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A note on “On the ratio of independent complex
Gaussian random variables”

by

Saralees Nadarajah and Hok Shing Kwong
University of Manchester, Manchester M13 9PL, UK

Abstract: Nadimi, Ramezani and Blanes-Vidal [Multidimensional Systems and Signal Process-
ing, 2017, doi: 10.1007/s11045-017-0519-3] studied the distribution of the ratio of two independent
complex Gaussian random variables. The expressions provided for the distribution involved a hyper-
geometric function and an infinite sum. Here, we derive simpler and more manageable expressions.
The practical usefulness of the expressions in terms of computational time is illustrated.

Keywords: Bessel function; Elementary function; Horn confluent hypergeometric function

1 Introduction

A random variableX is said to have the complex Gaussian distribution with parameters
(
ν exp (jφ) , σ2

)
if its amplitude R and phase Θ have the joint probability density function (pdf)

fR,Θ(r, θ) =
r

πσ2
exp

[
−|r exp(jθ)− ν exp (jφ)|2

σ2

]

for r > 0 and −π < θ < π, where j =
√
−1.

SupposeX and Y are independent complex Gaussian random variables with parameters
(
νX exp (jφX) , σ2

X

)
and

(
νY exp (jφY ) , σ2

Y

)
, respectively. Nadimi et al. (2017) derived expressions for the distribution

of the ratio Z = X/Y . Theorem 1 in Nadimi et al. (2017) gave an expression for the joint dis-
tribution of the amplitude and phase of Z. The expression involved a hypergeometric function.
Theorem 2 in Nadimi et al. (2017) gave an expression for the distribution of the amplitude of Z.
The expression was an infinite sum with each term involving a finite sum.

The aim of this note is to derive simpler and more manageable expressions for the distribution
of Z. We derive an elementary expression for the joint distribution of the amplitude and phase of Z.
We also derive a closed form expression (involving a known special function) for the distribution of
the amplitude of Z. These expressions are given in Section 2. Section 3 performs a computational
study to show practical values of the expressions. We show in particular that the expressions
are computationally less time consuming than the expressions obtained in Nadimi et al. (2017,
Theorems 1 and 2).

The calculations in this note involve several special functions, including the gamma function
defined by

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt;
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the modified Bessel function of the first kind of order zero defined by

I0(x) =

∞∑
k=0

1

(k!)2

(x
2

)2k
;

the generalized Laguerre polynomial defined by

Lλn(x) =
x−λ exp(x)

n!

dn

dxn

[
xn+λ exp(−x)

]
;

the Laguerre polynomial defined by

Ln(x) =
exp(x)

n!

dn

dxn
[xn exp(−x)] ;

and the Horn confluent hypergeometric function defined by

Ψ2 (a, b, c, x, y) =
∞∑
n=0

∞∑
k=0

(a)n+k

(b)n(c)kn!k!
xnyk,

where (e)k = e(e+ 1) · · · (e+ k− 1) denotes the ascending factorial. The properties of these special
functions can be found in Erdelyi et al. (1981), Srivastava and Karlsson (1985), Prudnikov et al.
(1986) and Gradshteyn and Ryzhik (2000). In-built routines for computing them are available in
packages like Maple, Matlab and Mathematica.

2 Main results

Throughout this section, we assume X and Y are independent complex Gaussian random variables
with parameters

(
νX exp (jφX) , σ2

X

)
and

(
νY exp (jφY ) , σ2

Y

)
, respectively. We let RX (respectively,

RY ) and ΘX (respectively, ΘY ) denote the amplitude and phase of X (respectively, Y ). Similarly,
we let RZ and ΘZ denote the amplitude and phase of Z = X/Y . We let kX = νX/σX and
kY = νY /σY .

Theorem 1 derives an elementary expression for the joint pdf of RZ and ΘZ . The corresponding
expression given in Nadimi et al. (2017, Theorem 1) is

fRZ ,ΘZ
(rZ , θZ) =

rZσ
2
Xσ

2
Y exp

(
−k2

X − k2
Y

)
π
(
r2
Zσ

2
Y + σ2

X

)2 1F1

(
2; 1;

r2
Zk

2
Xσ

2
Y + k2

Y σ
2
X + 2rZνXνY cos (θZ − φX + φY )

r2
Zσ

2
Y + σ2

X

)
, (1)

where 1F1(a; b;x) denotes the confluent hypergeometric function. Theorem 2 expresses the pdf of
RZ in terms of the Horn confluent hypergeometric function. The corresponding expression given
in Nadimi et al. (2017, Theorem 2) is

fRZ
(rZ) =

2rZσ
2
Xσ

2
Y exp

(
−k2

X − k2
Y

)
π
(
r2
Zσ

2
Y + σ2

X

)2 ∞∑
m=0

cm(m+ 1)!

(
σ2
Xσ

2
Y

r2
Zσ

2
Y + σ2

X

)m
, (2)

where

cm =
m∑
`=0

1

`!2(m− `)!2

(
rZνX
σ2
X

)2`( νY
σ2
Y

)2(m−`)
.
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Theorem 1 The joint pdf of RZ and ΘZ can be expressed as

fRZ ,ΘZ
(rZ , θZ) =

rZ exp
(
−k2

X − k2
Y

)
πσ2

Xσ
2
Y c

2

(
1 +

γ2
1

c

)
exp

(
γ2

1

c

)
(3)

for rZ > 0 and −π < θZ < π, where

c =
r2
Z

σ2
X

+
1

σ2
Y

and

γ1 =

√(
rZνX
σ2
X

)2

+

(
νY
σ2
Y

)2

+
2rZνXνY cos (θZ − φX + φY )

σ2
Xσ

2
Y

.

Proof: By equation (11) in Nadimi et al. (2017), the joint pdf of RZ and ΘZ can be written as

fRZ ,ΘZ
(rZ , θZ) =

2rZ exp
(
−k2

X − k2
Y

)
πσ2

Xσ
2
Y

∫ ∞
0

t3I0 (2γ1t) exp
(
−ct2

)
dt. (4)

Nadimi et al. (2017) say that the integral in (4) is not tractable. In fact, by equation (2.15.5.4) in
Prudnikov et al. (1986, volume 2),

fRZ ,ΘZ
(rZ , θZ) =

rZ exp
(
−k2

X − k2
Y

)
πσ2

Xσ
2
Y c

2
exp

(
γ2

1

c

)
L0

1

(
−γ

2
1

c

)
. (5)

By the definition of Lagurre polynomial,

L0
1

(
−γ

2
1

c

)
= L1

(
−γ

2
1

c

)
.

Furthermore, using the property L1(x) = 1− x,

L0
1

(
−γ

2
1

c

)
= 1 +

γ2
1

c
. (6)

The result follows by substituting (6) into (5). The proof is complete. �

Theorem 2 The pdf of RZ can be expressed as

fRZ
(rZ) =

4rZ exp
(
−k2

X − k2
Y

)
σ2
Xσ

2
Y c

2
Ψ2

(
2, 1, 1,

r2
Zν

2
X

σ4
Xc

,
ν2
Y

σ4
Y c

)
(7)

for rZ > 0.

Proof: By equation (15) in Nadimi et al. (2017), the joint pdf of RZ and RY can be written as

fRZ ,RY
(rZ , t) =

4rZ exp
(
−k2

X − k2
Y

)
σ2
Xσ

2
Y

exp
(
−ct2

) ∞∑
n=0

∞∑
k=0

1

(n!)2(k!)2

(
rZνX
σ2
X

)2n( νY
σ2
Y

)2k

t2n+2k+3. (8)

Integrating out t in (8) and using∫ ∞
0

t2n+2k+3 exp
(
−ct2

)
dt = c−n−k−2Γ(n+ k + 2),
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we obtain

fRZ
(rZ) =

4rZ exp
(
−k2

X − k2
Y

)
σ2
Xσ

2
Y

∞∑
n=0

∞∑
k=0

1

(n!)2(k!)2

(
rZνX
σ2
X

)2n( νY
σ2
Y

)2k

c−n−k−2Γ(n+ k + 2). (9)

Using the property that (a)k = Γ(a+ k)/Γ(a), we can rewrite (9) as

fRZ
(rZ) =

4rZ exp
(
−k2

X − k2
Y

)
σ2
Xσ

2
Y c

2

∞∑
n=0

∞∑
k=0

1

n!k!

(
r2
Zν

2
X

σ4
Xc

)n(
ν2
Y

σ4
Y c

)k
(2)n+k

(1)n(1)k
.

Now the result follows from the definition of the Horn confluent hypergeometric function. The
proof is complete. �

3 Computational issues

Here, we illustrate computational efficiency of the expressions derived in Section 2. Computational
efficiency is assessed in terms of time.

We computed fRZ ,ΘZ
(rZ , θZ) one hundred times for each rZ = 0.1, 0.2, . . . , 100 using (1) and

(3). The corresponding central processing unit times are plotted in Figure 1. We also computed
fRZ

(rZ) one hundred times for each rZ = 0.1, 0.2, . . . , 100 using (2) and (7). The corresponding
central processing unit times are plotted in Figure 2. We have taken νX = 1, νY = 1, φX = 1,
φY = 1, σX = 1, σY = 1 and θZ = π/2.
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Figure 1: Central processing unit times in seconds taken to compute (1) (solid curve) and (3)
(broken curve) versus rZ .
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Figure 2: Central processing unit times in seconds taken to compute (2) (solid curve) and (7)
(broken curve) versus rZ .

We see that our expressions in (3) and (7) are computationally more efficient for all values of
rZ . The central processing unit times for our expressions appear about two times smaller. There
is no evidence that the computational times change significantly with respect to rZ .

In Figures 1 and 2, we took νX = 1, νY = 1, φX = 1, φY = 1, σX = 1, σY = 1 and θZ = π/2.
But the same results held for a wide range of values of νX , νY , φX , φY , σX , σY and θZ . In
particular, the central processing unit times for our expressions always appeared about two times
smaller.

The Mathematica software was used for computations. Mathematica like other algebraic ma-
nipulation packages allows for arbitrary precision, so the accuracy of computed values was not an
issue. That is, the values computed can be considered as exact.
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