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ABSTRACT
This paper develops a direct method for transforming a polynomial system matrix
describing a discrete wave linear repetitive process to a 2-D singular state-space
Roesser model description where all relevant properties, including the zero coprime-
ness properties of the system matrix, are retained. It is shown that the transfor-
mation is zero coprime system equivalence. The structure of the resulting system
matrix in singular form and the transformation are also established.
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1. Introduction

Research on systems with n > 1 independent variables (vector-valued for multiple-
input multiple-output examples), commonly known as n-D systems, using a state-
space setting and, for linear dynamics, a transfer-function or transfer-function matrix
whose entries are defined in terms of n independent is a well established area in
control systems analysis. Extensively used state-space models for these systems are
due Roesser (1975) and Fornasini and Marchesini (1976), where various forms of the
latter can be considered. Also the singular general model was developed in Kaczorek
(1988). In, e.g., Zak (1984), the use of such models to describe the dynamics of systems
described by partial differential equations is considered.

Realization theory for linear systems with time as the single independent variable
and hence also known as 1-D systems in some of the n-D systems literature is of funda-
mental importance. Basically, given the controllability and observability properties, a
1-D linear time-invariant system is equivalently described by the corresponding state-
space model and transfer-function (or transfer-function matrix). This general problem
has also been addressed for nD linear systems for both nonsingular and singular state-
space model descriptions of the dynamics, see, e.g., Boudellioua (2012); Galkowski
(2001); Xu, Yan, Lin, and ya Matsushita (2012) and references therein. The analysis
in this case is more complicated due to the complexity of the underlying analysis tools,
e.g., for polynomials in n > 1 indeterminates primeness is no longer a single concept.



Linear repetitive processes make a series of sweeps, termed passes (or trials), through
dynamics defined over a finite duration known as the pass (or trial) length. Once
each pass is complete, the process resets to the starting point and the next pass
can begin, either immediately after resetting is complete or after a further period
of time has elapsed. The output on each pass is termed that pass profile and also
the profile produced on the previous pass (or, more generally, on a finite number of
previous passes) acts as a forcing function on the next pass and thereby contributes
to the associated pass profile. The result can be oscillations that increase in amplitude
from pass-to-pass and analysis and control law design for these processes requires the
development of a stability theory and associated control law design algorithms.

Background on linear repetitive processes, including their origins in the modeling
and control of industrial processes such as long-wall coal cutting with references to the
original work, is given in Rogers, Galkowski, and Owens (2007). These processes have
structural links with 2-D linear systems recursive over the upper-right quadrant of the
2-D plane. A critical difference, however, is that in repetitive processes information
propagation in one independent variable (time) only occurs over a finite duration and
this is an inherent property of the dynamics as opposed to an assumption.

A considerable volume of research has investigated the use of 2-D systems theory to
solve control problems for linear repetitive processes, where use has been made of both
the nonsingular and singular versions of these systems. Early work established that
stability tests can be exchanged Rogers et al. (2007) (but only provided the boundary
conditions are of a particular form). Also in Galkowski, Rogers, and Owens (1998) it
has been shown that conditions for local controllability of discrete linear repetitive
processes can be obtained by writing the dynamics of these processes in the form of a
singular 2-D Roesser state-space model.

This last result, in particular, stimulated research to establish the connection
between the state-space models of liner repetitive processes and those of the
Roesser/Fornasini 2-D models with early results in, e.g., Galkowski, Rogers, and
Owens (1999); Rogers et al. (2007). More recently in Boudellioua, Galkowski, and
Rogers (2017a) it was shown that the dynamics of a linear repetitive process can, un-
der certain conditions, represented by a 2-D singular Roesser model. An elementary
operations based method for transforming a polynomial matrix description of a wave
linear repetitive processes, with dynamics motivated by industrial examples that are
not captured by the basic model, to a 2-D nonsingular Roesser model was developed in
Boudellioua, Galkowski, and Rogers (2017b). This method was extended in Galkowski,
Boudellioua, and Rogers (2017) to write wave linear repetitive processes in the 2-D
singular Roesser state-space form, where the transformation required is Input/Output
equivalence.

In this paper, a method based on a stronger type of equivalence is developed to
transform wave linear repetitive process dynamics, which are characterized by the
noncausal dynamics along the pass (information from left-to-right and right-to-left),
to those described by a 2-D Roesser singular model description such that both the in-
put/output properties of the system and the zero structure are preserved. Furthermore
the exact equivalence transformation linking the original system with its associated
singular model is established. The type of equivalence used has been the subject of con-
siderable attention in the literature see, e.g., El-Nabrawy (2006); Levy (1981); Pugh,
McInerney, and El-Nabrawy (2005), Johnson (1993) and Pugh, McInerney, Hou, and
Hayton (1996); Pugh, McInerney, Boudellioua, Johnson, and Hayton (1998).

In this paper, the notation Ih denotes the h× h identity matrix and Op,q the p× q
null matrix. In cases where the dimensions of the latter matrix is obvious, the subscript

2



will be deleted.

2. 2-D Discrete Linear Systems and Repetitive Processes

A singular version of the Roesser state-space model (SR) Roesser (1975) is

E

[
xh(i+ 1, j)
xv(i, j + 1)

]
=

[
A11 A12

A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
B1

B2

]
u(i, j),

y(i, j) =
[
C1 C2

] [ xh(i, j)
xv(i, j)

]
+Du(i, j),

(1)

where xh(i, j) ∈ Rn1 is the horizontal state vector and xv(i, j) ∈ Rn2 , is the vertical
state vector, y(i, j) ∈ Rm is the output vector, u(i, j) ∈ Rl, is the input vector and
the matrix E is square and singular. In this model, static in both directions i and
j links between sub-vectors are allowed. If E = I in this model the most commonly
used form of the Roesser model is obtained, which is also termed nonsingular in some
of the literature. Boundary conditions are defined as xh(0, j) = f(j), j ≥ 0 and
xv(i, 0) = d(i), i ≥ 0, where the vectors f(j) ∈ Rn1 and d(i) ∈ Rn2 have known
constant entries.

Discrete linear repetitive processes evolve over the subset of the positive quadrant in
the 2-D plane defined by {(p, k) : 0 ≤ p ≤ α−1, k ≥ 0}, and the most basic state-space
model for their dynamics has the following form Rogers et al. (2007)

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +B0yk(p),

yk+1(p) = Cxk+1(p) +Duk+1(p) +D0yk(p).
(2)

where α denotes the number of samples along the pass (α times the sampling period
gives the pass length). On pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the
pass profile vector, and uk(p) ∈ Rl is the vector of control inputs. The simplest form
of boundary conditions are xk+1(0) = dk+1, k ≥ 0, where the vector dk+1 ∈ Rn has
known constant entries, and y0(p) = f(p), where f(p) ∈ Rm has entries that are known
functions of p.

The 2-D systems structure of a repetitive process arises from the influence of the
previous pass profile on the current pass state and pass profile vectors, i.e., due, re-
spectively, to the presence of the terms B0yk(p) and D0yk(p) in (2). The updating
structures of a discrete linear system described by a 2-D Roesser model and a discrete
linear repetitive process are illustrated schematically in Figure 1.

It was shown in, e.g., Galkowski et al. (1999) that particular properties of discrete
linear repetitive processes described by (2) can be analyzed using the 2-D Roesser
model setting (1).

In the repetitive process model (2), the only previous pass (k) contribution to the
dynamics at p on the current pass (k+1) comes from the same instance. A more general
discrete linear repetitive process that also evolves over {(p, k) : 0 ≤ p ≤ α− 1, k ≥ 0}
but the previous pass (k) contribution to the dynamics at the given sample p on the
current pass (k + 1) comes from a pre-specified window of points is described by the
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Figure 1. Evolution of the dynamics of the Roesser model and a discrete linear repetitive process.

state-space model

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +

wH∑
i=−wL

Biyk(p+ i),

yk+1(p) = Cxk+1(p) +Duk+1(p) +

wH∑
i=−wL

Diyk(p+ i),

(3)

where on pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the pass profile vector,
uk(p) ∈ Rl is the vector of control inputs and wL, wH are positive integers.

On each pass in (3), the previous pass (k) ‘window’ of previous pass profile sample
values p − wL ≤ p ≤ p + wH contribute to the current pass profile at sample p on
pass k + 1, where this window moves along the pass with p. This has led the term
‘wave’linear repetitive process Galkowski, Cichy, Rogers, and Lam (2006) to describe
examples represented by this model. Also setting wL = 0 and wH = 0 recovers the
previous state-space model 2.

The state and pass profile updating structures, respectively, of a wave linear repet-
itive process are shown schematically in Figures 2 and 2.
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Figure 2. Illustrating the updating structure of the current state vector in (3).
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Figure 3. Illustrating the updating structure of the current pass profile vector in (3).

The boundary conditions for a wave linear repetitive process are of the form

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ α− 1,

xk+1(i) = 0, yk(i) = 0,

i ∈ {−wL, . . . ,−1} ∪ {α, . . . , α− 1 + wH}, k ≥ 0,

(4)

where the vector dk+1 ∈ Rn has known constant entries and f(p) ∈ Rm has entries
that are known functions of p. In the remainder of this paper, this model is denoted
by WLRP.

One area where a wave linear repetitive process state-space model description of
the dynamics arises is iterative learning control (ILC). This design method has been
especially developed for the many applications where the same finite duration task is
performed over and over again. Each repetition is termed a pass (or trial in some of
the literature) and the duration of each pass is termed the pass length. The survey
papers Ahn, Chen, and Moore (2007); Bristow, Tharayil, and Alleyne (2006) can be
used as a starting point for the literature.

In the simplest form of operation the system resets to the starting location at the
end of each pass and the next pass can begin either immediately resetting is complete
or after a further period of time has elapsed. Once a pass is complete all information
generated over the pass length is available for use in constructing the input for the
next pass. The core task in ILC design, therefore, is how to use this information to
best effect in improving performance from pass-to-pass and the most common route
is to construct the input for the next pass as the sum of the previous pass input and
a correction term computed using previous pass data (or a finite number of previous
passes).

Let uk(p) denote the input to system in the ILC setting on pass k and let ek(p)
denote the error between a supplied reference signal and the output (pass profile)
yk(p). Then the design problem is to force the sequence {ek} to converge in k to either
zero or to within an acceptable bound. One basic ILC law has the form

uk+1(p) = uk(p) +Kek(p+ 1), (5)

where K is a scalar gain (or matrix in the multi-input multi-output case). This law
is known as phase lead ILC due to the shift advance in p in the last term (this unit
advance can be replaced by λ > 1). This is also the novel feature of ILC, i.e., the
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inclusion of non-causal temporal information from the previous pass (or a finite number
therefore). It is also known that if such information is not included then the ILC law
can be replaced by an equivalent feedback control law (i.e., no learning), see the
discussion in Ahn et al. (2007); Bristow et al. (2006) and the relevant cited articles in
these references.

For a control law of the form (5) it is possible to write the resulting control dynamics
in the form (2) where the pass profile on pass k is the corresponding error ek(p) and
hence the stability theory for discrete linear repetitive processes can be used for ILC
design. This is a single step design for error convergence from pass-to-pass and along
the pass dynamics. This setting has led to experimental verification, see, e.g., Paszke,
Rogers, and Ga lkowski (2016) which reports the design and experimental verification
of an iterative learning control law designed in the repetitive process setting.

The design referred to above requires a re-definition of the state vector in the repet-
itive process as a shifted version of the difference between these vectors on two succes-
sive passes. This removes the terms in p+ 1 from the repetitive process model arising
from the second term in (5) and enables direct use of linear repetitive process stabil-
ity theory for design. However, this operation is not possible if (5) contains further
phase-lead terms, e.g., at p+ 2 or ‘phase-lag’, e.g., at p− 1 terms. Such a control law
fits naturally within a wave linear repetitive process state-space model.

The similarity between wave linear repetitive processes and the Roesser model is
much less obvious than for processes described by (2). However, there still remains
the question: is it possible to convert a wave linear repetitive process to Roesser form?
This question is the subject of the rest of this paper with the emphasis on system
matrix equivalence.

3. System Equivalence

Following the formulation of Rosenbrock Rosenbrock (1970) for 1D linear systems, a
general 2-D linear system can be represented by the following system of equations
assuming zero boundary conditions:

T (z1, z2)x = U(z1, z2)u
y = V (z1, z2)x+W (z1, z2)u.

(6)

where x ∈ Rn is the state vector, u ∈ Rl is the input vector and y ∈ Rm is the output
vector, T,U, V and W are polynomial matrices with elements in R[z1, z2] of dimensions
n × n, n × l,m × n and m × l respectively. In this system of equations z1 and z2 are
shift operators, which for the Roesser model horizontal and vertical state vectors (and
similarly for other cases) are defined as

z1x
h(i, j) = xh(i+ 1, j), z2x

v(i, j) = xv(i, j + 1). (7)

The system of equations (6) gives rise to the system matrix

P (z1, z2) =

[
T (z1, z2) U(z1, z2)
−V (z1, z2) W (z1, z2)

]
, (8)
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where

P (z1, z2)

[
x
−u

]
=

[
0
−y

]
. (9)

In the case when T (z1, z2) invertible, (8) is said to be regular and the corresponding
2-D transfer-function matrix is

G(z1, z2) = V (z1, z2)T−1(z1, z2)U(z1, z2) +W (z1, z2). (10)

There are a number of concepts of equivalence in n-D systems theory and this partic-
ular area has been the subject of much research, e.g., in more recent work a transfor-
mation based on a module theoretic approach was considered Bachelier and Cluzeau
(2017). A basic transformation proposed for the study of 2-D system matrices is zero
coprime system equivalence as given in Johnson (1993); Levy (1981). This transfor-
mation may be regarded as an extension of Fuhrmann’s strict system equivalence
Fuhrmann (1977) from the 1-D to the 2-D case (and n-D, n ≥ 3) and is characterized
by the following definition.

Definition 3.1. Let P(m, l) denote the class of (n+m)× (n+ l) polynomial system
matrices in z1 and z2 with real coefficients. Two polynomial system matrices P1(z1, z2)
and P2(z1, z2) ∈ P(m, l), are said to be zero coprime system equivalent if they satisfy[

M 0
X Im

]
︸ ︷︷ ︸

S1(z1,z2)

[
T1 U1

−V1 W1

]
︸ ︷︷ ︸

P1(z1,z2)

=

[
T2 U2

−V2 W2

]
︸ ︷︷ ︸

P2(z1,z2)

[
N Y
0 Il

]
︸ ︷︷ ︸

S2(z1,z2)

, (11)

where P1(z1, z2), S2(z1, z2) are zero right coprime and P2(z1, z2), S1(z1, z2) are zero left
coprime and M(z1, z2), N(z1, z2), X(z1, z2) and Y (z1, z2) are polynomial matrices of
compatible dimensions.

The properties of controllability and observability lie at the heart of linear systems
theory and they are characterized by the zero structure of their associated system
matrices, see, e.g. Zerz (2000). The transformation of zero coprime system equivalence
plays a key role in many aspects of 2-D systems theory, see, e.g., Johnson (1993), Levy
(1981), Pugh et al. (1998) and Pugh et al. (1996)). One result is the following lemma.

Lemma 3.2 (Johnson, Johnson (1993)). For the description of (11), the transforma-
tion of zero coprime system equivalence preserves the transfer-function matrix and the
zero structure of the following matrices

Ti(z1, z2), Pi(z1, z2),
[
Ti(z1, z2) Ui(z1, z2)

]
,

[
Ti(z1, z2)
−Vi(z1, z2)

]
, i = 1, 2.
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4. Polynomial System Matrix Descriptions

Consider first the singular Roesser (SR) state-space model of (1). Then under zero
boundary conditions the polynomial equations describing the system dynamics are

PSR(z1, z2)

 xh

xv

−u

 =

 0
0
−y

 (12)

where

PSR(z1, z2) =

[
z1E1 + z2E2 −A B

−C D

]
, (13)

with

E =

[
E11 E12

E21 E22

]
, E1 =

[
E11 0
E21 0

]
,

E2 =

[
0 E12

0 E22

]
, A =

[
A11 A12

A21 A22

]
,

BT =
[

[BT
1 ;BT

2

]T
, C =

[
[C1 C2

]
is the corresponding system matrix. Also if the matrix [z1E1 + z2E2 −A] is invertible,
the transfer-function matrix corresponding to (1) is

GSR(z1, z2) = C [z1E1 + z2E2 −A]−1B +D. (14)

Consider the wave linear repetitive process (3) and introduce the state vector

ν(k, p) = [xTk (p) yTk (p)]T . (15)

Then, on applying the shift operators of (7), the system matrix associated with (3) is

PWR(z1, z2) =


z1z2In − z1A −

wH∑
i=−wL

zi2Bi z1B

−z1C z1Im −
wH∑

i=−wL

zi2Di z1D

0m,n −Im 0m,l

 , (16)

with transfer-function matrix

GWR(z1, z2) =
[

0 Im
]

z1z2In − z1A −

wH∑
i=−wL

zi2Bi

−z1C z1Im −
wH∑

i=−wL

zi2Di


−1 [

z1B
z1D

]
, (17)

provided the matrix inverse in (17) exists.
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An alternative description of (3) is to multiply the system equations by the shift
operator zwL

2 . This corresponds to multiplying the system matrix PWR in (16) on the
left by the following matrix that preserves the transfer-function matrix zwL

2 In 0 0
0 zwL

2 Im 0
0 0 Il

 .
Now let j = i+ wL and q = wL + wH and the polynomial system matrix P̃WR(z1, z2)
is

P̃WR(z1, z2) ≡
[

T̃WR ŨWR

−ṼWR 0m,l

]

=


z1z

wL+1
2 In − z1z

wL

2 A −
q∑

j=0

zj2Bj−wL
z1z

wL

2 B

−z1z
wL

2 C z1z
wL

2 Im −
q∑

j=0

zj2Dj−wL
z1z

wL

2 D

0m,n −Im 0m,l

 .
(18)

5. Transforming a WLRP to a SR

Let t = n+m and let P̃WR(z1, z2) be a (t+m)× (t+ l) polynomial system matrix of
the form (18). Then this matrix can be written as:

P̃WR(z1, z2) =

1∑
i=0

q∑
j=0

zi1z
j
2P̃i,j , (P̃1,0 = 0), (19)
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where P̃i,j are (t+m)× (t+ l) are matrices with constant entries. Next, construct the
matrices

Ẽ =



0t+l,t+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m

0t+l,t+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m
...

...
. . .

...
...

0t+l,t+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m

P̃1,q P̃1,q−1 · · · P̃1,1 0t+m,m

0l,t+l 0l,t+l · · · 0l,t+l 0l,m


,

Ã0 =



It+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m

0t+l,t+l It+l · · · 0t+l,t+l 0t+l,m
...

...
. . .

...
...

0t+l,t+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m

0t+m,t+l 0t+m,t+l · · · −P̃0,0 −FT
m,t+m

0l,t+l 0l,t+l · · · Fl,t+l 0l,m


,

Ã2 =



0t+l,t+l It+l · · · 0t+l,t+l 0t+l,m

0t+l,t+l 0t+l,t+l · · · 0t+l,t+l 0t+l,m
...

...
. . .

...
...

0t+l,t+l 0t+l,t+l · · · It+l 0t+l,m

−P̃0,q −P̃0,q−1 · · · −P̃0,1 0t+m,m

0l,t+l 0l,t+l · · · 0l,t+l 0l,m


,

(20)

where Fr,k = [0r,k−r Ir]. The system matrix in singular Roesser form now is

PSR(z1, z2) ≡
[

TSR USR

−VSR 0m,l

]

=


Iq(t+l)+m −z1Iq(t+l)+m 0q(t+l)+l,l 0q(t+l)+l,m 0q(t+l)+l,l

z2Ẽ −z2Ã2 − Ã0 FT
q(t+l)+m,l 0q(t+l)+m,m 0q(t+l)+m,l

0m,q(t+l)+m −Fm,q(t+l)+m 0m,l Im 0m,l

0l,q(t+l)+m 0l,q(t+l)+m −Il 0l,m Il
0m,q(t+l)+m 0m,q(t+l)+m 0m,l −Im 0m,l

 .
(21)

Theorem 5.1. Let PSR(z1, z2) be a {2[q(t+ l)+ l+m]+m}×{2[q(t+m)+ l+m]+ l}
system matrix as constructed as in (21). Then PSR(z1, z2) is related to the system
matrix P̃WR(z1, z2) in the form (18) by zero coprime system equivalence, i.e.,

S1P̃WR = PSRS2, (22)
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where

S1 =


0 0
It 0
0 0
0 0
0 Im

 , S2 =



z1z
q−1
2 It 0

0 z1z
q−1
2 Il

z1z
q−2
2 It 0

0 z1z
q−2
2 Il

...
...

z1It 0
0 z1Il

z1Fm,t 0

zq−1
2 It 0

0 zq−1
2 Il

zq−2
2 It 0

0 zq−2
2 Il

...
...

It 0
0 Il
Fm,t 0m,l

0 Il
Fl,t 0
0 Il



. (23)

Proof. It can be verified that

S1P̃WR = PSRS2 =


0 0

T̃WR ŨWR

0 0
0 0

ṼWR 0m,l

 (24)

and hence it remains to establish zero coprimeness of the matrices. Zero right coprime-
ness of P̃WR and S2 follows from the fact that the matrix[

P̃WR

S2

]
,

contains a highest order minor of order t + l which is equal to 1. Also zero left co-
primeness of PSR and S1 since the matrix

[
PSR S1

]
=


Iq(t+l)+m −z1Iq(t+l)+m 0 0 0 0 0

z2Ẽ −z2Ã2 − Ã0 FT
q(t+l)+m,l 0 0 Iq(t+l)+m 0

0 −Fm,q(t+l)+m 0 Im 0 0 0
0 0 −Il 0 Il 0 0
0 0 0 −Im 0 0 Im

 ,
(25)

has a highest order minor of order 2[q(t+ l)+ l+m]+m which is equal to ±1, obtained
by deleting the second and third block columns of the matrix in (25).
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Example 5.2. Consider the system matrix in (18) with wL = wH = 1, (q = 2), i.e.,

P̃WR =

 z1z
2
2In − z1z2A −B−1 −B0z2 −B1z

2
2 z1z2B

−z1z2C z1z2Im −D−1 −D0z2 −D1z
2
2 z1z2D

0m,n −Im 0m,l

 . (26)

In this case

P̃WR = P̃0,0 + P̃0,1z2 + P̃0,2z
2
2 + P̃1,1z1z2 + P̃1,2z1z

2
2 , (P̃1,0 = 0). (27)

where

P̃0,0 =

 0 −B−1 0
0 −D−1 0
0 −Im 0

 , P̃0,1 =

 0 −B0 0
0 −D0 0
0 0 0

 , P̃0,2 =

 0 −B1 0
0 −D1 0
0 0 0

 ,
P̃1,1 =

 −A 0 B
−C Im D
0 0 0

 , P̃1,2 =

 In 0 0
0 0 0
0 0 0

 . (28)

Then the matrices in (20) are given by

Ẽ =

 0 0 0

P̃1,2 P̃1,1 0
0 0 0

 , Ã0 =

 −I 0 0

0 −P̃0,0 0
0 0 0

 , Ã2 =

 0 I 0

−P̃0,2 −P̃0,1 0
0 0 0

 .
The resulting system matrix PSR(z1, z2) is

PSR =



In 0 0 0 0 0 0 −z1In 0
0 Im 0 0 0 0 0 0 −z1Im
0 0 Il 0 0 0 0 0 0
0 0 0 In 0 0 0 0 0
0 0 0 0 Im 0 0 0 0
0 0 0 0 0 Il 0 0 0
0 0 0 0 0 0 Im 0 0
0 0 0 0 0 0 0 In 0
0 0 0 0 0 0 0 0 Im
0 0 0 0 0 0 0 0 0

z2In 0 0 −Az2 0 Bz2 0 0 −B1z2

0 0 0 −Cz2 z2I Dz2 0 0 −D1z2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−z1Il 0 0 0 0 0 0 0

0 −z1In 0 0 0 0 0 0
0 0 −z1Im 0 0 0 0 0
0 0 0 −z1Il 0 0 0 0
0 0 0 0 −z1Im 0 0 0
0 −z2In 0 0 0 0 0 0
0 0 −z2Im 0 0 0 0 0
Il 0 0 −z2Il 0 0 0 0
0 0 −B0z2 −B−1 0 0 0 0 0
0 0 −D0z2 −D−1 0 0 0 0 0
0 0 −Im 0 Im 0 0 0
0 0 0 −Il 0 Il 0 0
0 0 0 0 −Im 0 Im 0
0 0 0 0 0 −Il 0 Il
0 0 0 0 0 0 −Im 0



, (29)

where the transformation matrices S1 and S2 are

S1 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
In 0 0
0 Im 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 Im



, S2 =



z1z2In 0 0
0 z1z2Im 0
0 0 z1z2Il

z1In 0 0
0 z1Im 0
0 0 z1Il
0 z1Im 0

z2In 0 0
0 z2Im 0
0 0 z2Il
In 0 0
0 Im 0
0 0 Il
0 Im 0
0 0 Il
0 Il 0
0 0 Il



(30)
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and hence

S1P̃WR = PSRS2 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−Az1z2 + z1z2
2 −B1z2

2 −B0z2 −B−1 z2z1B
−z2z1C −D1z2

2 −D0z2 + z1z2 −D−1 z2z1D
0 0 0
0 0 0
0 0 0
0 0 0
0 −Im 0



≡


0 0

T̃WR ŨWR

0 0
0 0

ṼWR 0m,l

 .
(31)

Finally, routine manipulations give

GSR(z1, z2) = G̃WR(z1, z2).

Conclusions

In this paper, an equivalent representation is derived for wave linear repetitive pro-
cesses as a 2-D singular Roesser state-space model starting from a given system matrix.
The exact connection between the original system matrix and the equivalent singular
2-D systems representation has been established as zero coprime system equivalence.
This permits, where relevant, the exchange of analysis tools between these two areas to
solve currently open systems theoretic question and hence, where appropriate, transfer
to applications areas for wave linear repetitive processes such as ILC design.

To preserve the zero structure, the resulting system matrix has somewhat large
dimensions. One possible area for future research is to find ways of reducing the di-
mensions of this matrix without, of course, changing its zero structure.
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