Skip to main content
Log in

A perception based bit allocation for 3DTV broadcasting

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Perceptually adaptive bit allocation plays vital roles in efficient rate control to achieve rate distortion optimization in terms of perceptual video coding. This paper proposes a perceptually improved bit allocation scheme by employing a more accurate distortion model inspired by a state-of-the-art perceptual video quality metric. The contributions of this paper mainly involve the following three aspects. Firstly, a perceptual rate-distortion model is developed to shape the framework of perceptual video coding. Secondly, based on the characteristics of the model, an adaptively frame-level bit allocation scheme is proposed using the rate distortion optimization technology. Meanwhile, the status of the encoder buffer is also taken into account to avoid overflow or underflow. Finally, a macroblock-level quantization parameter adjustment is presented to improve perceptual video quality. Experimental results demonstrate that the whole proposed bit allocation scheme achieves better perceptual rate-distortion performance and guarantees the accuracy of rate control well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bjontegaard, G. (2001). Calcuation of average psnr differences between rd-curves. Doc VCEG-M33 ITU-T Q6/16, Austin, TX, USA, 2–4 April 2001.

  • Chang, Y., & Kim, M. (2011). Hybrid codec-based intra-frame joint rate control for stereoscopic video. IEEE Signal Processing Letters, 18(10), 543–546.

    Article  Google Scholar 

  • Chang, Y., & Kim, M. (2013). A joint rate control scheme in a hybrid stereoscopic video codec system for 3dtv broadcasting. IEEE Transactions on Broadcasting, 59(2), 265–280.

    Article  Google Scholar 

  • Chang, Y., & Kim, M. (2015). Binocular suppression-based stereoscopic video coding by joint rate control with kkt conditions for a hybrid video codec system. IEEE Transactions on Circuits and Systems for Video Technology, 25(1), 99–111.

    Article  Google Scholar 

  • Chen, Z., & Guillemot, C. (2010). Perceptually-friendly h. 264/avc video coding based on foveated just-noticeable-distortion model. IEEE Transactions on Circuits and Systems for Video Technology, 20(6), 806–819.

    Article  Google Scholar 

  • Chen, Z., Lin, W., & Ngan, K. N. (2010). Perceptual video coding: Challenges and approaches. In Multimedia and expo (ICME), 2010 IEEE international conference on, IEEE (pp 784–789).

  • De Silva, V., Arachchi, H. K., Ekmekcioglu, E., & Kondoz, A. (2013). Toward an impairment metric for stereoscopic video: A full-reference video quality metric to assess compressed stereoscopic video. IEEE Transactions on Image Processing, 22(9), 3392–3404.

    Article  MathSciNet  MATH  Google Scholar 

  • DVB. (2012). Digital Video Broadcasting (DVB);Plano-stereoscopic 3DTV;Part 2: Frame Compatible Plano-stereoscopic 3DTV. http://www.etsi.org/deliver/etsi_ts/101500_101599/10154702/01.02.01_60/ts_10154702v010201p.pdf, [Online; accessed July-2015].

  • HHI. (2011). H.264/AVC JM reference software. http://iphome.hhi.de/suehring/tml/download/old_jm/, [Online; accessed 2014].

  • Homayouni, M., Aflaki, P., Hannuksela, M. M., & Gabbouj, M. (2015). Perception aware coding of stereoscopic video. In 3D imaging (IC3D), 2015 international conference on, IEEE, pp 1–6.

  • Hu, S., Wang, H., Kwong, S., Zhao, T., & Kuo, C. C. J. (2011). Rate control optimization for temporal-layer scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 21(8), 1152–1162.

    Article  Google Scholar 

  • Hu, S., Kwong, S., Zhang, Y., & Kuo, C. C. J. (2013). Rate-distortion optimized rate control for depth map-based 3-d video coding. IEEE Transactions on Image Processing, 22(2), 585–594.

    Article  MathSciNet  MATH  Google Scholar 

  • ITU-T. (2016). Objective perceptual multimedia video quality measurement of HDTV for digital cable television in the presence of a full reference. https://www.itu.int/rec/T-REC-J.341/en, [Online; accessed Nov-2016].

  • Jiang, M., & Ling, N. (2006). On lagrange multiplier and quantizer adjustment for h. 264 frame-layer video rate control. IEEE Transactions on Circuits and Systems for Video Technology, 16(5), 663–669.

    Article  Google Scholar 

  • Jung, C., & Chen, Y. (2015). Perceptual rate distortion optimisation for video coding using free-energy principle. Electronics Letters, 51(21), 1656–1658.

    Article  Google Scholar 

  • Kamaci, N., Altunbasak, Y., & Mersereau, R. M. (2005). Frame bit allocation for the h. 264/avc video coder via Cauchy-density-based rate and distortion models. IEEE Transactions on Circuits and Systems for Video Technology, 15(8), 994–1006.

    Article  Google Scholar 

  • Katto, J., & Ohta, M. (1995). Mathematical analysis of mpeg compression capability and its application to rate control. In Image processing, 1995. Proceedings, international conference on, IEEE, vol. 2 (pp 555–558).

  • Kuo, C. M., Chung, S. C., & Shih, P. Y. (2006). Kalman filtering based rate-constrained motion estimation for very low bit rate video coding. IEEE Transactions on Circuits and Systems for Video Technology, 16(1), 3–18.

    Article  Google Scholar 

  • Kwon, D. K., Shen, M. Y., & Kuo, C. C. J. (2007). Rate control for h. 264 video with enhanced rate and distortion models. IEEE Transactions on Circuits and Systems for Video Technology, 17(5), 517–529.

    Article  Google Scholar 

  • Lee, H. J., Chiang, T., & Zhang, Y. Q. (2000). Scalable rate control for mpeg-4 video. IEEE Transactions on Circuits and Systems for Video Technology, 10(6), 878–894.

    Article  Google Scholar 

  • Lee, J., Yun, K., & Kim, K. (2013). A 3dtv broadcasting scheme for high-quality stereoscopic content over a hybrid network. IEEE Transactions on Broadcasting, 59(2), 281–289.

    Article  Google Scholar 

  • Lee, P. J., & Lai, Y. C. (2013). Perceptual awareness rate control for multi-view video encoder in stereoscopic display. Journal of Display Technology, 9(7), 552–560.

    Article  Google Scholar 

  • Li, X., Oertel, N., Hutter, A., & Kaup, A. (2009). Laplace distribution based lagrangian rate distortion optimization for hybrid video coding. IEEE Transactions on Circuits and Systems for Video Technology, 19(2), 193–205.

    Article  Google Scholar 

  • Li, Z. G., Pan, F., Lim, K.P., Feng, G., Lin, X., & Rahardja, S. (2003). Adaptive basic unit layer rate control for jvt. In JVT-G012-r1, 7th Meeting, Pattaya II, Thailand, vol. 14.

  • Lin, Y. H., & Wu, J. L. (2014). Quality assessment of stereoscopic 3d image compression by binocular integration behaviors. IEEE Transactions on Image Processing, 23(4), 1527–1542.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Huang, Q., Ma, S., Zhao, D., Gao, W., Ci, S., et al. (2011). A novel rate control technique for multiview video plus depth based 3d video coding. IEEE Transactions on Broadcasting, 57(2), 562–571.

    Article  Google Scholar 

  • Ma, S., Gao, W., & Lu, Y. (2005). Rate-distortion analysis for h. 264/avc video coding and its application to rate control. IEEE Transactions on Circuits and Systems for Video Technology, 15(12), 1533–1544.

    Article  Google Scholar 

  • Merkle, P., Smolic, A., Muller, K., & Wiegand, T. (2007). Multi-view video plus depth representation and coding. In 2007 IEEE international conference on image processing, IEEE, vol. 1 (pp 190–200).

  • Na, T., Ahn, S., Sabirin, H., Kim, M., Kim, B., Hahm, S., et al. (2013). A hybrid stereoscopic video coding scheme based on mpeg-2 and hevc for 3dtv services. IEEE Transactions on Circuits and Systems for Video Technology, 23(9), 1542–1554.

    Article  Google Scholar 

  • Ou, T. S., Huang, Y. H., & Chen, H. H. (2011). Ssim-based perceptual rate control for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 21(5), 682–691.

    Article  Google Scholar 

  • Ribas-Corbera, J., & Lei, S. (1999). Rate control in dct video coding for low-delay communications. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 172–185.

    Article  Google Scholar 

  • Sanz-Rodríguez, S., del Ama-Esteban, Ó., de Frutos-Lopez, M., & Díaz-de María, F. (2010). Cauchy-density-based basic unit layer rate controller for h. 264/avc. IEEE Transactions on Circuits and Systems for Video Technology, 20(8), 1139–1143.

    Article  Google Scholar 

  • Shao, F., Jiang, G., Lin, W., Yu, M., & Dai, Q. (2013). Joint bit allocation and rate control for coding multi-view video plus depth based 3d video. IEEE Transactions on Multimedia, 15(8), 1843–1854.

    Article  Google Scholar 

  • Tang, C. W., Chen, C. H., Yu, Y. H., & Tsai, C. J. (2006). Visual sensitivity guided bit allocation for video coding. IEEE Transactions on Multimedia, 8(1), 11–18.

    Article  Google Scholar 

  • Tao, B., Dickinson, B. W., & Peterson, H. A. (2000). Adaptive model-driven bit allocation for mpeg video coding. IEEE Transactions on Circuits and Systems for Video Technology, 10(1), 147–157.

    Article  Google Scholar 

  • Vetro, A., Wiegand, T., & Sullivan, G. J. (2011). Overview of the stereo and multiview video coding extensions of the h. 264/mpeg-4 avc standard. Proceedings of the IEEE, 99(4), 626–642.

    Article  Google Scholar 

  • Wang, M., & Yan, B. (2009). Lagrangian multiplier based joint three-layer rate control for h. 264/avc. IEEE Signal Processing Letters, 16(8), 679–682.

    Article  Google Scholar 

  • Wang, S., Rehman, A., Wang, Z., Ma, S., & Gao, W. (2012). Ssim-motivated rate-distortion optimization for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(4), 516–529.

    Article  Google Scholar 

  • Wang, X., Kwong, S., Yuan, H., Zhang, Y., & Pan, Z. (2015). View synthesis distortion model based frame level rate control optimization for multiview depth video coding. Signal Processing, 112, 189–198.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the h. 264/avc video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  • Wong, C. W., Au, O. C., Meng, B., & Lam, H. K. (2003). Novel h. 26x optimal rate control for low-delay communications. In Information, communications and signal processing, 2003 and fourth Pacific rim conference on multimedia. Proceedings of the 2003 joint conference of the fourth international conference on, IEEE, vol. 1 (pp 90–94).

  • Wu, C. Y., & Su, P. C. (2014). A content-adaptive distortion-quantization model for h. 264/avc and its applications. IEEE Transactions on Circuits and Systems for Video Technology, 24(1), 113–126.

    Article  Google Scholar 

  • Yang, X., Lin, W., Lu, Z., Lin, X., Rahardja, S., Ong, E., et al. (2005). Rate control for videophone using local perceptual cues. IEEE Transactions on Circuits and Systems for Video Technology, 15(4), 496–507.

    Article  Google Scholar 

  • Zeng, H., Cai, C., & Ma, K. K. (2009). Fast mode decision for h. 264/avc based on macroblock motion activity. IEEE Transactions on Circuits and Systems for Video Technology, 19(4), 491–499.

    Article  Google Scholar 

  • Zhao, X., Sun, J., Ma, S., & Gao, W. (2010). Novel statistical modeling, analysis and implementation of rate-distortion estimation for h. 264/avc coders. IEEE Transactions on Circuits and Systems for Video Technology, 20(5), 647–660.

    Article  Google Scholar 

  • Zhu, G., Yu, M., Jiang, G., Peng, Z., Shao, F., Chen, F. & Ho, Y. S. (2014). A novel macroblock level rate control method for stereo video coding. The Scientific World Journal.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Fang, X., Wang, C. et al. A perception based bit allocation for 3DTV broadcasting. Multidim Syst Sign Process 29, 1935–1957 (2018). https://doi.org/10.1007/s11045-017-0538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0538-0

Keywords

Navigation