Skip to main content
Log in

Scalable antinoise-robustness estimation of frequency and direction of arrival based on the relaxed sparse array

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In order to realize low-cost frequency and direction of arrival (DOA) estimation in the harsh temporal-spatial undersampling condition, this paper proposed a joint estimator with scalable antinoise robustness. Essentially, owing to that two basic problems are well solved, the proposed estimator concurrently achieves high array sparsity, low hardware complexity and scalable antinoise robustness. On one hand, in the sparse sensor arrangement, a relaxed coprime array was proposed, which is distinguished with low hardware cost (only \(L=3\) sensors in low sampling rates are employed) and high array sparsity (the inter-element spacings are much greater than the Nyquist spacings). On the other hand, in the design of the frequency and DOA reconstruction algorithm, a series of techniques (including the reconstruction towards robustness in residue number system, spectrum correction and phase difference adjustment) are organically integrated, which endows the proposed estimator with scalable antinoise robustness. Numerical results confirmed the above advantages, which present the proposed joint estimator vast potentials in the radar, remote sensing and other passive sensing related applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ding, C., Pei, D., & Salomaa, A. (1996). Chinese remainder theorem: Applications in computing, coding, cryptography. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Gustafsson, F., & Gunnarsson, F. (2003). Positioning using time-difference of arrival measurements. In International conference on acoustics 6, VI-553-6.

  • Huang, X., Liu, M., Yang, L., Liu, K., & Liu, T. (2017). Joint estimation of frequency and direction of arrival under the single-and-parallel spatial-temporal undersampling condition. Acta Physica Sinica, 66, 188401.

    Google Scholar 

  • Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13, 67–94.

    Article  Google Scholar 

  • Lemma, A. N., Van der Veen, A. J., & Deprettere, E. F. (1998). Joint angle-frequency estimation using multi-resolution esprit. IEEE International Conference on Acoustics, Speech and Signal Processing, 4, 1957–1960.

    Google Scholar 

  • Li, X., Liang, H., & Xia, X. G. (2009). A robust chinese remainder theorem with its applications in frequency estimation from undersampled waveforms. IEEE Transactions on Signal Processing, 57, 4314–4322.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y., Seshadri, N., & Ariyavisitakul, S. (1999). Channel estimation for ofdm systems with transmitter diversity in mobile wireless channels. IEEE Journal on Selected Areas in Communications, 17, 461–471.

    Article  Google Scholar 

  • Lin, J. D., Fang, W. H., Wang, Y. Y., & Chen, J. T. (2006). FSF music for joint DOA and frequency estimation and its performance analysis. IEEE Transactions on Signal Processing, 54, 4529–4542.

    Article  MATH  Google Scholar 

  • Liu, C. L., & Vaidyanathan, P. P. (2015). Remarks on the spatial smoothing step in coarray music. IEEE Signal Processing Letters, 22, 1438–1442.

    Article  Google Scholar 

  • Liu, C. L., & Vaidyanathan, P. P. (2016a). Super nested arrays: Linear sparse arrays with reduced mutual coupling? Part I: Fundamentals. IEEE Transactions on Signal Processing, 64, 3997–4012.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C. L., & Vaidyanathan, P. P. (2016b). Linear sparse arrays with reduced mutual coupling? Part II: High-order extensions. IEEE Transactions on Signal Processing, 64, 4203–4217.

    Article  MathSciNet  MATH  Google Scholar 

  • Mcclellen, J. H., & Rader, C. M. (1979). Number theory in digital signal processing. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Moffet, A. (1968). Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 16, 172–175.

    Article  Google Scholar 

  • Pal, P., & Vaidyanathan, P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58, 4167–4181.

    Article  MathSciNet  MATH  Google Scholar 

  • Pal, P., & Vaidyanathan, P. (2011). Coprime sampling and the music algorithm. IEEE Signal Processing Education Workshop, 47, 289–294.

    Google Scholar 

  • Poisel, R. (2012). Electronic warfare target location methods. Norwood: Artech House.

    Google Scholar 

  • Qin, S., Zhang, Y. D., & Amin, M. G. (2015). Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing, 63, 1377–1390.

    Article  MathSciNet  MATH  Google Scholar 

  • Rappaport, T. S. (2001). Wireless communications: Principles and practice (pp. 33–8). New Jersey: Prentice Hall PTR.

    Google Scholar 

  • Roy, R., Paulraj, A., & Kailath, T. (1986). ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 54, 1340–1342.

  • Schmidt, R. (2013). Multiple emitter location and signal parameter estimation. International Journal of Engineering Research, 2, 276–280.

    Google Scholar 

  • Tan, Z., Eldar, Y. C., & Nehorai, A. (2014). Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Transactions on Signal Processing, 62, 5565–5576.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, H., & Golomb, S. (1985). Rulers part I, Univ. Southern Calif., Los Angeles, CSI Tech. Rep, 01.

  • Vaidyanathan, P., & Pal, P. (2011a). Theory of sparse coprime sensing in multiple dimensions. IEEE Transactions on Signal Processing, 59, 3592–3608.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidyanathan, P. P., & Pal, P. (2011b). Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 59, 573–586.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Li, X., Wang, W., & Xia, X. G. (2015). Maximum likelihood estimation based robust chinese remainder theorem for real numbers and its fast algorithm. IEEE Transactions on Signal Processing, 63, 3317–3331.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., & Xia, X.-G. (2010). A closed-form robust chinese remainder theorem and its performance analysis. IEEE Transactions on Signal Processing, 58, 5655–5666.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, L., Xia, X. G., & Huo, H. (2017). Towards robustness in residue number systems. IEEE Transactions on Signal Processing, 65, 1497–1510.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, L., Xia, X. G., & Wang, W. (2013). Multi-stage robust chinese remainder theorem. IEEE Transactions on Signal Processing, 62, 4772–4785.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Li, J., & Stoica, P. (2008). Target detection and parameter estimation for mimo radar systems. IEEE Transactions on Aerospace and Electronic Systems, 44, 927–939.

    Article  Google Scholar 

  • Zhang, F., Geng, Z., & Yuan, W. (2001). The algorithm of interpolating windowed fft for harmonic analysis of electric power system. IEEE Transactions on Power Delivery, 16, 160–164.

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61671012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Ratio spectrum correction

Appendix: Ratio spectrum correction

Zhang et al. (2001) pointed out that, given an M-length exponential sequence \(x(n)=A_0e^{j(2\pi {f}_{0}n+\varphi _0)},n=0,\ldots ,M-1\), \(f_0=(k^*+\delta )/M,k^*\in {\mathbb {Z}}^+,\delta \in [-0.5, 0.5)\). The following procedure provides the frequency estimate \({\hat{f}}_0\), the amplitude estimate \({\hat{A}}_0\) and the phase estimate \({\hat{\varphi }} _0\) from the hanning windowed DFT result \(X_f(k), k=0,\ldots , M-1\).

Step 1 :

Calculate the amplitude ratio v between the peak DFT bin \(X_f(k_{p})\) and its sub-peak neighbor, i.e.,

$$\begin{aligned} v =\frac{ |X_f( k^{*})|}{\max \{ | X_f( k^{*}-1)|, | X_f( k^{*}+1) |\} } \end{aligned}$$
(43)
Step 2 :

The absolute value u of the frequency offset \(\delta \) is estimated as

$$\begin{aligned} u=(2-v )/(1+v ), \end{aligned}$$
(44)

and the frequency offset is estimated as

$$\begin{aligned} {\hat{\delta }} = \left\{ \begin{array}{ll} u, &{}\hbox {if} \ |X_f( k^{*}+1)|> |X_f( k^{*}-1)|\\ -u, &{}\hbox {else} \end{array} \right. \end{aligned}$$
(45)
Step 3 :

Calculate the frequency estimate \({\hat{f}}_0\),the amplitude estimate \({\hat{A}}_0\) and the phase estimate \({{\hat{\varphi }}} _0\) as

$$\begin{aligned} {\hat{f}}_{0}= & {} (k^{*}+{\hat{\delta }} ) /M, \end{aligned}$$
(46)
$$\begin{aligned} {{\hat{A}}}_{0}= & {} \pi {\hat{\delta }} (1-{\hat{\delta }} ^{2}) \cdot |X_{f}(k^{*})|/\sin (\pi {\hat{\delta }} ), \end{aligned}$$
(47)
$$\begin{aligned} {{\hat{\varphi }}}_0= & {} \hbox {ang}[X_f(k^{*})]-\pi {\hat{\delta }} (M-1)/M, \end{aligned}$$
(48)

where \(\hbox { ang}(\cdot \)) refers to the angle operation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Yang, M., Wang, H. et al. Scalable antinoise-robustness estimation of frequency and direction of arrival based on the relaxed sparse array. Multidim Syst Sign Process 30, 1345–1361 (2019). https://doi.org/10.1007/s11045-018-0607-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0607-z

Keywords

Navigation