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Abstract
The applications of object-based image analysis (OBIA) in remote sensing studies have
received a considerable amount of attention over the recent decade due to dramatically
increasing of the spatial resolution of satellite imaging sensors for earth observation. In
this study, an unsupervised methodology based on OBIA paradigm for the estimation of
multi-scale training sets for land cover classification is proposed. The proposed method con-
sists of selection of valid region of interests in an unsupervised way and its characterization
using some attributes in order to form meaningful and reliable training sets for supervised
classification of different land covers of a satellite image.Multi-scale image segmentation is a
prerequisite step for estimation of multi-scale training sets. However, scale selection remains
a challenge in multi-scale segmentation. In this work, we propose a method to determine the
appropriate segmentation scale for each land cover with the help of prior knowledge in the
form of in-situ data. The proposed method is further discussed and validated through multi-
scale segmentation using quick shift and random forest algorithms on two multi-spectral
images captured using Worldview-2 sensor. Experimental results indicate that the proposed
method qualitatively and quantitatively outperforms three state-of-the-art methods.

Keywords Object based image analysis · Multi-scale RoIs · Quick shift · Random forest

1 Introduction

Identification of different land covers from remotely sensed satellite images is an essential
task for earth observation (EO). It has many applications in geology and mineral exploration,
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hazard assessment, oceanography, agriculture and forestry, land degradation, environmental
monitoring, and crop monitoring (Blaschke et al. 2008). Several works have been carried out
so far to explore useful information related to EO based on the high spectral and/or spatial
resolution of remote sensed images in the last decade. Most of these works are based on the
classification of pixels by considering the spectral similarities with predefined land covers
in early days because this approach has some strong advantages. However, this approach
has several shortcomings (Fisher 1997; Carleer et al. 2005; Aplin and Smith 2008; Gao and
Mas 2008) as well. In contrast to traditional pixel-based analysis, object-based image anal-
ysis (OBIA) considers “regions”or “objects”as basic building blocks for many tasks such as
temporal change detection, target recognition, and land-cover classification to produce valu-
able geographic information. In this study, objects and regions are used synonymously. This
approach provides numerous advantages (Blaschke et al. 2008; Blaschke 2010; Blaschke
and Strobl 2001; Blaschke and Lang 2006; Blaschke et al. 2010), including reduced spectral
variability and more spatial and contextual information such as shape and topological rela-
tionships. The main idea behind this approach is multi-scale image segmentation in which
an image is partitioned into hierarchical homogeneous objects or regions by a top-down
approach (Kurtz et al. 2012; Dey et al. 2010) or a bottom-up approach (Benz et al. 2004).
OBIAmainly concentrates on different characteristics or attributes or features extracted from
a region for its identification. Different features are region’s size, shape, texture, and colour.
It also considers the contextual information of each region by evaluating the spatial rela-
tionships among the image regions at different scales (Blaschke 2010). The feature set is
suitable for analyzing land covers using multi-scale image analysis, which matches the dif-
ferent scales with the sizes of the regions (Baatz and Shape 2000; Dungan et al. 2002; Hay and
Marceau 2004). Many image segmentation algorithms used in remote sensing application are
summarized and reviewed (Blaschke 2010; Blaschke et al. 2004; Dey et al. 2010; Mohan and
Ladha 2009; UcaAvci et al. 2011; Gholoobi et al. 2010; Whiteside and Ahmad 2005; Garcia-
Pedrero et al. 2015). In top-down approaches, an image is divided into regions based on some
heterogeneity criteria whereas in bottom-up approach, objects are formed by merging pixels
using some homogeneity criteria. The land cover classification accuracy does not depend on
which segmentation method is used, but on the segmentation result and its scales. Currently,
very few methods are there in literature for automatic selection of optimal scale for image
segmentation (Kim et al. 2008). In most of the cases, a scale selection mechanism depends
on subjective trial-and-error basis (Meinel and Neubert 2004; Zhang et al. 2008; Duro et al.
2012; Huang and Zhang 2008). Therefore, suitable scale selection is a challenging problem
for multi-scale image segmentation (Ming et al. 2015; Drăguţ et al. 2010.) In Kim et al.
(2008), authors used local variance and spatial autocorrelation to find out the value of scale
for forest classification from multi-spectral IKONOS images. Local variance was used fur-
ther to develop a tool for estimating range of suitable scales across a range of different image
types and landscapes (Drăguţ et al. 2010). In Woodcock and Strahler (1987), authors used
local variance graphs for defining scale of ground regions because local variance graphs can
reveal the spatial structure of images. Intra-segment homogeneity using weighted variance of
the near-infrared band (Espindola et al. 2006) and inter-segment heterogeneity using spatial
autocorrelation (Johnson and Xie 2011) were exploited by two different groups to determine
scale for image segmentation. In Karl andMaurer (2010), authors used variogram-based spa-
tial dependency to estimate suitable scales for generating land-management information. The
local-variance graph was considered to estimate spatial scale for mean-shift segmentation
algorithm (Ming et al. 2015;Ming and Zhang 2016.) InDrăguţ et al. (2010, 2011), Trias-Sanz
et al. (2008), Zhou et al. (2017), authors developed an adaptive approach for scale selection in
multi-scale segmentation of multi-spectral satellite images namely GF-1 and ZY-3 based on

123



Multidimensional Systems and Signal Processing (2020) 31:745–769 747

inherent features of images and prior knowledge of thematic maps. In Gonzalo-Martín et al.
(2013), authors obtained scales by post-evaluation of the multi-scale segmentation results
using quick shift (QS) segmentation algorithm (Vedaldi and Soatto 2008) and decision tree
(Tan 2018).

It is clear from the above discussion that the objective of most of these methods is to select
optimal scale by analyzing either the statistical variance of some features of image before
segmentation or multi-scale image segmentation results (Ming et al. 2015, 2012). Moreover,
these methods derive the necessary features and measurements used in scale selection from
the images. No prior knowledge is exploited except in Zhou et al. (2017), Witharana and
Civco (2014), Drăguţ et al. (2014).

The objective of this work is to propose an unsupervised methodology for the estimation
of multi-scale training sets. The proposed method consists of selection of valid region od
interests (RoIs) in an unsupervised way and followed by their characterization using some
attributes in order to form meaningful and reliable training sets for supervised classification
of different land covers of a satellite image. However, multi-scale image segmentation is a
prerequisite step of estimation ofmulti-scale training sets. The prior knowledge in the form of
in-situ data helps to determine the appropriate segmentation scale for each type of land cover.
The proposed RoI selection method is further validated, both qualitatively and quantitatively
through multi-scale segmentation using QS and random forest (RF) on two multi-spectral
images. The results obtained by the proposed method are also compared with the results
achieved using three state-of-the-art methods.

The rest of the article is as follows: In section 2, QS and RF are briefly reviewed. The
proposed framework is presented in Sect. 3. Experimental results are reported in Sect. 4.
Section 5 concludes the work.

2 Background

This work is carried out using existing QS and RF algorithms. Brief review of each of the
algorithm is described as follows:

2.1 Quick shift algorithm

Segmentation refers to the process of partitioning an image into perceptually meaningful
homogeneous and connected regions. A superpixel based algorithm can be used to replace the
rigid structure of the pixel grid (Achanta et al. 2012). A superpixel representation significantly
decreases the number of image primitives compared to the pixel representation. It also offers
the spatial support for computing region based features, which are more meaningful and
easier to analyze. There are several mode seeking image segmentation algorithms namely,
Mean shift (MS) (Fukunaga and Hostler 1975), Medoid shift (MeS) (Sheikh et al. 2007) and
QS (Vedaldi and Soatto 2008) in literature, which produce superpixels. But, MS and MeS
algorithms do not have ability to control the size, number, and compactness of the regions.
On the other hand, QS produces superpixels that are fixed in approximate size or number
(Vedaldi and Soatto 2008). MeS is faster thanMS if the underlying distance is Euclidean, but
it fails to cluster data points belonging to the samemode, resulting in over-fragmentation. QS
operates in non-Euclidean spaces likeMeS and trades-offs between under-fragmentation and
over fragmentation. It has the ability to identify clusters of pixels in the joint spatial and color
dimensions even if an image has more than one channel or multiple channels. Segments are
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considered as local elements (superpixels) and can be used as a basis for further processing. It
takes lesser time for the segmentation process, since it does not consider each pixel point in the
feature space. Generating superpixels using QS are controlled by three parameters namely,
ratio(r), kernel size(k) and distance/scale(d). The two words namely, scale and distance are
same in this context. So, these two words are used interchangeably in this work. Ratio is a
trade-off between spatial importance (i, j) and spectral importance (I 1, I 2, . . . , I n), where
I 1 is a panchromatic image and I 2 to I n are multi-spectral images. It balances multi-spectral
band proximity and image-space proximity and has a value in the range [0, 1]. Small ratio
corresponds to more importance to the spatial component than multi-spectral band. On the
other hand, higher values givemoreweight tomulti-spectral band. Scale concentrates on those
points, which are similar regardless of their density. Here, the density represents standard
deviation (σ ), which is estimated by the Parzen window density estimator. Higher density
value means fewer clusters. For each pixel (x, y), QS considers {x, y, I n(x, y)} as a sample
from a n+2 dimensional vector space. Then, it calculates the Parzen density estimate with a
Gaussian kernel of σ by Eq. 1.

E(x, y) = P{x, y, I n(x, y)}

=
∑

x ′ y′

1

(2πσ)n+2 exp

⎛

⎝
(

− 1

2σ 2

) ⎡

⎣
x − x

′

y − y
′

I n(x, y) − I n(x
′
, y

′
)

⎤

⎦

⎞

⎠, (1)

where x
′
and y

′
are the x-coordinate and y-coordinate of a pixel. In this window method, a

tree is formed based on the estimated density of each point in the feature space, where the
root having the highest density. A tree can be represented formally by Eq. 2.
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Scale is the maximum distance between nodes in the QS tree, which is used to cut links in
the tree to form the segmentation. Each pixel (x, y) is connected to the closest higher density
pixel parent (x, y) that achieves the minimum scale by equation 3.
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The algorithm calculates a forest of pixels whose branches are labeledwith a scale value. This
specifies a hierarchical segmentation of the image, with segments corresponding to subtrees.
Useful superpixels can be identified by cutting the branches whose scale label is above a
given threshold ‘d’.

2.2 Random forest (RF)

In recent years, a great interest has grown on the RF for analysing data (Seal et al. 2016). It
is an ensemble learning method. It generates many decision tree based classifiers and takes
decision based on the aggregated results. Two popular ensemble learning methods are the
boosting (Shapire et al. 1997) and bagging (Breiman 1996) of classification trees. In the
boosting method, successive trees depend on earlier trees, and an extra weight is provided
to the points which are incorrectly predicted by the earlier predictors. A weighted vote is
then considered for prediction. On the other hand, successive trees do not depend on earlier
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trees in bagging method. The RF employs in bagging method (Breiman 2000, 2001, 2004,
2017), where each tree is constructed independently using different subsets of data sets with
replacement. The data is selected randomly and uniformly. It may happen that some data set
may be picked twice and other data set may not be picked. The idea of drawing at random
data set and then using different data sets for the construction of classification trees is known
as bootstrapping. Finally, the predictions of all trees are aggregated using the majority voting
for classification.

3 Proposedmethodology

The block diagram of the proposed system is shown in Fig. 1, where selection of scale is
carried out manually and automatically. The first step of the proposed system is multi-scale
image segmentation, which takes panchromatic (PAN) and ‘n’ number of spectral bands
(MU Ln) of a satellite image as input. The segmentation algorithm splits the input image into
objects. Then each segmented region is checked whether it overlaps with any of the labeled
land cover regions in the in-situ data. If the overlap is more than or equal to 90% of region’s
own area then it is treated as a valid region or region of interest (RoI) and it is assigned the
label of that land cover region. These RoIs are used further for the estimation of multi-scale
training sets in order to classify different land covers in an image. In this work, QS is adopted
as the segmentation algorithm. The size of each region depends on the scale parameter. In
manual approach, as the value of the scale parameter is not known, QS is applied on same
set of satellite images several times using various scale parameters, generating multi-scale
segmentation results. Each of the segmented RoIs is then characterized by extracting the
following features from it.

(i) Mean gray values of the pixels constituting each RoI for each band of multi-spectral
images and panchromatic image,

(ii) Standard deviation of the gray levels of the pixels constituting each RoI for each band
of multi-spectral images and panchromatic image,

(iii) Entropy of the gray levels of the pixels constituting each RoI for each band of multi-
spectral images and panchromatic image,

(iv) Some derived features from multi-spectral bands such as

(a) Normalized difference vegetation index (NDVI) (Geerken et al. 2005),
(b) Normalized difference water index (NDWI) (Gao 1996), and
(c) Non-homogeneous feature difference (NHFD) (Bhattarai et al. 2011).

It is observed that the abovementioned features are sufficient to classify land covers in satellite
images. Thus, features like textural, shape feature, context/neighbourhood, arrangement of
objects etc are not used in this study. These features are calculated for each segmented RoI
in each scale independently. It means that the number of feature sets is equal to the number
of different scales that are considered. These labeled RoIs help to train RF for classifying
different land covers in a satellite image. When the RoIs and their feature extraction is over
at each scale then “the best scale” named as ‘scale=i’ in Fig. 1 for each type of land cover
has to be found, which help to build a multi-scale RoIs set for the training process of RF
to recognize different land covers in satellite images that are not involved in the training
process. The manual scale determination process starts with randomly dividing the selected
labeled RoIs into two sets namely, training and test set for each scale separately. The training
set is fed into fifteen RF classifiers for each scale separately. After the training is finished,
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Fig. 1 Schematic block diagram for land covers classification when multi-scale RoIs are chosen manually for
training

corresponding test set is fed to the trained model for identifying the class label of each test
sample. The scale is considered to be the best, which corresponds to the higher accuracy
performance in a classification process. Lastly, the “best scale” named as ‘scale=i’ of a
particular land cover, ‘k’, is chosen depending on the highest accuracy (Rk

i > Rk
j ∀ j&i �= j)

of that particular land cover among all scales. Here, Rk
i is the accuracy rate of the i th scale for

land cover ‘k’ and ‘j’ is also used to represent scale. Based on the “best scale”, ‘scale=i’ for a
particular land cover ‘k’, final training set forms, which is used further for the classification
of land cover of panchromatic image.
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3.1 Determination of scale

The manual scale selection method has some limitations. Firstly, the QS algorithm depends
on scale, which needs to be provided as input by a user. Thus, it is not an automatic approach.
Moreover, the identification of such scale for each land cover is not always an easy task.
Secondly, sometimes it may happen that at a particular scale, the RoIs generatedmay not have
the requisite (90%) overlapwith the smallest labeled polygon in the in-situ data. This happens
when the value of scale is larger than the radius of land cover. To overcome these limitations,
a method is proposed in this work, which finds scale for each land cover automatically. The
prior knowledge in the form of in-situ data helps to know the appropriate scale for each
land cover. The in-situ data consists of some labeled polygons representing different land
covers. Moreover, in-situ data also consists of more than one polygon for depicting same land
cover. Since the areas of the different polygons associated to a same land cover are not equal,
the proposed algorithm for automatic scale selection is based on the smallest polygon of a
particular land cover. In this way, multiple scales are chosen for RoIs representing different
land covers which are used further for training process of RF. The steps of the proposed
method are as follows.

All the polygons representing different land covers in-situ data are convex in nature.
Thus, there is no chance having its centroid out of the polygonal region. Here, a land cover
or polygon is treated as a class.

1. The total number of polygons representing each class is to be identified from the given
situ data.

2. Determination of scale for each class.
2.1) There may be more than one polygon of a particular class. So, find the smallest
polygon in terms of its area. Before finding the smallest polygon, the image needs to
be converted into its binary form, where ‘1’ corresponds to existence of a class and it
is represented by white color and ‘0’ means the background, which is specified by the
black color in the same figure. The area is the total number of white pixels in a polygon.
So, find the smallest polygon based on the total number of white pixels from the many
polygons of a particular land cover.
2.2) Then, find the centroid of this polygon using Eqs. 4 and 5 (Seal et al. 2015).

X =
∑

f (x, y)x∑
f (x, y)

, (4)

Y =
∑

f (x, y)y∑
f (x, y)

, (5)

where X and Y are the co-ordinates of the centroid of the smallest polygon and x, y are
the co-ordinates of the binary image or a class and f(x,y) is the intensity value that is
either ‘1’ or ‘0’.
2.3) Finally, Euclidean distances between the centroid and all boundary points of the
smallest polygon have to be estimated. Actual distance would be the shortest distance
among all and divide it by constant ‘4’, which is denoted as ‘d’�.

� Note: Many experiments have been performed in order to find the proper constant term in
step 2.3 for all the classes and finally the value ‘4’ is chosen. We believe that this constant
factor depends on size of the land covers. Moreover, it depends on size of the image.
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4 Experimental results and discussion

In this work, the proposed method is evaluated on two different sets of multi-spectral and
panchromatic images alongwith their in-situ data. It consists of information related to ground
truth,which helps to assign the class label ofRoIs obtained usingQS for training. Both the sets
are captured using Worldview-2 sensor at 1:25,000 scale. Satellite image data and spectral
measurements were correlated and satellite were classified to determine the location within
the studied region. The first set of images consists of one high resolution 0.46m panchromatic
band and 8 multi-spectral bands of 1.8m resolution. The multi-spectral band consists of red,
blue, green, near infrared, red-edge, coastal, yellow and near infrared 2. The first four are
the standard bands while the others are new bands (Globe 2011). The size of each image
is 2048 × 2048 pixels. These images were acquired on 11th September, 2011. The images
covered an area of 10.485 ha and the coordinates of upper left corner are S32◦51′7.91′′
and W70◦39′5.10′′ respectively. The area corresponds to a rural zone located at Valparaiso
region in Comuna de Los Andes, Chile. Seven land covers were found in the studied area in
dataset_1. These land covers are generic agricultural land, water bodies, and four different
types of crops (nectarine, grapevine, alfalfa and maize) in different phenological stages and
buildings and urban construction. The nectarine crops area could be separated further in
two different crop areas: nectarin_1 and nectarin_2. The panchromatic image of dataset_1 is
shown in Fig. 2a.

The second set of images was captured on 19th January, 2012 using the same sensor. The
images are covered in an area of 157 ha of croplands at Coihueco district, in Nuble province,
Biobio region, Chile (S36◦37′15.7′′ and W71◦53′57.7′′). The area is a good representation
of diverse vegetation, forests, rural constructions, and crops. The satellite images consist
of one panchromatic image of 0.59 m resolution and 4 multi-spectral of resolution 2.36 m.
Four spectral bands are as follows: blue band (450–510 nm), green band (510–580 nm), red
band (630–690 nm), and near infrared band (NIR, 770–895 nm). The size of each image is
2006× 2172 pixels. Five land covers were found in dataset_2. These land covers are forest,
soil, crop, fruit, and urban construction. The panchromatic image of dataset_2 is shown in
Fig. 3a. The labeled polygons included in the vector file are overlaid on Figs. 2a and 3a,

Grapevine

Nectarine 2

Alfalfa

Water

Soil

Nectarine 1

Urban

Maize(a) (b)

Fig. 2 a Panchromatic image of dataset_1 and b corresponding in-situ data showing selected regions of
different types of land covers with color labels
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Soil

Fruit

Forest

Urban

Crop

(a) (b)

Fig. 3 a Panchromatic image of dataset_2 and b corresponding in-situ data showing selected regions of
different types of land covers with color labels

shown in Figs. 2b and 3b respectively. Beside these in-situ data, pixel-wise ground truth of
land cover types are also provided with both the datasets.

The QS may be used for any feature space, but for this work, the segmentation process
using QS is done based on the raw intensity values of panchromatic band and multi-spectral
bands of satellite images. Two set of experiments are carried out in this work. As discussed
before, the QS algorithm depends on three parameters namely, ‘r’, ‘k’ and ‘d’. The value of
the ‘r’ should be close to ‘1’ for this work for assigning more weight to multi-spectral space.
Thus, three loops are used for finalizing the values of ‘r’, ‘k’ and ‘d’. Outer loop refers to ‘r’
and two inner loops are used for other two parameters. Initially, the values of ‘r’, ‘k’ and ‘d’
are ‘1’, ‘1’ and ‘1’ respectively. Then the value of ‘r’ is decremented by 0.1 and the values of
the other two parameters are incremented by ‘1’ in each successive iteration. After analyzing
the outputs of the QS, the value of ‘k’ is set to ‘10’ because k = 10 provides a mean segment
size for the lower value of ‘d’ adequate for the scenes under study. But, the identification of
scale parameter is not an easy task. In the first set of experiments, the scales are predefined
i.e. in other words, the values of scales are chosen manually, which are 5, 10, 15, 20, 25, and
30. So, the segmentation process is carried out six times depending on these six values of
scale, where scale is measured in numbers of pixels.

Figure 4 demonstrates the output of the QS algorithm for r = 0.7, k = 10, and d = 5
which are overlaid on different land covers obtained from in-situ data for both set of images.
The outputs of the QS, i.e. RoIs at each scale are marked by randomly assigned colors. After
that some of the segmented regions are selected by a simple rule, which is also described in
Sect. 2.1. Then the selected RoIs are characterized using the designed features and are fed into
RF for training and testing. The selectedRoIs are divided into two randomsets, one containing
70% of the selected RoIs and other containing rest 30%. It is found experimentally that the
accuracy is higher when the size of the training set and test set are 70% and 30% of selected
RoIs respectively. However, accuracy increases marginally if 75% RoIs are used for training
process. But, it takesmore time than the previous case. That is why the rest of the experiments
are based on 70%RoIs and 30%RoIs for training and testing processes respectively. Training
set and their labels are used to train the fifteen RF classifiers. In general, the better results
depend on the use of more number of trees. After a certain point, the improvement decreases
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Fig. 4 a RoIs obtained from QS with d = 5 for the scene in Fig. 2 with overlaid labeled RoIs and b RoIs
obtained from QS with d = 5 for the scene in Fig. 3 with overlaid labeled RoIs

Table 1 Recognition accuracies (%) for different classes of dataset_1 at various scales

Scale Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

5 98.91 99.63 84.63 95.42 98.39 81.02 98.74 92.03

10 99.01 92 81.33 95.78 98.35 76.16 99.07 95.82

15 99.26 94.52 86.23 94.40 98.14 72.69 99.19 94.56

20 99.12 Null Null 94.96 97.70 74.67 98.82 94.46

25 98.95 Null Null Null 97.69 79.31 98.92 98.87

30 99.10 Null Null Null 96.33 73.85 98.43 98.12

as the number of trees increases. In other words, the advantage in prediction from learning
more trees will be lower than the cost in computation time for learning these additional trees.
It is observed experimentally that the accuracy decreases as the number of trees increases
after fifteen. After training process, test set is used for identifying the class label of each test
sample. The accuracies (Karlekar et al. 2019; Sharma and Seal 2019) (%) of two datasets
are shown in Tables 1 and 2 respectively. Each row of the Tables 1 and 2, corresponds to the
accuracies based on the RoIs from the segmented image using different scales. The null value
represents that there are no valid RoIs for the particular land cover for that particular scale.
It happens when the value of scale is larger than the radius of land cover. The best accuracy
of each land cover is marked in bold font in Tables 1 and 2 and corresponding scale is noted.
After selecting the best scale for a particular type of land cover, all the segmented regions at
that scale are fed to the selected classifier and the accuracy performance of the classifier is
noted by comparing with the pixel-wise labeling of the land cover type provided as ground
truth with the dataset.

Two confusion matrices are generated based on this actual outcome of the classifiers at the
best scales for dataset_1 and dataset_2. These two confusion matrices are shown in Tables
3 and 4 for different land covers of dataset_1 and dataset_2 respectively when multi-scale
RoIs are selected manually. Each column of the confusion matrix represents the instances in
an actual class while each row represents the instances in a predicted class (Seal et al. 2016).

Tables 5 and 6 report true positive (TP), false negative (FP), true negative (TN), false
negative (FN), accuracy (Powers 2011), sensitivity, specificity and average accuracy for
different classes of dataset_1 and dataset_2 respectively when multi-scale RoIs are chosen
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Table 2 Recognition accuracies
(%) for different classes of
dataset_2 at different scales

Scale Forest Urban Minor crop Fruit Soil

5 76.05 98.50 78.64 79.21 96.81

10 75.11 98.95 80.73 81.35 97.65

15 89.54 99.83 78.30 71.60 98.03

20 88.26 98.82 80.80 66.95 98.61

25 84.20 99.59 87.84 65.36 99.19

30 81.20 Null Null 68.11 98.75

Table 3 Confusion matrix (%) generated from the accuracy performance at the best scale selected manually
for each of the land covers for dataset_1

Actual class Predicted class

Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

Alfalfa 99.26 0.03 0.79 0.45 0.09 2.36 0.22 0.13

Water 0.13 99.63 1.20 0.77 0.23 4.62 0.17 0.09

Urban 0.04 0.05 86.23 0.56 0.11 2.00 0.03 0.26

Maize 0.17 0.09 2.27 95.78 0.07 3.99 0.05 0.12

Nectarin_1 0.08 0.01 3.03 0.46 98.39 1.92 0.03 0.07

Nectarin_2 0.23 0.15 3.91 0.97 0.43 81.02 0.09 0.06

Grapevine 0.03 0.02 1.33 0.87 0.35 3.02 99.19 0.40

Soil 0.06 0.02 1.24 0.14 0.33 1.07 0.22 98.87

Table 4 Confusion matrix (%)
generated from the accuracy
performance at the best scale
selected manually for each of the
land covers for dataset_2

Actual class Predicted class

Forest Urban Minor crop Fruit Soil

Forest 89.54 0.03 2.16 4.61 0.16

Urban 5.09 99.83 3.38 5.02 0.09

Minor crop 0.39 0.04 87.84 5.89 0.35

Fruit 2.33 0.08 4.19 81.35 0.21

Soil 2.65 0.02 2.43 3.13 99.19

manually. The higher sensitive values for different classes of both the datasets rarely overlook
a positive and higher specific value rarely consider a positive for anything that is not the target
of testing.

Till now, the class labels of some of the RoIs that belong to the testing set are found and
matchedwith the predefined class labels. In order to get the class label of the image or all RoIs
in an image, a training set is needed with high discriminating capability. This training set is
formed on the basis of the best features that are obtained from the multi-spectral image based
on the best scale for each land cover. After getting all the valid RoIs and its corresponding
features for the best scale, these are put together to build a training set. Now, the main job
is to find the known and unknown land covers from the multi-spectral image i.e. the image
is used for testing purpose. The first set of experiments is biased towards scales estimation.
It is already mentioned that the proper selection of scale for every land cover in an image is
truly a difficult task.
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Table 5 Different classification measures (%) derived from Table 3 for different classes of dataset_1 when
multi-scale RoIs are chosen manually

Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

TP 99.26 99.63 86.23 95.78 98.39 81.02 99.19 98.87

TN 95.93 92.79 96.96 93.24 94.4 94.16 93.98 96.92

FP 0.74 0.37 13.77 4.22 1.61 18.98 0.81 1.13

FN 4.07 7.21 3.03 6.76 5.6 5.84 6.02 3.08

Accuracy 99.39 99.05 97.89 98.62 99.09 96.89 99.14 99.59

Sensitivity 96.06 93.25 96.60 93.40 94.61 93.27 94.27 96.97

Specificity 99.89 99.94 98.06 99.39 99.76 97.33 99.88 99.83

Average accuracy 98.70

Table 6 Different classification measures (%) derived from Table 4 for different classes of dataset_2 when
multi-scale RoIs are chosen manually

Forest Urban Minor crop Fruit Soil

TP 89.54 99.83 87.84 81.35 99.19

TN 93.04 86.42 93.33 93.19 91.77

FP 10.46 0.17 12.16 18.65 0.81

FN 6.96 13.58 6.67 6.81 8.23

Accuracy 96.51 97.25 96.23 94.90 98.19

Sensitivity 92.78 88.02 92.94 92.27 99.33

Specificity 97.40 99.95 97.00 98.29 97.94

Average accuracy 96.61

In the next set of experiments, the proposed algorithm is applied to automatically find the
scale for each land cover present in a satellite image. The value of the scale will be higher
for the segmentation with the increase in the area of the land cover or polygon in-situ data.
The pictorial representation of the proposed algorithm for scale selection is shown in Fig. 5
for “Alfalfa” land cover of dataset_1.

The calculated scales using proposed algorithm for dataset_1 and dataset_2 are shown in
Tables 7 and 8 respectively. Next objective is to form a training set for building a trained RF,
which will help to classify land covers of a satellite image, whose class labels are assumed
to be unknown. Now, segmentation process is applied several times based on number of land
covers present in a satellite image using automatic scales. For example, QS is applied 8 times
for dataset_1 whereas 5 times for dataset_2 because 8 and 5 different land covers present
in dataset_1 and dataset_2 respectively. Automatically, 8 different feature sets for dataset_1
and 5 different feature sets for dataset_2 are obtained based on 8 and 5 different scales.
Similarly, 8 and 5 accuracies are obtained for each land cover using 8 and 5 different scales
for dataset_1 and dataset_2 respectively. Out of these accuracies, only best accuracy for each
land cover are reported in Tables 7 and 8 . Two confusion matrices are shown in Tables 9 and
10 for different land covers of dataset_1 and dataset_2 respectively when multi-scale RoIs
are selected automatically.
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Fig. 5 The smallest polygon of
‘Alfalfa’ land cover and its
shortest scale

Table 7 The automatic scale selection for different classes and the accuracy for the valid RoIs in each class
of dataset_1

Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

Scale accuracy (%)

7 3 9 16 13 7 30 24

98.21 97.48 98.15 98.12 98.15 98.24 98.01 98.21

Table 8 The automatic scale
selection for different classes and
the accuracy for the valid RoIs in
each class of dataset_2

Forest Urban Minor Crop Fruit Soil

Scale accuracy (%)

11 15 25 10 25

90.18 94.20 96.58 93.09 96.61

Table 9 Confusion matrix (%) based on automatic multi-scale RoIs for different land covers of dataset_1

Actual class Predicted class

Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

Alfalfa 98.21 0.59 0.47 0.17 0.32 0.08 0.17 0.09

Water 0.09 97.48 0.32 0.20 0.21 0.16 0.29 0.35

Urban 0.23 0.82 98.15 0.08 0.47 0.06 0.23 0.18

Maize 0.29 0.15 0.37 98.12 0.37 0.09 0.11 0.43

Nectarin_1 0.18 0.26 0.21 0.43 98.15 0.43 0.24 0.22

Nectarin_2 0.46 0.14 0.23 0.27 0.08 98.24 0.48 0.29

Grapevine 0.19 0.37 0.17 0.70 0.17 0.73 98.01 0.23

Soil 0.35 0.09 0.08 0.03 0.23 0.21 0.47 98.21
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Table 10 Confusion matrix (%)
based on automatic multi-scale
RoIs for different land covers of
dataset_2

Actual class Predicted class
Forest Urban Minor crop Fruit Soil

Forest 90.18 1.19 0.87 1.93 0.37

Urban 2.17 94.20 0.59 1.23 1.27

Minor crop 3.35 2.33 96.58 1.69 0.83

Fruit 2.10 0.98 0.93 93.09 0.92

Soil 2.20 1.30 1.03 2.06 96.61

Table 11 Different measures (%) derived from Table 9 for different land covers of dataset_1

Alfalfa Water Urban Maize Nectarin_1 Nectarin_2 Grapevine Soil

TP 98.21 97.48 98.15 98.12 98.15 98.24 98.01 98.21

TN 99.34 98.38 97.93 98.19 98.03 98.05 97.44 98.54

FP 1.79 2.52 1.85 1.88 1.85 1.76 1.99 1.79

FN 0.66 1.62 2.07 1.81 1.97 1.95 2.56 1.46

Accuracy 99.69 99.48 99.51 99.53 99.52 99.53 99.43 99.59

Sensitivity 99.33 98.36 97.93 98.18 98.03 98.05 97.45 98.53

Specificity 99.74 99.64 99.73 99.73 99.73 99.72 99.71 99.74

Average accuracy 99.53

Table 12 Different measures (%) derived from Table 10 for different land covers of dataset_2

Forest Urban Minor crop Fruit Soil

TP 90.18 94.20 96.58 93.09 96.61

TN 95.64 94.74 91.80 95.07 93.41

FP 9.82 5.80 3.42 6.91 3.39

FN 4.36 5.26 8.20 4.93 6.59

Accuracy 97.16 97.78 97.67 97.63 98.04

Sensitivity 95.38 94.71 92.17 94.97 93.61

Specificity 97.57 98.55 99.13 98.28 99.14

Average accuracy 97.65

Tables 11 and 12 present TP, FP, TN, FN, accuracy, sensitivity, specificity and average
accuracy for different classes of dataset_1 and dataset_2 respectively when multi-scale RoIs
are chosen automatically.

In order to compare the performance of the two RoIs selection methods, the accuracy
provided for each of them for each land cover, and for the two studied data sets, are included
in Figs. 6 and 7 respectively. Red color is used to represent the automatic method whereas
dotted blue color depicts manual process. It is clear from both the Figs. 6 and 7 that the
automatic selection of multi-scale RoIs results in higher accuracy than manual process for
almost all the land covers.

The sensitivity and specificity are calculated formeasuring theperformanceof the twoRoIs
selection methods. For the comparison of the performances of two RoIs selection methods,
the sensitivity and specificity for each land cover of dataset_1 are shown in Figs. 8 and 9,
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Fig. 8 Comparison of sensitivities of manual and automatic multi-scale RoIs selection methods for dataset_1
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Fig. 9 Comparison of specificities of manual and automatic multi-scale RoIs selection methods for dataset_1
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Fig. 10 Comparison of sensitivities of manual and automatic multi-scale RoIs selection methods for dataset_2
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Fig. 11 Comparison of specificities of manual and automatic multi-scale RoIs selection methods for dataset_2

whereas Figs. 10 and 11 depict the sensitivity and specificity for each land cover of dataset_2.
Red color is used to represent the automaticmethodwhereas dotted blue color depicts manual
process. It is clearly visible in Figs. 8, 9, 10 and 11 that automatic selection ofmulti-scale RoIs
gives higher sensitivity and specificity than manual process for almost all the land covers.
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Fig. 12 Classification of different classes for dataset_1 using a automatic scale selection method, b manual
scale selection method, c M1 (Geiß et al. 2016), d M2 (Zhou et al. 2017) and e M3 (Wang et al. 2018)
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Fig. 13 Classification of different classes for dataset_2 using a automatic scale selection method, b manual
scale selection method, c M1 (Geiß et al. 2016), d M2 (Zhou et al. 2017) and e M3 (Wang et al. 2018)

The classification results of all the images namely, dataset_1 and dataset_2, using newly
formed multi-scale RoIs are shown in Figs. 12a, b and 13a, b respectively. Some pseudo
colors are used to represent different classes in both the datasets. Visually we can say that the
classification results are good because more homogeneous areas are obtained with the auto-
matic scale selection method. From the above obtained results, it is clear that the accuracies
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Table 13 The values of differentmetrics obtained by the two state-of-the-art methods and the proposedmethod

Method Evaluation metric (%) Dataset_1 Dataset_2

M1 (Geiß et al. 2016) Average accuracy 82.24 81.76

Average sensitivity 81.28 81.27

Average specificity 82.17 82.30

M2 (Zhou et al. 2017) Average accuracy 90.42 91.36

Average sensitivity 91.26 91.78

Average specificity 91.87 92.94

M3 (Wang et al. 2018) Average accuracy 84.33 82.45

Average sensitivity 83.33 82.68

Average specificity 83.33 81.76

Proposed method Average accuracy 99.53 97.65

Average sensitivity 98.23 94.17

Average specificity 99.72 98.53

are higher for each land cover when scales are chosen automatically. Moreover, it reduces
human effort.

Now, the proposed approach is compared with three state-of-the-art approaches. In the
first approach (M1), Geiß et al. (2016) used a bottom-up region-growing segmentation algo-
rithm for partitioning remotely sensed image into objects. These objects were employed to
combine several sequences secured with morphological operator based on central tendency.
Then these objects were characterized by various shape features and fed into random for-
est classifier for land covers recognition. In this study, the same configuration is followed
while implementing this approach on dataset_1 and dataset_2, where the achieved results are
shown in Figs. 12c and 13c respectively. Further, the obtained average accuracies, average
sensitivities and average specificities of the two datasets are reported in Table 13.

In second approach (M2), Zhou et al. (2017) merged features from each segmented
region with prior knowledge from thematic maps in a top-down segmentation. First MS
was used to find segmented regions from the whole image. Then three spectral features such
as standard deviation, heterogeneous, and entropy, five textural features named as energy,
contrast, entropy, inverse difference moment, and correlation, and two shape features includ-
ing smoothness and shape compactness from each segmented region are considered. They
computed complexity value for each region. A region would be further divided into multiple
small regions if the complexity value of that region is large. The same procedure was fol-
lowed to split into simplest regions iteratively. At last, the final segmentation results were
obtained and were reported in Table 13. Figures 12d and 13d show the subjective evaluations
on dataset_1 and dataset_2 respectively. In third approach (M3), Wang et al. (2018) consid-
ered a simple linear iterative clustering algorithm to find superpixels of image. Then these
superpixels were partitioned by a dynamically constrained agglomerative clustering and par-
titioning (REDCAP) algorithm with the help of the initial number of segments. The local
variance (LV) and the rate of LV change helped to determine suitable number of segments.
Lastly, same superpixels were again repartitioned by the REDCAP algorithm according to
the appropriate number of segments to acquire the segmentation result. The same work is
adopted and is implemented on dataset_1 and dataset_2 and the obtained outcomes are dis-
played in Figs. 12e and 13e respectively. Furthermore, average accuracies, sensitivities and
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specificities are stated in Table 13. It is clear from both the Figs. 12 and 13 and Table 13 that
the proposed method i.e. automatic scale selection method outperforms three state-of-the-art
methods qualitatively and quantitatively.

5 Conclusion

An automatic selection of multi-scale RoIs for multi-spectral satellite image classification
is proposed in this work. The novelty of this work relies on the automatic selection of the
scale parameter for the QS segmentation algorithm which is based on the labeled land covers
of the in-situ data. Finally, the experiments are conducted using the RF method. Mainly,
two sets of experiments are performed. In the first set of experiments, some arbitrary scales
(5, 10, 15, 20, 25, and 30) are chosen on which segmentation process is carried out. In the
second set of experiments scales for different land covers are computed automatically by
the proposed algorithm. It is found from the experimental results that the accuracies are
better for the automated scale section. Moreover, the automatic scale estimation method has
some remarkable advantages like (i) it reduces human effort for manually selecting proper
scale for each land cover in the studied scene, (ii) the accuracies are higher as compared to
established methods; (iii) in most of the cases, accuracy, sensitivity and specificity are also
higher for automatic multi-scale RoIs selection method than manual process. In automatic
scale selection method, segmentation is done only one time. Sometimes, the computed scales
are close enough to the manually selected scales for some land covers and sometimes, they
are dissimilar. The reason behind dissimilarity is that all the land covers are close to each
other statistically. It is experimentally found that all the land covers are closer to each other
statistically.Moreover, the dynamic ranges of intensities of different land covers are very close
and sometimes they are overlapped. The the accuracies are satisfactory using the RF. Three
state-of-the-art methods are adopted and are implemented on two datasets. Experimental
results demonstrate that the proposed method outperforms three state-of-the-art methods
quantitatively and qualitatively. Convolution neural networks (CNN) has made incredible
improvements over the past few years. So, CNN would be used in near future for land covers
classification.
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