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Abstract
Examples of complex-valued random phenomena in science and engineering are abound,
and joint blind source separation (JBSS) provides an effective way to analyze multiset data.
Thus there is a need for flexible JBSS algorithms for efficient data-driven feature extraction
in the complex domain. Independent vector analysis (IVA) is a prominent recent extension of
independent component analysis to multivariate sources, i.e., to perform JBSS, but its effec-
tiveness is determined by howwell the source models used match the true latent distributions
and the optimization algorithm employed. The complex multivariate generalized Gaussian
distribution (CMGGD) is a simple, yet effective parameterized family of distributions that
account for full second- and higher-order statistics including noncircularity, a property that
has been often omitted for convenience. In this paper, we marry IVA and CMGGD to derive,
IVA-CMGGD, with a number of numerical optimization implementations including steep-
est descent, the quasi-Newton method Broyden–Fletcher–Goldfarb–Shanno (BFGS), and
its limited-memory sibling limited-memory BFGS all in the complex-domain. We demon-
strate the performance of our algorithm on simulated data as well as a 14-subject real-world
complex-valued functional magnetic resonance imaging dataset against a number of com-
peting algorithms.
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1 Introduction

The complex-valued domain is the natural home for the processing of signals for various
problems such as those in medical imaging, communications, sonar and radar array process-
ing, and geophysics. Recently, research efforts increasingly focus on the analysis of multiple
datasets jointly to exploit complimentary information among them. Independent vector anal-
ysis (IVA), a recent extension of independent component analysis (ICA) to multiple datasets,
decomposes each dataset into a linear combination of statistically-independent factors taking
cross-dataset dependencies into account. It has been successfully applied to a good number
of applications where joint source separation is needed and one has to fully leverage the
statistical information across multiple datasets, for example, in the joint analysis of elec-
troencephalographic datasets (Bridwell et al. 2018), functional magnetic resonance imaging
(fMRI) applications (Lv et al. 2018), and multichannel audio array processing (Itakura et al.
2018), to name a few. Therefore, flexible algorithms are needed in the complex domain that
are data-driven since, in many cases, little prior information is known about the nature of
these sources. The IVA algorithm, IVA Gaussian (IVA-G) (Anderson et al. 2012a), on the
other hand, uses the noncircular Gaussian distribution as the latent source model which can
exploit second-order statistics. IVALaplacian (IVA-L) (Lee et al. 2006), uses an uncorrelated,
circular Laplacian model which better matches the heavy tails of physiologically-relevant
components in fMRI but fails to exploit noncircularitywhich has been shown in fMRI sources
(Adalı et al. 2011b; Rodriguez et al. 2012). In Kuang et al. (2017), the authors develop a
noncircular complex-valued multivariate IVA algorithm based on the real-valued multivari-
ate generalized Gaussian distribution (MGGD), which we call adaptive IVA, by explicitly
incorporating the pseudo-covariance matrix in the update rule. However, a number of sim-
plifying assumptions are made on the data that bias the results: first, the demixing matrices
are constrained to be orthogonal which is generally not true (Cardoso 1998). Second, for
each source, the covariance matrix is estimated using its dominant eigenvalue only. This
is informally justified based on experimental observations in multiband frequency-domain
acoustic data in Na et al. (2013) but justification for other sources is unclear.

Since the performance of IVA is intimately tied to the accuracy of the modeling assump-
tions made to the underlying latent sources, we target families of distributions that are simple
(i.e., require few parameters to estimate), yet flexible enough to accommodate a variety of
sources. In Ollila et al. (2012), a broad survey of complex-valued, elliptically-symmetric
distributions is presented, but the simple generalized Gaussian distribution derived omits
noncircularity.

In Mowakeaa et al. (2016), we develop the complex MGGD (CMGGD) family of dis-
tributions that generalizes the generalized Gaussian distribution in Ollila et al. (2012) to
noncircular random vectors.We develop an estimator for the CMGGDaugmented covariance
matrix which incorporates both the classical covariance matrix in addition to the pseudo-
covariance matrix within the maximum likelihood framework. We illustrate the advantage of
incorporating all available forms of statistical diversity—in this discussion, noncircularity,
second- and higher-order statistics—into source distributions through the improved perfor-
mance in estimating the augmented covariance matrix over a range of shape parameters.

In this paper, we employ theCMGGD family in the development of IVAwithout constrain-
ing the demixingmatrices to be orthogonal—or unitary in the complex-valued case. Using the
complex augmented form,we present the cost function and develop IVA-CMGGD in the com-
plex domain. Since the cost function has no closed-form solution,we useWirtinger calculus to
derive the gradient and resort to 3 numerical optimization techniques: steepest descent (SD),
quasi-NewtonBroyden–Fletcher–Goldfarb–Shanno (BFGS), and limited-memory BFGS (L-
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BFGS), with a step size satisfying the Wolfe conditions (Sorber et al. 2012; Nocedal and
Wright 2006). The result is 3 new IVA algorithms: IVA-CMGGD-SD, IVA-CMGGD-BFGS,
and IVA-CMGGD-L-BFGS respectively. To demonstrate the efficacy of our approach, we
compare their performancewith that of competing algorithms applied to both complex-valued
simulated sources as well as a real-world, 14-subject complex-valued fMRI finger-tapping
dataset used in a number of other studies (Rodriguez et al. 2011, 2012; Li et al. 2011; Xiong
et al. 2012). In exploratory fMRI analysis, little is known about the distributions of the latent
sources and the data, as collected, are natively complex-valued (Rodriguez et al. 2015). The
phase of the complex-valued fMRI data is often dropped in favor of real-valued processing
of the magnitude data alone, even though studies have shown the phase to contain novel
physiologically-relevant information (Feng et al. 2009; Rowe 2005; Arja et al. 2010). The
phase images are discarded primarily because their unfamiliar and noisy nature poses a chal-
lenge when studying fMRI data (Calhoun et al. 2002; Adalı and Calhoun 2007). Therefore,
exploiting the information contained in the phase promises to increase our ability to iden-
tify areas in the brain with significant susceptibility changes that could not be previously
identified by operating only on the magnitude data. Additionally, it is natural to assume that
dependencies exist in neural behavior inmultiple subjects under similar conditions (Dea et al.
2011). These facts motivate the need for flexible, data-driven techniques for joint analysis
in the complex domain utilizing the full extent of statistical information available in simple
form—an excellent match for our proposed algorithms.

The rest of the paper is organized as follows: Sect. 2 presents background material and the
theoretical development of our proposed method. In Sect. 3, we introduce the experimental
setup for simulated data and the real-world fMRI dataset and present the results. Section 4
concludes the paper.

2 Theory andmethods

2.1 Complex-valued RVs

The probability density function (PDF) of a complex-valued random vector (RV) x = xr +
jxi ∈ C

K , where xr , xi ∈ R
K , is defined as the joint probability density function of its real

and imaginary components:

px(x) := pxr ,xi (xr , xi ). (1)

The real composite representation xR = [
x�

r , x�
i

]�
fully captures the behavior of a random

vector over its domain. The complex augmented form (Schreier and Scharf 2010), given by[
x�, xH

]�
, where (·)H is the Hermitian operator, is an equivalent redundant representation

related to the real composite form through an invertible linear transform (Schreier and Scharf
2010; Adalı et al. 2011b),

x = TK xR ⇔ xR = 1

2
TH

K x, (2)

where TK =
[
I jI
I − jI

]
∈ C

2K×2K is unitary up to a factor1 of 2 and I is the identity matrix.

In this paper, we omit the subscript in TK when it is understood from the context.

1 Unitary up to a factor of 2 implies TTH = THT = 2I.
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Although redundant, the complex augmented form offers a number of advantages when
manipulating complex RVs. For instance, since the PDF of a complex-valued random vector
x is necessarily a real-valued function of its argument (as are all optimize-able cost functions),
Wirtinger, or CR calculus (Schreier and Scharf 2010; Adalı et al. 2011a; Brandwood 1983;
Wirtinger 1927; Adalı and Schreier 2014) can be applied to take derivatives of the PDF
with respect to x or x∗ while keeping the other constant. This avoids the tedious task of
differentiating with respect to each of the real and imaginary components separately. And by
maintaining its complex structure, this approach also retains the intuition of the RVs in their
natural domain.

The complex augmented form also allows for capturing full complex second-order statis-
tics implicitly. To illustrate this, consider the augmented covariance matrix of x ∈ C

K given
by:

C := E

{
x xH

}
= E

{[
xxH xx�
x∗xH x∗x�

]}
, (3)

where (·)∗ is the complex conjugate operator. It is clear that the covariance matrix of the
complex augmented form captures the covariancematrixC = E

{
xxH

}
aswell as the pseudo-

covariance matrix P = E
{
xx�} of the complex RV. We note the distinct block pattern of C:

the northwest block is the complex conjugate of the southeast block, and the northeast block
is the complex conjugate of the southwest block. Also, an augmented covariance matrix is
Hermitian, and, like its real-valued analog, positive semi-definite (Haykin 2014).

Following definitions in Schreier and Scharf 2010, we call an random vector x proper if
the pseudo-covariance matrix vanishes and improper otherwise. To quantify the impropriety
of random vector x, the noncircularity coefficients, defined as the singular values of the
coherence matrix,2

R = C−1/2PC−H/2, (4)

are computed. Then, the noncircularity coefficients can be combined into a single metric of
impropriety in a number ofways each possessing different attributes.We opt for the following
(Schreier and Scharf 2010) for degree of impropriety (DOI):

ρ = 1

K

K∑

k=1

λ2k, (5)

where λk is the kth singular value ofR. This choice possesses the desirable property that when
ρ = 1, λk = 1, k ∈ {1, . . . , K }, i.e., each of the marginal variates is maximally-improper.
Similarly, when ρ = 0, λk = 0, k ∈ {1, . . . , K }, each is accordingly proper.

2.2 The CMGGD family

In a number of applications such as fMRI analysis, the components of interest are highly
noncircular (Li et al. 2011), and hence it is desirable to use a multivariate density model
that allows for noncircularity. MGGD, as we noted, provides a desirable balance between
complexity andflexibility. It has unimodalmarginals that canmodel distributionswith heavier

2 The classical singular value decomposition is sufficient to obtain the noncircularity coefficients. However, if
the corresponding canonical projections are needed, a special, complex-symmetric decomposition called the
Takagi factorization (Horn and Johnson 1990; Schreier and Scharf 2010; Moreau and Adalı 2013) is required
to maintain the complex augmented form.
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or lighter tails than the Gaussian distribution using a single shape parameter thus able to
decrease the bias due to PDF mismatch while allowing for reasonable complexity with a
small number of paarmeters. The circular complex-valued generalized Gaussian distribution
is given by Ollila et al. (2012):

pGG(x) = βΓ (K )b−K/β

π K Γ (K/β)

∣
∣Σ
∣
∣−1

exp

{
−1

b

(
xH Σ−1x

)β
}

, (6)

where b is a scale parameter andΣ ∈ C
K×K is a positive semi-definite matrix proportional to

the classical covariancematrix for fixed shape parameter β and b. It is clear that this definition
neglects noncircularity by omitting the pseudo-covariance matrix. Instead, we introduce the
complex augmented form to incorporate the pseudo-covariance (for details, see Mowakeaa
et al. (2016)):

p(x) = KΓ (K )ηK 2−K/β

π K Γ
(
1 + K

β

)
∣
∣C
∣
∣−1/2

exp

{
−1

2

(η

2
xHC−1x

)β
}

, (7)

where Γ (·) is the gamma function, | · | represents the determinant when its argument is a
matrix, and η is a normalization factor unique to the specific member of the CMGGD family
and is given by:

η =
2

1
β
−1

Γ
(

K+1
β

)

KΓ
(

K
β

) . (8)

It is straightforward to show that if the pseudo-covariance matrix vanishes, the PDF in (7) is
simply the PDF in (6) in augmented form. Hence, CMGGD is a generalization of the gen-
eralized Gaussian distribution to incorporate noncircularity. The flexibility of the CMGGD
family of distributions provides an ideal tool for IVA providing more flexibility which makes
it attractive for many real-world applications.

2.3 Generative model

IVA, amultiset extension of ICA, can perform decompositions on a number of datasets jointly
by taking into account the dependence between corresponding sources across datasets (Kim
et al. 2006). In real-world applications, the number of mixtures often exceed the number of
sources to be estimated. Principal component analysis (PCA) is a common preprocessing
step used to reduce the number of mixtures to match the number of desired components to
be estimated (Hyvärinen et al. 2001; Michael et al. 2014; Lee et al. 2008; Calhoun and Adalı
2012; Wax and Kailath 1985). It also avoids over-fitting by reducing the data to the signal
subspace in noisy applications such as fMRI. The success of this step, however, is tied to the
accuracy with which the enforced model order matches the true order of the signal subspace.
We then write for each dataset

x[k] = A[k]s[k], k ∈ 1, . . . , K , (9)

where x[k] ∈ C
N is the mixture random vector from the kth dataset, A[k] ∈ C

N×N is
the kth mixing matrix, and s[k] is the kth latent source RV. We define a source component
vector (SCV) by cascading corresponding estimated sources from each dataset row-wise:

sn =
[
s[1]

n , . . . , s[K ]
n

]�
. The goal of IVA is to estimate K demixing matrices that produce

source estimates:
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y[k] = W[k]x[k], k ∈ 1, . . . , K , (10)

where W[k] is the estimate of the kth demixing matrix, that are as independent as possible.
One approach to solving (10) is tominimize themutual information (MI) among estimated

SCVs.TheMI framework is a naturalmeasure of the degree of statistical independence among
SCVs and can incorporate all statistical forms of diversity. Then, the MI of N linearly-
mixed independent and identically distributed (IID) complex-valued sources can be defined
as Anderson et al. (2012a):

I (y1; . . . ; yN ) =
N∑

n=1

H (yn) −
K∑

k=1

(
log

∣
∣W[k]∣∣2

)
− H (X ) , (11)

where I (·) is the MI function, H (·) denotes the (differential) entropy, X =
[
x[1]�, . . . , x[K ]�]� ∈ C

N K×1 is the collection of all x[k], and yn ∈ C
K is the estimate

of the nth SCV with elements y[k]
n given by:

y[k]
n = w[k]�

n x[k], (12)

wherew[k]
n is defined to be the column vector of elements of the nth row ofW[k]. The last term

in (11) is constant with respect toW[k] and can be dropped from the optimization procedure.
The mutual information cost function (11) we develop here does not require the mixtures to
be pre-whitened. This approach is used in a number of other works (Anderson et al. 2012a;
Kim et al. 2006; Adalı et al. 2014). However, pre-whitening the data approximately resolves
about half the unknowns in the demixing matrices (Cardoso 1998) hence, in practice, it is
advantageous to do so to improve convergence speed.

Minimization of theMI is equivalent to the maximization of the maximum likelihood cost
function (Cardoso 1998), making available all the theoretical advantages associated with
maximum likelihood theory. As the model deviates from the true PDF, a bias is introduced
in the estimate of the demixing matrix resulting into poor estimation performance. This fact
emphasizes the need for flexible modeling of source distributions in a data-driven fashion.
Equally important is the choice of optimization approaches since the solution to (11) does
not exist in closed form. This is the subject of Sec. 2.4.

2.4 IVA-CMGGD cost function and gradient

By using the MI cost function, the IVA problem can be stated as:

argmin
W

J (W) , (13)

where J (W) is the mutual information-based cost function and W ∈ C
N×N×K is a tensor

containing all W[k]. Motivated by its inclusion of noncircularity and its simple parametric
form, we deploy the CMGGD PDF in (7) to the MI cost function in (11). The resulting cost
function becomes:

J (W) =
N∑

n=1

[
κn + 1

2
log

(∣∣Cn

∣∣)+ 1

2
E

{(ηn

2
yH

n
C−1

n y
n

)βn
}]

−
K∑

k=1

(
log

∣∣W[k]∣∣2
)

, (14)
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where κn = − log

⎛

⎝ KΓ (K )ηK
n

π K Γ
(
1+ K

βn

)
2

K
βn

⎞

⎠. Since distribution parametersCn andβn are estimated

from the data, we can drop terms in (14) independent ofW[k] to yield:

J (W) = 1

2

N∑

n=1

E

{(ηn

2
yH

n
C−1

n y
n

)βn
}

−
K∑

k=1

(
log

∣
∣W[k]∣∣2

)
. (15)

It is clear in (15) that both the covariance and pseudo-covariance, hence noncircularity, are
exploited in the cost function.3 In practice, the limited number of samples available may
limit the performance of IVA—especially as model flexibility is increased. We expand on
this further in Sect. 3.

Since no closed-form solution to (15) exists, we derive the gradient ∇ J (W) for use in
iterative numerical approaches, where [∇ J (W)]n,k = ∂ J (W)

∂w[k]∗
n

∈ C
1×N . We use Wirtinger

calculus to differentiate J (W) with respect to w[k]∗
n while considering w[k]

n as a constant.
Generally, differentiating the log-determinant term in (15) includes matrix inversion at each
iteration which can lead to numerical error. Therefore, we utilize the decoupling trick (Ander-
son et al. 2012b; Fu et al. 2015)which permits computing the derivative of the log-determinant
term in (15) row-wise without inversion. Then, the gradient can be written as:

∂ J (W)

∂w[k]∗
n

= E

⎧
⎪⎨

⎪⎩

βnη
βn
n

2βn+1

(
e�

k C
−1
n y

n

)
x[k]∗

(
yH

n
C−1

n y
n

)(1−βn)

⎫
⎪⎬

⎪⎭
+ h[k]∗

n

h[k]H
n w[k]∗

n

, (16)

where ek is a unit vector of appropriate length with a value of 1 in the kth position, and
0 elsewhere, and hn is any unit-norm vector orthogonal to w[k]

no , no ∈ {1, . . . , n − 1, n +
1, . . . , N }.

2.5 IVA-CMGGD optimization procedure

To minimize (15), since no closed-form solution exists, we employ iterative numerical opti-
mization line search methods of the following form:

W ← W + μD, (17)

where D ∈ C
N×N×K is an appropriate tensor direction that forms an obtuse angle with

the gradient ∇ J (W) and μ is a step size that satisfies the Wolfe conditions to ensure rapid
convergence (Nocedal andWright 2006; Sorber et al. 2012). In this context, the obtuse angle
is interpreted in a row-wise sense.

Steepest descent (SD), the simplest line search algorithm, uses the unit-direction D =
− ∇ J (W)

‖∇ J (W)‖ to decrease the cost function locally in the Euclidean space. This approach is
attractive due to its simplicity but might lead to an very slow rate of convergence even when
the Hessian is reasonably well-conditioned (Nocedal and Wright 2006).

Newton methods improve on SD for up to quadratic convergence (Nocedal and Wright
2006) by taking into account both the gradient as well as the Hessian. However, where the
Hessian is difficult to derive or expensive to compute, quasi-Newton approaches, such as
BFGS, offer super-linear convergence using a positive definite Hessian estimate. At iteration

3 We maintain unit-norm rows ofW to prevent driving the cost function lower through scaling alone.
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i , given u = vec
(
W(i+1) − W(i)

)
, where vec(·) serializes its argument in a vector, and v =

vec
(∇ J (i+1) − ∇ J (i)

)
, we define the augmented forms u = [

u�uH
]�

and v = [
v�vH

]�
.

Then, the inverse Hessian can be updated in augmented form by Sorber et al. (2012):

H−1 ←
(
I − u vH

vHu

)
H−1

(
I − v uH

vHu

)
+ u uH

vHu
, (18)

under the condition vHu > 0. This condition is guaranteed to holdwhen theWolfe conditions
are used to select the step size (Nocedal and Wright 2006). Then, the vectorized BFGS
direction can be written as:

d = −H−1∇ J ∗, (19)

where ∇ J is the augmented form of the vectorized gradient and d is the augmented form of
vec (D).

Still, the cost of storing the Hessian estimate itself may become prohibitive as the number
of sources and the number of datasets increase. Limited-memory BFGS (L-BFGS) alleviates
the need to store the entire Hessian by storing the previous M gradient estimates which
are then used to update the augmented inverse Hessian implicitly. In this case, the L-BFGS
direction is given byAlgorithm 1 (Sorber et al. 2012), where	{·} extracts the real component
of a complex argument.

Algorithm 1 L-BFGS update at iteration i (Sorber et al. 2012)
Require: um , vm , m ∈ {i − 1, i − 2, . . . , i − M}
1: γm ← 	

{
vH

m um

}−1

2: g ← 2 vec
(

∂ J (W)
∂W∗

)

3: d ← −g
4: for m = i − 1, i − 2, . . . , i − M do
5: αm ← γm	

{
uH

m d
}

6: d ← d − αmvm

7: d ← 1
2H

−1
i−Md

8: for m = i − M, i − M + 1, . . . , i − 1 do
9: β ← γm	

{
vH

m d
}

10: d ← d + (γm − β)um
return d

After finding a suitable descent direction, a satisfactory step size μ must be selected in
order to assure convergence. Several criteria exist, such as the Wolfe conditions which are
given by Sorber et al. (2012):

J (W + μD) ≤ J (W) + c1μd�∇ J (W) , and

d�∇ J (W + μD) ≥ c2d�∇ J (W) ,
(20)

where c1 and c2 are constants usually taken to be 10−4 and 0.9 respectively.4 The first
condition in (20) is called the sufficient decrease condition and is responsible for ensuring
that the step size selected leads to a substantial decrease in the cost function while the
second condition, known as the curvature condition, disqualifies step sizes that are too small.

4 For the conjugate gradient method, not discussed in this paper, the value of c2 is often taken to be 0.1
(Nocedal and Wright 2006).
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Usually, finding a step size that satisfies the Wolfe conditions is performed by interpolating
the cost function between iterates until one is found. This typically involves many function
and gradient evaluations at each iteration of the algorithm. To reduce the impact of these
computations, we fix a set of step sizes over which the Wolfe conditions are evaluated. If
none of the step sizes satisfy the conditions at a given iteration, we pick the step size that
leads to the largest decrease in the value of the cost function. Convergence of IVA-CMGGD
is attained when the magnitude of the gradient falls below threshold ε1 while the magnitude
change in the distribution parameters is below threshold ε2. To avoid shrinking the cost
function through the scaling ofW, we constrain each row w[k]

n to be unit-norm by projecting
each row of W onto the unit-sphere after each update. In all IVA-CMGGD variants, we
estimate the distribution parameters during the optimization procedure every q iterations to
ensure significant progress in decreasing the cost function at the current set of distribution
parameters before updating them. Heuristically, we choose q = �√N 2K �, where �·� is the
floor function. Algorithm 2 summarizes the IVA-CMGGD procedure where the distribution

parameters for the nth SCV are denoted compactly by Θn = [
vec (Cn)� vec (Pn)� βn

]�
.

Algorithm 2 IVA-CMGGD

Require: X[1], . . . ,X[K ] (pre-whitening),W[1]
0 , . . . ,W[K ]

0 (unit-norm row), ε1 > 0, ε2 > 0

1: Whiten X[k] for all k
2: W ← W0
3: Estimate distribution parameters Θn for all n
4: repeat
5: Find tensor descent direction D using SD, BFGS, or L-BFGS
6: Find μ satisfying Wolfe conditions
7: W ← W + μD

8: w[k]
n ← w[k]

n∥
∥∥w[k]

n

∥
∥∥
for all n, k

9: if iter (mod q) = 1 then
10: Update distribution parameters Θn for all n

11: if
∑

n,k

∥∥∥
∥

∂ J (W)

∂w[k]∗
n

∥∥∥
∥ < ε1 & ‖ΔΘn‖ < ε2 then

12: Break
13: until Max iteration
14: TransformW[k] to the domain of pre-whitened X[k] for all k
15: return W

3 Results

In this section, we apply IVA-CMGGD to both mixtures of simulated CMGGD sources as
well as real-world complex-valued fMRI data. We conduct a number of experiments that
highlight the performance advantage of the proposed methods. In the first set of experiments,
we generate synthetic sources over the full range of the shape parameter β ∈ [0.125, 8], using
the CMGGD data generation method in Mowakeaa et al. (2016) that allows for noncircular
variables, to demonstrate the full capability of IVA-CMGGD. Then, to better accommodate
the most prominent competing algorithm, IVA-GL, which uses a Laplacian PDF model in
its second stage following a Gaussian model in its first, we generate super-Gaussian sources
with β ∈ [0.125, 0.5]. We omit IVA-G in this case due to its model mismatch for clarity.
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In the next set of experiments, we study performance on actual real-world complex-valued
fMRI data where sources have been shown to be mostly super-Gaussian for physiologically-
relevant components and both super- and sub-Gaussian in the case of artifacts (Lee et al. 1999;
Calhoun and Adalı 2006; Girolami 1998). This allows us to test the data-driven flexibility
of IVA-CMGGD variants in modeling of the unknown source distributions. We compare
the proposed method IVA-CMGGD, in its three flavors SD, BFGS, and L-BFGS, against
IVA-GL. Adaptive IVA was omitted after failing to produce competing results even after
matching the used tolerance of 10−6 as in Kuang et al. (2017) and discarding runs that met a
maximum iteration count of 20, 000. (In comparison, the authors in Kuang et al. (2017) use a
maximum iteration of 1000.) This might be due to the sub-optimal estimation of each source
covariance matrix within a 1-dimensional subspace spanned by its dominant eigenvector as
well as the assumption of orthogonality on each demixing matrix (Kuang et al. 2017).

3.1 Simulated CMGGD sources

In this section, we use simulated data to demonstrate the performance of IVA-CMGGD.
For the following simulated experiments, the covariance matrix for each SCV is a random
symmetric positive-definite matrixC = AHA and the pseudo-covariance matrix is generated
as P = C1/2FΛF�C�/2, where A has elements drawn from the standard complex Gaussian
distribution,F is any unitarymatrix andΛ is the diagonalmatrix of noncircularity coefficients
(Schreier and Scharf 2010). Since the ground truth, i.e., both underlying sources and mixing
matrices, are known, we use inter-symbol-interference (ISI) (Moreau and Macchi 1994) to
find the average performance over a number of runs and is given by Anderson et al. (2012a),
Moreau and Macchi (1994),

ISI(G) = 1

2N (N − 1)

[
N∑

n=1

(
N∑

m=1

∣∣gn,m
∣∣

maxp
∣∣gn,p

∣∣ − 1

)

+
N∑

m=1

(
N∑

n=1

∣∣gn,m
∣∣

maxp
∣∣gp,m

∣∣ − 1

)]

,

(21)

whereG = WAwith elements gn,m . ISI measures the quality of a decomposition by describ-
ing the deviation of G from the identity matrix. For multi-dataset decompositions, ISI can
be generalized to joint ISI (jISI) for IVA as in Anderson et al. (2012a):

ISIjoint(G) = ISI(G̃) (22)

where G = {
G[k]}K

k=1 is the collection of matrices G[k] and the (i, j)th element of G̃ is the
absolute sum of corresponding elements of G[k] over all k as in:

[
G̃
]

i, j
=

K∑

k=1

∣∣∣
[
G[k]]

i, j

∣∣∣ . (23)

Joint ISI in is thus a generalization of ISI to multiple datasets and they are equivalent when
K = 1.

In the first experiment, we generate N = 3 sources with K = 4 datasets over the full
range of the shape parameter β ∈ [0.125, 8] as we vary the number of samples over the set
V ∈ {5, 10, 15, 20, 25} × 1000 samples. Thus, each SCV is multivariate with dimension
4, i.e., Sn ∈ C

4×V . The sources from each dataset are mixed using matrices A[k] with
elements drawn from the uniform distribution U(0, 1). Figure 1 shows the results of this
experiment averaged over 300 independent runs. The broad parameter shape range naturally
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Fig. 1 Joint ISI for decomposing
mixtures of N = 3 sources over
β ∈ [0.125, 8] and K = 4
datasets with DOI = 0.5. Each
point is the average of 300
independent runs
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Fig. 2 Number of iterations
required per algorithm for
mixtures of N = 3 sources over
β ∈ [0.125, 8] and K = 4
datasets with DOI = 0.5. Each
point is the average of 300
independent runs
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favors IVA-CMGGD variants in this experiment. We also report the number of iterations
required for convergence for each of the IVA-CMGGD variants in Fig. 2. Here, as suspected,
the convergence of IVA-CMGGD-BFGS requires considerably fewer iterations than IVA-
CMGGD-SD, whereas IVA-CMGGD-L-BFGS, with its memory-efficient implementation,
trails closely behind.

In the second experiment, we restrict the shape parameter to the super-Gaussian range
β ∈ [0.125, 0.5]. Figure 3 shows the results of this experiment averaged over 300 independent
runs. It is clear from this figure that while all methods show a decrease in jISI as the number
of samples increases, IVA-CMGGD methods are better able to model the super-Gaussian
sources via their adaptive nonlinearity. The L-BFGS variant of IVA-CMGGD shows slightly
reduced performance versus its more efficient siblings. This is due to the noisy nature of the
descent direction approximation inherent to this flavor of IVA-CMGGD.

In the third experiment, we fix the number of samples to V = 10, 000 samples and vary
DOI over ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} while keeping other parameters as before. Figure 4
shows the result of this experiment averaged over 300 independent runs. Here, the case for
taking full statistical information into account is apparent as IVA-CMGGD variants outper-
form IVA-GL. We also note that the worst performance achieved by each algorithm occurs
in a neighborhood of ρ = 0.5. As DOI increases from this point, the correlation between the
real and imaginary parts increases, reducing the effective degrees of freedom of the sources.
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Fig. 3 Joint ISI for decomposing
mixtures of N = 3
super-Gaussian sources and
K = 4 datasets with DOI = 0.5.
Each point is the average of 300
independent runs
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Fig. 4 Joint ISI for decomposing
mixtures of N = 3
super-Gaussian sources and
K = 4 datasets with V = 10, 000
samples. Each point is the
average of 300 independent runs
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On the other hand, as DOI decreases from this point, the pseudo-covariance matrix vanishes,
decreasing the effective degrees of freedom of the parameter space of each estimated source
PDF along with it. Both limiting cases thus improve overall estimation performance.

The increase in run-time associated with the additional complexity of IVA-CMGGD is
on the order of 5–10 times that of IVA-GL for the experiments presented here due to the
increased model complexity and hence computational considerations are one of the factors
that might affect the decision to select a more powerful model for a given problem.

3.2 Complex-valued fMRI data

We apply IVA-CMGGD to a complex-valued fMRI dataset used in a number of studies
(Rodriguez et al. 2011, 2012; Li et al. 2011; Xiong et al. 2012). As detailed in (Rodriguez
et al. 2012), the dataset consists of fMRI scans from 14 subjects performing a finger-tapping
motor task with alternating periods of 30 s ON (finger tapping) and 30 s OFF (rest). The
experiments were performed on a 3 T Siemens TRIO TIM system with a 12-channel radio-
frequency (RF) coil. The fMRI experiment used a standard Siemens gradient echo planar
imaging (EPI) sequence modified to store real and imaginary data separately. The data were
preprocessed to correct for phase error, motion correction and spatial normalization into
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standard Montreal Neurological Institute space using the MATLAB toolbox for statistical
parametric mapping5 (SPM). We perform PCA to reduce the dimensionality of the data to
an order of 30 components estimated by the minimum description length (MDL) criterion
for complex-valued data as in Rodriguez et al. (2012), Xiong et al. (2008).

Since the ground truth is not available for real-world data, ISI cannot be used to evaluate
the performance of a single run. Instead, we adopt a couple of commonly used methods
including analysis of average spatial maps and average TC correlation with the task paradigm
(Du et al. 2016; Rodriguez et al. 2012). In Rodriguez et al. (2011, 2012), the authors develop
a visualization technique for fMRI spatial maps that takes into account both the real and
imaginary values of the estimated components of each complex-valued voxel through the
Mahalanobis distance:

z(v) =
√

(yR − μR)�C−1
R

(yR − μR), (24)

where z(v) is the real value assigned to the vth voxel of estimated source component y,
yR is the real composite form of y and μR,CR are the mean and covariance matrix of yR
respectively. Estimated TCs are correlated with the paradigm TC after convolving it with the
blood oxygenation level dependent (BOLD) haemodynamic response using SPM.

To evaluate the performance of each algorithm, we first remind that averaging resulting
components or timecourses across runs cannot be used in decomposition tasks where the goal
is interpretation of each component, and instead one should opt for finding and using a most
representative run to evaluate the performance (Himberg and Hyvarinen 2003; Rachakonda
et al. 2007). On all but relatively small datasets, performing IVA on a large number of
runs is computationally prohibitive—especially for IVA-CMGGD. Therefore, we require a
computationally-efficient method to adjudicate a relatively small sample of runs in search of
its most representative or central member—in some meaningful sense. ICASSO, a multiple-
run consistency and visualization technique, tackles this problem through evaluating the
quality of clustering of corresponding SCVs from different runs (Himberg and Hyvarinen
2003). However, the resulting centroids fail to represent expected outcomes since they do not
correspond to sources produced by a single run (Ma et al. 2013). In addition, ICASSOmay be
sensitive to outliers, especially when the number of runs is not large, and is computationally
complex. Recently, a minimum-spanning tree (MST) approach has been developed for ICA
analyses with the goal of finding a central run from a number of independent ones while
constraining the solution space to actual runs (Du et al. 2014a, b, 2016). Given a collection
of sources from multiple runs, this is performed by selecting the run with sources that are a
minimum distance to sources from all other runs as measured by 1− ρpearson, where ρpearson
is the Pearson correlation coefficient. Extending this approach to multivariate IVA sources
can be performed by rotating the estimated sources in a consistent manner since the scale
ambiguity of complex IVA leads to amisalignment in phase (Rodriguez et al. 2012). However,
this approach becomes computationally expensive as the dimensionality of the dataset K , the
number of sources N , and the number of samples V increase. In (Long et al. 2018), with the
same objective of finding the most representative run from many, the authors take advantage
of cross-ISI, defined to be the ISI where the true mixing matrix is replaced by the inverse of
the estimated demixing matrix for the same dataset from another run in ICA. To illustrate,
let W[k]

(r1), W
[k]
(r2) be the estimated demixing matrices for the kth dataset from runs r1 and r2

respectively. For our case, i.e., for application to IVA, we write the cross-ISI as:

ISIcross(r1, r2) = 1

2

[
ISIjoint(Gr1,r2) + ISIjoint(Gr2,r1)

]
, (25)

5 SPM URL: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.
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Central run average motor component

0

11

Fig. 5 Central run average motor component across all subjects: IVA-GL (top), IVA-G (middle), and IVA-
CMGGD (bottom) thresholded at 1.96

where Gri ,r j =
{
W[k]

(ri )
W−[k]

(r j )

}K

k=1
to allow cross-ISI to be symmetric. Thus, cross-ISI, as

defined in (25), is a symmetrical generalization of joint-ISI where the true mixing matrices
for each dataset and each run are substituted with the corresponding inverses of demixing
matrices of the same datasets, but from different runs. Finally, we compute for each run the
average cross-ISI by:

ISIri
cross = 1

R − 1

R∑

j=1
j �=i

ISIcross(ri , r j ), (26)

where the quantity ISIri
cross measures the average deviation of run ri from all other runs and

represents the cost of selecting run ri as the central run. Thus, the central run can be found
through:

rcentral = argmin
ri

ISIri
cross, (27)

where, in this paper, we perform 10 independent, randomly-initialized runs for each method.
Figures 5, 6 and 7 show three sample components from the central runs of each of themethods:
the motor component, the sensorimotor component, and the default mode network (DMN)
respectively. These components all show the desired compact, focal activated region estima-
tion with little noise. Each of these images is averaged over all subjects, after accounting for
phase ambiguity, and plotted using the Mahalanobis distance technique in Rodriguez et al.
(2011, 2012). To compare the central run decompositions quantitatively, we compute the
correlation of the motor component TC, which is task related, to the paradigm TC after con-
volutionwith the SPMhaemodynamic response.We present the central runmotor component
TC averaged over all subjects for each method in Fig. 8 while showing the paradigm TC for
reference. Table 1 shows the correlation results. We note that IVA-CMGGD shows superior
correlation due to its adaptive parametric density which better matches the true distributions.
IVA-GL and IVA-G, with their simpler, more rigid models, cannot exploit all of the statistical
information available. Finally, it is important to note that although the performance of the
central run is not necessarily the best performing run, it is themost reproducible, and thus best
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Central run average sensory-motor component

0

11

Fig. 6 Central run average sensorimotor component across all subjects: IVA-GL (top), IVA-G (middle), and
IVA-CMGGD (bottom) thresholded at 1.96

Central run average DMN component

0

15

Fig. 7 Central run average DMN component across all subjects: IVA-GL (top), IVA-G (middle), and IVA-
CMGGD (bottom) thresholded at 1.96

Fig. 8 Central run estimated
motor component TC averaged
across all subjects
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Table 1 Central run motor
component TC correlation with
paradigm

Motor TC correlation

IVA-CMGGD 0.9205

IVA-GL 0.9079

IVA-G 0.9025

represents the average, or expected performance given a particular set of runs. The trade-off
between run-to-run variability and expected bias is an important aspect to be considered prior
to any analysis.

4 Conclusion

In this paper, we introduce IVA-CMGGD, a complex-valued, multivariate, and data-driven
method for latent variable analysis based on statistical independence. By incorporating a
simple, yet flexible, family of source distributions that incorporates the full statistical infor-
mation inherent in the data, i.e., noncircularity, we show that it adapts to a wide variety
of source models in a data-driven fashion. We show that this allows for better separation
performance when compared to competing algorithms that impose less flexible assumptions
on the analysis. We also demonstrate the applicability of IVA-CMGGD to real-world data
through a 14-subject fMRI dataset with improved central run performance over competitive
approaches.
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Appendix

Derivation of gradient

Since (15) is a real-valued function of complex variables, it suffices to compute the gradient
with respect tow[k]∗

n usingWirtinger calculus. First, by applying the chain rule we can write:

∂ J (W)

∂w[k]∗
n

= ∂ J (W)

∂yn

∂yn

∂w
[k]∗
n

+ ∂ J (W)

∂y∗
n

∂y∗
n

∂w
[k]∗
n

. (28)

Due to (12), the first term in (28) is equal to 0 leaving only the second term. Next, we
subdivide the IVA-CMGGD cost function in (15) into two terms:

J (W) = J1(W) + J2(W), (29)
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where

J1(W) = 1

2

N∑

n=1

E

{(ηn

2
yH

n
C−1

n y
n

)βn
}

, (30)

and

J2(W) = −
K∑

k=1

(
log

∣
∣W[k]∣∣2

)
. (31)

Differentiating J1(W) yields:

∂ J1(W)

∂w[k]∗
n

= 1

2
E

{
βn

(ηn

2
yH

n
C−1

n y
n

)βn−1 (ηn

2
e�

k C
−1
n y

n

)
x[k]∗

}

= E

⎧
⎪⎨

⎪⎩

βnη
βn
n

2βn+1

(
e�

k C
−1
n y

n

)
x[k]∗

(
yH

n
C−1

n y
n

)(1−βn)

⎫
⎪⎬

⎪⎭
, (32)

where ek is defined as in (16) and ∂y∗
n

∂w[k]∗
n

= x[k]∗.
In order to differentiate J2(W), we utilize a decoupling procedure (Anderson et al. 2012a),

originally established in Li and Zhang (2007). The purpose is to factorize each summand in
(31) into the product of two terms: one dependent on w[k]

n and the other independent of it.
By defining W̃[k]

n to be the (N − 1) × N matrix containing rows ofW[k] other than the nth,
and by defining

ω̄[k]
n =

√∣∣∣det
(
W̃[k]

n W̃[k]H
n

)∣∣∣, (33)

the decoupling procedure admits the following representation for J2(W):

J2(W) = −
K∑

k=1

log

(∣∣∣w[k]H
n h[k]∗

n

∣∣∣
2
ω̄[k]2

n

)
, (34)

where h[k]
n is a unit-length vector orthogonal to each of

{
w[m]

n

}

m �=k
. Then, the gradient of

J2(W) can be computed as:

∂ J2(W)

∂w[k]∗
n

= h[k]∗
n h[k]�

n w[k]
n

w[k]H
n h[k]∗

n h[k]�
n w[k]

n

= h[k]∗
n

h[k]H
n w[k]∗

n

. (35)

Summing (32) and (35) yields the result in (16).
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