as it brings the shortest
possible memory estimate for our method.

On both scenarios, 1 and 2, one may observe impulsive peaks on the test output,
located at prespecified time-stamps τ̂m for 1≤ m≤ 2 and 1≤ m≤ 4, respectively.
According to (40), when the order-dependent kernels tend to match ideal Delta func-
tions, one may observe that the order-dependent chirplets approximate the functions
introduced in Sect. 3. This is,

gm(t) = ν(t)∗um(t, θ̄). (59)

The exact functions may be computed based on the formulations derived there.

7.2 Generalized Hammerstein systems

Contrarily to the memoryless network, Generalized Hammerstein systems are nat-
urally bounded, and therefore may be used to model real-life systems. On these
structures the n-th kernel only displays non-zero values along its diagonal (ε̄ = 1n,
θ1 = . . .=θn), and these diagonals may display the same values regardless of n —
Hammerstein—, or not —generalized Hammerstein. Thus, integration in (40) re-
stricts to ∆̄ = 0̄, s = logk(n), σε̄ = 0.

Consequently, (i) order-dependent replicas are to be found at time stamps τ̂m =
logk(m), just as for the memoryless structure; while (ii) integrands corresponding
to packets {gm(t)} resemble the linear combination of the individual kernels’ diag-
onals. This is consistent with results reported in Farina (2000), Novák et al (2010)
and Rébillat et al (2011), and explains why one may compute estimates on N and Θ

(or M for the discrete examples in scenario 1), from the post-processed output of the
system.
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7.3 Volterra-Wiener systems

Volterra’s and Wiener’s series match the very general form of any memory- and order-
fading systems. These are used to approximate real-life systems with great success,
even though they may involve heavy computations when addressing full identifica-
tion. Fortunately, it is possible to extract some information without completing this
process, as we propose in this work.

Attending to (40) and transformations in Table 2, s is a linear, causal time di-
mension along which ε̄-dependent time-shifts cluster; while coefficients σε̄ represent
deviations around the former, introduced by the kernel inner structure. From these,
one should then expect qualitatively similar results to those on the analysis of Ham-
merstein systems, as Figures 6 and 7 evidence. Differences in the duration of the in-
dividual packets and their shapes are explained by the different contributions to each
of the packets. Combinations imposed by the NL structure and differences in the or-
der-dependent kernels explain why these {gm(t)} greatly vary from one example to
another.

To provide further evidence, in Figure 7 we included results on systems simulated
from truncated versions of h2[n]. This is, instead of using the 128 coefficients of the
filter, we truncated the first and last ones to produce systems with shorter memory.

Once step 7 is completed, we computed estimates for the nonlinearity-order (steps
8 and 9) and memory-length parameters (step 10) attending to the procedure de-
scribed in Sect. 5.3. Through the detection process, we observe that all systems eval-
uated could be approximated by a 4-th order nonlinearity for a 20 dB SNR. Actually,
results depicted in Figure 5 are those computed for the Volterra-Wiener system with
memory Θ = 0.17 ms. By simple inspection on this figure one may identify the con-
tributions of orders 1 to 4, while for the higher ones no contribution is observed
above noise level. Results on memory length estimation are displayed in Figure 8
for the same Volterra-Wiener systems and while introducing additive, white, gaus-
sian noise on system output y(t) at different signal-to-noise ratios (ρ). Deviations in
memory length are due to the Volterra-Wiener structure, while deviations observed on
the computed estimates are due to embedded noise. As noise conditions improve, es-
timates become closer to the actual values, yet overestimated due to the unavoidable
NL structure effect.

8 Discussion and remarks

The identification of non-linear systems is a complex, highly demanding task; es-
pecially when little is known about the SUT. The need for simple, yet robust tech-
niques to roughly but easily estimate certain elementary system parameters has been
a constant. Among these, memory length and nonlinearity order are two of the most
relevant. Both have direct and critical impact on time and frequency responses, condi-
tioning system output acquisition, and therefore any posterior intend of identification.

The analysis described here extends the results from previous contributions con-
cerning weakly nonlinear, Hammerstein Farina (2000) and generalized Hammer-
stein Rébillat et al (2011) systems, to the more general, memory- and order-fading,
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Fig. 8 Estimates on the system memory parameter for the same Volterra-Wiener systems in Figure 7.
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deviations due to poor SNR (ρ) also appear.

Volterra-Wiener systems. Despite the complexity of the derivations, the procedure
enumerated in Sect. 5.3 only requires the supervised adaptation of the parameters in
a phase modulated sinusoid (an exponential sweep) for exciting the system. Output is
then post-processed based on the input, and an energy-based detector is used to dis-
cover energy packets. The exponential sweep pattern is most frequently incorporated
into general purpose, arbitrary pattern generators; but to the authors knowledge, have
never been used for the systematic, preliminary evaluation of non-linear systems.
Moreover, post-processing of recorded outputs requires a single linear filter, on a
signal that may be precomputed from the input excitation.

Even when the initial guess on sweep duration T is insufficient attending to
Sect. 5.3, repeating the whole process on a longer signal has a minor computational
cost. This is dramatically different for full, kernel-identification techniques, were se-
quences are fairly long and calculations are computationally expensive. Taking the
emulated, continuous-time Voltera-Wiener system, we used a 3200 coefficients-long
sequence (dT ·Fse) and performed one linear convolution to compute our estimates.
Contrarily, according to Schetzen (1980), it would require ∑

N
n=1
(M+n

n

)
> 1011 coeffi-

cients to evaluate nonlinearity order N = 7, and only assuming perfect knowledge on
the memory-length parameter (M = 128).

In addition to its low complexity, the test output is easy to interpret. Particularly
compared to the current state of the art for order evaluation (e.g. total harmonic dis-
tortion) and memory estimation (e.g. standard correlation tests). Large dependence
on the input parameters facilitates on the fly corrections to enhance separability on
the order-dependent packets, and ensure good estimated on N and Θ .

Finally, definitions in this contribution describe our interpretation of order and
memory estimation. These, along with (41) and Table 1 provide a concrete, interde-
pendent approximation to the abstract notion of memory- and order-fading systems
Zang and Iglesias (2003). We say that systems satisfy this definition if kernels:
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1. display a systematic energy decrease as order increases, such that for m = N∗ the
energy of the corresponding packet lays below noise level and system reconstruc-
tion considering orders 1≤ m≤ N∗ is acceptable in some sense;

2. for 1≤m≤ N∗ the required gaps between orders do exist, implying that kernels’
memory length is upper bounded by Θ ∗N∗(m).

Despite the complexity of these definitions and formulations in Sections 2 to 4,
the simplicity of the test suggests that it may be used to complement most black-box
identification techniques. Thus, providing engineers with a reliable, hands-on tool, to
help at the first stages of a systems’ identification.

A Evaluation of functions {uε̄(t, θ̄)}

Here we include a series of relevant properties concerning {uε̄ (t, θ̄)} used in this paper.

Property 1 Functions {uε̄ (t)} are time- and energy-bounded. Their envelopes decrease along the warped
time axis as a function of k when moving away from t = τε̄ . This falls from the following properties:

asymptotic behavior lim
t→±∞

γε̄ ,2(t) =0 (60a)

lim
t→±∞

γε̄ ,4(t) =0 (60b)

centered maximum γε̄ ,2(τε̄ )≥ γε̄ ,2(t) ∀t (61)

spectral envelope bounds
|Γε̄ ,{1,3}( f )| � |Γε̄ ,{2,4}( f )|

f0 ≤ f ≤ f1
(62)

Proof Based on (31), we are interested in all pairs of the sine and cosine integrals and {αε̄+,αε̄−}.

γε̄ ,i(t)=
+∞∫
−∞

W (τ , t)cos(αε̄•kτ )dτ =
1

ln(k)

{
Ci
(
αε̄•kT+t)−Ci(αε̄•)−T < t < 0

Ci
(
αε̄•kT )−Ci(αε̄•kt) 0≤ t < T

γε̄ , j(t)=
+∞∫
−∞

W (τ , t)sin(αε̄•kτ )dτ =
1

ln(k)

{
Si
(
αε̄•kT+t)−Si(αε̄•)−T < t < 0

Si
(
αε̄•kT )−Si(αε̄•kt) 0≤ t < T

where • takes the positive subindex for i = 1, j = 3, and negative for i = 2, j = 4; and from the boxcar
function w(t) restrited to t0 ≤ t ≤ T +T0, W (τ , t, θ̄) = w(τ− t) ·∏n

i=1 w(τ−θi) to sketch the boundaries
of time integrals in (29).

Asymptotic behavior. For an arbitrary duration T while moving away from t = τε̄ , combining cosine
and sine integrals by pairs we prove (60a) and (60b):

lim
t→−∞

Ci
(
αε̄−kT+t)−Ci(αε̄−) = 0 lim

t→+∞
Ci
(
αε̄−kT )−Ci

(
αε̄−kt)= 0

lim
t→−∞

Si
(
αε̄−kT+t)−Si(αε̄−) = 0 lim

t→+∞
Si
(
αε̄−kT )−Si

(
αε̄−kt)= 0

Time and energy bounds. We evaluate γε̄ ,{1,2}(t) while approaching zero argument, where a singularity
is expected. On γε̄ ,1(t) function αε̄+(t) prevents the argument from reaching zero argument; whereas on
γε̄ ,2(t) we have that cos(αε̄−(t) · kτ )→ 1 when t → τε̄ . Consequently the whole integral goes to a finite
value. There is no singularity at t = τε̄ .

Since there are no singularities in the phase function, T is bounded and all integral forms are time-
bounded according to W (t,τ), we conclude that functions γε̄ ,1(t) are energy-bounded. Finally, one may
formulate uε̄ (t) as a combination of functions γε̄ ,m(t), implying that {uε̄ (t)} are also time- and energy-
bounded.
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Maxima and spectral content. Each of these integral forms may (asymptotically) be approximated
by a linear combination of amplitude- and phase-modulated contributors attending to the trigonometric
integrals’ properties (see Abramowitz and Stegun (1964)) as follows:

Ci(x) = p(x)sin(x)−q(x)cos(x) (63)

Si(x) = π

2 − p(x)cos(x)−q(x)sin(x) (64)

These are linear combinations of sines and cosines of an arbitrary argument, x, incorporating amplitude
modulations that depend on x as well. We know from Abramowitz and Stegun (1964) that |p(x)| and
|q(x)|: (i) both tend to a constant value when t →±∞, (ii) their supreme is found at x = 0, and (iii) are
monotonously decreasing while moving away from t = 0. Additionally, they provide the foundations for
functions’ evaluation. For instance, one may prove by derivation that γε̄ ,2(t) displays its absolute maximum
at t = τε̄ —i.e., has a centered maximum, (61).

Moreover, based on the definition of αε̄•(t), for any linear function of time r(t) it holds:

αε̄+kr = αε̄−kr + 4π f0
ln(k) kr−τε̄ (65)

relating phase functions of γε̄ ,{1,3} and γε̄ ,{2,4}. From these we evaluate the spectral content of {γε̄ ,l(t)}
based on the complex, analytic signal and the analysis in Cohen (2000). We extract relevant information
on the spectral envelopes of {γε̄ ,l(t)}, namely, |Γε̄ ,l( f )| from the properties of |p(x)| and |q(x)|:
1. as the absolute value of the phase increases, amplitude decreases. Hence:

|p(αε̄+kr)|<|p(αε̄−kr)| , |q(αε̄+kr)|<|q(αε̄−kr)|

so the numerators of the envelopes corresponding to Γε̄ ,{2,4} are larger than those of Γε̄ ,{1,3}.
2. From (65) one may compute the second-order time derivative of the phase functions:

d2 αε̄+kr

d t2 =
d2 αε̄−kr

d t2 +4π f0 ln(k)
(

dr
d t

)2

kr−τε̄

where the second derivatives in αε̄•(t) happen to be non-negative; and the equating addend is always
positive. Hence: ∣∣d2

αε̄−kr/d t2∣∣< ∣∣d2
αε̄+kr/d t2∣∣ (66)

In other words, the envelopes’ denominators are smaller for Γε̄ ,{2,4} than on Γε̄ ,{1,3}.
3. Equations (63) and (64) are coherent summations, hence the resulting spectral envelope is the direct

summation of the spectral envelopes.

In summary, attending to numerators and denominators for Γε̄ ,{1,...,4}( f ) we have,

|Γε̄ ,{1,3}( f )| � |Γε̄ ,{2,4}( f )|

Property 2 Approximating uε̄ (t) through ũε̄ (t) is acceptable. Based on function uε̄ (t) = ũε̄ (t)+ρε̄ (t), we
say that ũε̄ (t) is a good approximation iff |Pε̄ ( f )| � |Uε̄ ( f )| within f0 ≤ f ≤ f1. The approximation term
as derived from uε̄ (t) is:

ũε̄ (t) =
∫ +∞

−∞

W (τ , t)
2

(cε̄ cos(αε̄−kτ )+ sε̄ sin(αε̄−kτ )) dτ

and the deviation term:

ρε̄ (t) =
1
2

∫ +∞

−∞

W (τ , t)
(

cos(αε̄+kτ ) [cε̄ cos2∆φ + sε̄ sin2∆φ ]+

+ sin(αε̄+kτ ) [cε̄ sin2∆φ − sε̄ cos2∆φ ]
)

dτ

Proof Both the approximation and the deviation terms can be written as a linear combination of {γε̄ ,l(t)},
defined in Property 1,

ρε̄ (t) =
1
2

[
cos
(
−(1+m)∆φ

)
γε̄ ,1− sin

(
1+m)∆φ

)
γε̄ ,3

]
ũε̄ (t) =

1
2

[
cos
(
(1−m)∆φ

)
γε̄ ,2 + sin

(
(1−m)∆φ

)
γε̄ ,4

] (67)
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Furthermore, ρε̄ (t) may be rewritten, and due to linearity of the Fourier transform:

Pε̄ ( f ) = cε̄ [cos(2∆φ)Γε̄ ,1( f )− sin(2∆φ)Γε̄ ,3( f )]+
+ sε̄ [sin(2∆φ)Γε̄ ,1( f )+ cos(2∆φ)Γε̄ ,3( f )]

Uε̄ ( f ) = cε̄ Γε̄ ,2( f )+ sε̄ Γε̄ ,4( f )

Hence, |Γε̄ ,{1,3}( f )|� |Γε̄ ,{2,4}( f )|. Thus, provided that Property 1 holds and noticing that the trigono-
metric constants are bounded, necessarily:

|Pε̄ ( f )| � |Uε̄ ( f )|.

B Description of the implemented nonlinear systems

We report results on three different configurations, including two different scenarios: one (1) purely illus-
trative, another (2) simulating a continuous-time system; as well as three different nonlinear structures:
memoryless, generalized Hammerstein and Volterra-Wiener. Hereafter we include the exact definitions of
the discrete systems used, including the coefficients for the discrete linear filters; along with the imple-
mentations for the system outputs. We refer by x[n] to the input excitation.

B.1 Scenario 1

We used a discrete filter h1[n] to emulate the system memory. The coefficients for these were

h1[n] = −.25 δ [n−1]+ .50 δ [n]− .25 δ [n+1] =
= [−.25 .50 − .25] (68)

B.1.1 Memoryless nonlinear system

The output for the memoryless structure may be computed as:

y[n] = x[n]+ x2[n] (69)

B.1.2 Generalized Hammerstein system

For the Generalized Hammerstein structure, we introduced zi[n] = h1[n] ∗ xi[n]. The output of the system
was then computed as:

y[n] = z1[n]+ z2[n] = h1[n]∗
(
x[n]+ x2[n]

)
= −.25

(
x[n−1]+ x2[n−1]

)
+ .50

(
x[n]+ x2[n]

)
− .25

(
x[n+1]+ x2[n+1]

) (70)

B.1.3 Volterra-Wiener system

Continuing on zi[n] = h1[n]∗ xi[n], the output of the system was then computed as:

y[n] = z1[n]+ z1[n] · z1[n−6]+ z2[n] =
= h1[n]∗

(
x[n]+ x2[n]

)
+(h1[n]∗ x[n]) · (h1[n−6]∗ x[n]) =

= −.25
(
x[n−1]+ x2[n−1]

)
+ .50

(
x[n]+ x2[n]

)
− .25

(
x[n+1]+ x2[n+1]

)
+

+.0625 (x[n−1] · x[n−7]+ x[n+1] · x[n−7]+ x[n−1] · x[n−5]+ x[n+1] · x[n−5])−
−.125 (x[n] · x[n−7]+ x[n−1] · x[n−6]+ x[n+1] · x[n−6]+ x[n] · x[n−5])+
+.25 x[n] · x[n−6]

(71)
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Table 5 Coefficients in h2[n].

1 2 3 4 5 6 7 8
0 -0.076 -0.075 -0.076 -0.076 -0.076 -0.075 -0.075 -0.074
8 -0.073 -0.071 -0.071 -0.070 -0.070 -0.071 -0.073 -0.075

16 -0.078 -0.081 -0.084 -0.086 -0.087 -0.087 -0.085 -0.083
24 -0.079 -0.075 -0.071 -0.068 -0.067 -0.067 -0.070 -0.074
32 -0.080 -0.086 -0.092 -0.097 -0.100 -0.100 -0.096 -0.090
40 -0.081 -0.072 -0.062 -0.055 -0.051 -0.052 -0.057 -0.068
48 -0.084 -0.101 -0.118 -0.133 -0.142 -0.143 -0.133 -0.112
56 -0.080 -0.038 0.011 0.064 0.118 0.167 0.208 0.239
64 0.256 0.258 0.247 0.224 0.192 0.155 0.115 0.077
72 0.045 0.020 0.004 -0.002 -0.001 0.008 0.021 0.036
80 0.051 0.064 0.072 0.076 0.076 0.071 0.064 0.055
88 0.046 0.038 0.032 0.029 0.029 0.032 0.036 0.042
96 0.047 0.052 0.055 0.057 0.057 0.055 0.051 0.048

104 0.044 0.040 0.037 0.036 0.036 0.037 0.038 0.040
112 0.043 0.045 0.047 0.048 0.049 0.049 0.048 0.047
120 0.046 0.046 0.045 0.044 0.044 0.044 0.044 0.044

B.2 Scenario 2

We used a long, discrete filter h2[n] to emulate the memory effect in the continuous-time systems. The
coefficients are listed in Table 5. The position on this table of the coefficient may be simply computed as
Ncol. + row. For instance, the coefficient in column 4 and row tagged 56 is the 4+56 = 60-th coefficient.

B.2.1 Memoryless nonlinear system

The output for the memoryless structure may be computed as

y[n] = x[n]+ x2[n]+ x3[n]+ x4[n]. (72)

B.2.2 Generalized Hammerstein system

For the Generalized Hammerstein structure, the output of the system was then computed as

y[n] = h2[n]∗
(
x[n]+ x2[n]+ x3[n]+ x4[n]

)
. (73)

Alternatively, one may prefer to use some implementation of the nonlinear convolution. This would
require the computation of Volterra kernels hi[n], which be zero outside their respective diagonals, and take
the following values along the latter

h1[n] = h2[n]
h2[n,n] = h2[n]

h3[n,n,n] = h2[n]
h4[n,n,n,n] = h2[n]

(74)

B.2.3 Volterra-Wiener system

For this we used an standard implementation of the nonlinear convolution, which requires the computation
of the set of order-dependent Volterra kernels, hi[n]. These we computed as follows

h1[n] = h2[n]
h2[n1,n2] = h2[n1]×h2[n2]

h3[n1,n2,n3] = h2[n1]×h2[n2]×h2[n3]
h4[n1,n2,n3,n4] = h2[n1]×h2[n2]×h2[n3]×h2[n4]

(75)
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where × stands for the cartesian product. Additionally, when evaluating the memory-length effect, we
focused on the truncated kernels. This is, considering discrete filter h2[n] of length L = 128, truncation to
a sequence of length L′ < L requires that we operate on h2[n′i] instead, where

ni = 1, . . . ,L while n′i = 1, . . . ,L′. (76)
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