Skip to main content
Log in

Local receptive fields based extreme learning machine with hybrid filter kernels for image classification

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an innovative method called extreme learning machine with hybrid local receptive fields (ELM-HLRF) is presented for image classification. In this method, filters generated by Gabor functions and the randomly generated convolution filters are incorporated into the convolution filter kernels of local receptive fields based extreme learning machine (ELM-LRF). Extreme learning machine (ELM) is derived from single hidden layer feed-forward neural networks, and the parameters of its hidden layer can be generated randomly. As locally connected ELM, ELM-LRF directly processes information with strong correlations such as images and speech. In this paper, two main contributions are proposed to improve the classification performance of ELM-LRF. First, the Gabor functions are used as one kind of convolution filter kernels of ELM-HLRF to execute image classification. Second, we use a data augmentation method to preprocess training images to avoid overfitting. Experiments on the Outex texture dataset, the Yale face dataset, the ORL face database and the NORB dataset demonstrate that ELM-HLRF outperforms ELM-LRF, ELM and support vector machine in classification accuracy, and the presented data augmentation method improves the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bencherif, M. A., Bazi, Y., Guessoum, A., Alajlan, N., Melgani, F., & AlHichri, H. (2015). Fusion of extreme learning machine and graph-based optimization methods for active classification of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(3), 527–531.

    Article  Google Scholar 

  • Chang, S.-Y. & Morgan, N. (2014). Robust CNN-based speech recognition with Gabor filter kernels. In Fifteenth annual conference of the international speech communication association.

  • Coates, A., Ng, A. & Lee, H. (2011). An analysis of single-layer networks in unsupervised feature learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp. 215–223.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Cui, X., Goel, V., & Kingsbury, B. (2015). Data augmentation for deep neural network acoustic modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(9), 1469–1477.

    Article  Google Scholar 

  • Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61(2), 103–113.

    Article  Google Scholar 

  • Georghiades, A., Belhumeur, P. & Kriegman, D. (1997). Yale face database. Center for Computational Vision and Control at Yale University, 2, 6. http://cvc.yale.edu/projects/yalefaces/yalefa.

  • Haralick, R. M., Shanmugam, K., et al. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  • Huang, G.-B., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015). Local receptive fields based extreme learning machine. IEEE Computational Intelligence Magazine, 10(2), 18–29.

    Article  Google Scholar 

  • Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics Part B (Cybernetics), 42(2), 513–529.

    Article  Google Scholar 

  • Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  • Huang, J., Yu, Z. L., Cai, Z., Gu, Z., Cai, Z., Gao, W., et al. (2017). Extreme learning machine with multi-scale local receptive fields for texture classification. Multidimensional Systems and Signal Processing, 28(3), 995–1011.

    Article  Google Scholar 

  • Jain, A. K., & Farrokhnia, F. (1991). Unsupervised texture segmentation using gabor filters. Pattern Recognition, 24(12), 1167–1186.

    Article  Google Scholar 

  • Jain, A. K., Ratha, N. K., & Lakshmanan, S. (1997). Object detection using gabor filters. Pattern Recognition, 30(2), 295–309.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105.

  • LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 3361(10), 1995.

    Google Scholar 

  • LeCun, Y., Huang, F. J. & Bottou, L. (2004a). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, Vol. 2, IEEE, pp. II–104.

  • LeCun, Y., Huang, F. J. & Bottou, L. (2004b). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, Vol. 2, IEEE, pp. II–104.

  • LeCun, Y., Huang, F. J. & Bottou, L. (2004c). Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, Vol. 2, IEEE, pp. II–104.

  • Li, W., Chen, C., Su, H., & Du, Q. (2015). Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3681–3693.

    Article  Google Scholar 

  • Manjunath, B. S., & Ma, W.-Y. (1996). Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837–842.

    Article  Google Scholar 

  • Mehrotra, R., Namuduri, K. R., & Ranganathan, N. (1992). Gabor filter-based edge detection. Pattern Recognition, 25(12), 1479–1494.

    Article  Google Scholar 

  • Nair, V. & Hinton, G. E. (2009). 3d object recognition with deep belief nets. In Advances in neural information processing systems, pp. 1339–1347.

  • Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V. & Ng, A. Y. (2010). Tiled convolutional neural networks. In Advances in neural information processing systems, pp. 1279–1287.

  • Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J. & Huovinen, S. (2002). Outex-new framework for empirical evaluation of texture analysis algorithms. In Proceedings of 16th international conference on pattern recognition, 2002, Vol. 1, IEEE, pp. 701–706.

  • Pietikäinen, M. (2010). Local binary patterns. Scholarpedia, 5(3), 9775.

    Article  Google Scholar 

  • Rajadell, O., García-Sevilla, P., & Pla, F. (2013). Spectral-spatial pixel characterization using gabor filters for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 10(4), 860–864.

    Article  Google Scholar 

  • Reininghaus, J., Huber, S., Bauer, U. & Kwitt, R. (2015). A stable multi-scale kernel for topological machine learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4741–4748.

  • Samaria, F. S. & Harter, A. C. (1994). Parameterisation of a stochastic model for human face identification. In Proceedings of the second IEEE workshop on applications of computer vision, 1994, IEEE, pp. 138–142.

  • Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B. & Ng, A. Y. (2011). On random weights and unsupervised feature learning. In ICML, pp. 1089–1096.

  • Xu, Y., Zhang, B., & Zhong, Z. (2015). Multiple representations and sparse representation for image classification. Pattern Recognition Letters, 68, 9–14.

    Article  Google Scholar 

  • Yang, P., Zhang, F. & Yang, G. (2018). Fusing DTCWT and LBP based features for rotation, illumination and scale invariant texture classification. In IEEE access.

  • Zeng, Y., Xu, X., Shen, D., Fang, Y., & Xiao, Z. (2017). Traffic sign recognition using kernel extreme learning machines with deep perceptual features. IEEE Transactions on Intelligent Transportation Systems, 18(6), 1647–1653.

    Google Scholar 

  • Zhang, S., He, B., Nian, R., Wang, J., Han, B., Lendasse, A., et al. (2014). Fast image recognition based on independent component analysis and extreme learning machine. Cognitive Computation, 6(3), 405–422.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by The National Key Research and Development Program of China (2016YFC0301400) and Natural Science Foundation of China (51379198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Song, Y., Zhu, Y. et al. Local receptive fields based extreme learning machine with hybrid filter kernels for image classification. Multidim Syst Sign Process 30, 1149–1169 (2019). https://doi.org/10.1007/s11045-018-0598-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0598-9

Keywords

Navigation