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Abstract. In this paper, we mainly investigate the nonuniform sampling for random
signals which are bandlimited in the linear canonical transform (LCT) domain. We show
that the nonuniform sampling for a random signal bandlimited in the LCT domain is
equal to the uniform sampling in the sense of second order statistic characters after a pre-
filter in the LCT domain. Moreover, we propose an approximate recovery approach for
nonuniform sampling of random signals bandlimited in the LCT domain. Furthermore, we
study the mean square error of the nonuniform sampling. Finally, we do some simulations
to verify the correctness of our theoretical results.
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1 Introduction

Sampling is very fundamental in signal processing, as it provides an effective way to con-
nect the analogue signals and digital signals. Since Shannon [18] introduced the concept
of sampling theorem in 1949, the sampling theorem has been widely studied in various
academic fields. In particular, uniform sampling theorems for deterministic signals or
random signals, which are bandlimited in the Fourier domain, fractional Fourier trans-
form domain, or linear canonical transform (LCT) domain, have been intensely studied in
literatures [4, 5, 10, 18, 19, 20, 21, 22, 24, 27, 28, 29, 30, 34].

In practice, we might only obtain nonuniform samples, for instance, in the areas of
geophysics, biomedical imaging, or communication theory [8, 12, 17]. Therefore, nonuni-
form sampling has aroused much more attention on the theoretical and practical sides in
the literature. There are many kinds of approaches for recovering the original signals from
their nonuniform samples. For example, Yao and Thomas [32] derived the reconstruction
formula for bandlimited signals from their nonuniform samples by using the Lagrange

∗This work was partially supported by the National Natural Science Foundation of China (11525104,
11531013 and 11371200).
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interpolation functions. However, since the Lagrange interpolation functions often have
distinct formats at different sampling times, it is very complicated to recover the bandlim-
ited signals by utilizing Lagrange interpolation functions. Many other approaches have
been presented to solve this problem. Time-warping technique was used in [15] for recover-
ing bandlimited signals from their jittered samples. In [16], the author made some revision
on traditional Lagrange interpolation functions, in order to improve the accuracy of recov-
ering bandlimited signals from their nonuniform samples. Due to the perfect recovery of
bandlimited signals from their nonuniform samples with sinc interpolation, Maymon and
Oppenheim [14] proposed a class of approximate recovery approaches for bandlimited sig-
nals from their nonuniform samples by utilizing sinc interpolation functions. Furthermore,
Xu, Zhang and Tao [31] generalized the results mentioned in [14] from traditional Fourier
domain to fractional Fourier transform domain. In order to learn more information on
nonuniform sampling, we refer the readers to [1, 3, 6, 9, 13, 23, 25, 33].

For random signals which are bandlimited in the LCT domain, there exist few results
on sampling theorems. In [10], based on the framework of LCT auto-correlation function
and power spectral density, we investigated the uniform sampling theorem and multichan-
nel sampling theorem for random signals which are bandlimited in LCT domain. In this
paper, we derive the relationship between the LCT auto-power spectral densities of the
inputs and outputs. In addition, we study the nonuniform sampling for random signals
bandlimited in the LCT domain and give an approximate recovery approach with sinc in-
terpolation functions. Moreover, we investigate the error estimate of nonuniform sampling
for random signals bandlimited in the LCT domain in the mean square sense. Finally,
some simulations are carried out to illustrate the effectiveness of our methods.

The rest of the paper is presented as follows. In Section 2, we first introduce the
concepts of the LCT, the LCT correlation function, and the LCT power spectral density.
Then, we show the connection between the LCT auto-power spectral density of the inputs
and outputs. In Section 3, we study the nonuniform sampling, its approximate recovery
method, the corresponding reconstruction error for random signals bandlimited in the
LCT domain in the mean square sense. Moreover, we analyze the performances of our
theoretical results by simulation. In Section 4, we conclude the paper.

2 Preliminaries

2.1 The Linear Canonical Transform

Definition 2.1. The LCT of a signal f(t) ∈ L2(R) is denoted by [10]

LA{f(t)}(u) =







∫ +∞
−∞ f(t)

√

1
j2πbe

j a

2b
t2−j 1

b
ut+j d

2b
u2dt, b 6= 0,

√
dej

cd

2
u2f(du), b = 0,

(1)

where A =

(

a b
c d

)

, and parameters a, b, c, d ∈ R satisfy ad− bc = 1.

Since the LCT is a Chirp multiplication operator when b = 0, we assume without loss
of the generality that b > 0 in the rest of the paper. From (1), we can easily derive the
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connection between the LCT and the Fourier transform as follows:

LA{f(t)}(u) =
√

1

j2πb
ej

d

2b
u2F(f(t)ej

a

2b
t2)

(u

b

)

, (2)

where the Fourier transform of f(t) is defined by

F(f)(u) =

∫ +∞

−∞
f(t)e−jutdt. (3)

2.2 The LCT Power Spectral Density

In this paper, we consider a special class of random signals that is wide sense stationary.
Given a probability space (Ω,F ,P), a stochastic process x(t) is called stationary in a wide
sense, if its mean is zero, its second moment is finite, and its auto-correlation function

Rxx(t+ τ, t) = E[x(t+ τ)x∗(t)] (4)

is independent of t ∈ R, where E denotes mathematical expectation, and x∗ stands for
the complex conjugate of x. Two stochastic processes x(t) and y(t) are said to be jointly
stationary in a wide sense, if x(t) and y(t) are both wide sense stationary, and their
cross-correlation function

Rxy(t+ τ, t) = E[x(t+ τ)y∗(t)] (5)

is independent of t ∈ R.
Next, we introduce the LCT auto-correlation function, the LCT cross-correlation func-

tion, the LCT auto-power spectral density and the LCT cross-power spectral density as
follows.

Definition 2.2. Given random signals x(t) and y(t), the LCT auto-correlation function
of x(t) is defined by

RAxx(t1, t2) = E[x(t1)x
∗(t2)e

j a

b
t2(t1−t2)] = Rxx(t1, t2)e

j a

b
t2(t1−t2), (6)

and the LCT cross-correlation function of y(t) and x(t) is defined by

RAyx(t1, t2) = E[y(t1)x
∗(t2)e

j a

b
t2(t1−t2)] = Ryx(t1, t2)e

j a

b
t2(t1−t2). (7)

One can see that if x̃(t) = x(t)ej
a

2b
t2 is stationary, that is,

Rx̃x̃(t1, t2) = Rx̃x̃(τ), (8)

where τ = t1 − t2, then the function RAxx(t1, t2) also depends only on τ . In fact,

RAxx(t1, t2) = E[x(t1)x
∗(t2)e

j a

b
t2(t1−t2)]

= E[x(t1)e
j a

2b
t21x∗(t2)e

−j a

2b
t22 ]e−j

a

2b
(t1−t2)2

= Rx̃x̃(t1, t2)e
−j a

2b
(t1−t2)2

= Rx̃x̃(τ)e
−j a

2b
τ2 . (9)
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Definition 2.3. Given random signals x(t) and y(t), and two parameters A =

(

a b
c d

)

,

A′ =

(

a −b
−c d

)

. The LCT auto-power spectral density of x(t) is defined by

PAxx(u) =

√

1

−j2πbe
−j d

2b
u2LA{RAxx(τ)}(u)

=

√

1

j2πb
ej

d

2b
u2LA′{RA,2xx (τ)}(−u), (10)

and the LCT cross-power spectral density of y(t) and x(t) is defined by

PAyx(u) =

√

1

−j2πbe
−j d

2b
u2LA{RAyx(τ)}(u)

=

√

1

j2πb
ej

d

2b
u2LA′{RA,2yx (τ)}(−u), (11)

where
RA,2xx (t1, t2) = E[x(t1)x

∗(t2)e
j a

b
t1(t1−t2)] = Rxx(t1, t2)e

j a

b
t1(t1−t2) (12)

and
RA,2yx (t1, t2) = E[y(t1)x

∗(t2)e
j a

b
t1(t1−t2)] = Ryx(t1, t2)e

j a

b
t1(t1−t2). (13)

It follows from (1) and (10) that

RAxx(τ) =

∫ +∞

−∞
PAxx(u)e

−j a

2b
τ2+j 1

b
uτdu. (14)

In [10, 7], a model of LCT multiplicative filter has been introduced as in Fig. 1, where
X(u) = LA{x(t)}(u), Y (u) = X(u)H(u), and the output function y(t) is given by

y(t) = LA−1{Y (u)}(t) = LA−1{X(u)H(u)}(t). (15)

With the LCT multiplicative filter described in Fig. 1, we can obtain the relationship
between the LCT auto-power spectral density PAxx(u) and cross-power spectral density
PAyx(u).

Proposition 2.4. [10, Theorem 2.3] Let random signals x(t) and y(t) be the input and
output of the LCT multiplicative filter, and the transfer function H(u) satisfy

h(t) =
1√
2π

∫ +∞

−∞
H(u)ejut/bdu. (16)

Then,
PAyx(u) = H(u)PAxx(u). (17)

Similarly, we can get the connection between PAyy(u) and P
A
xx(u) as follows.

4



Theorem 2.5. Let random signals x(t) and y(t) be the input and output of the LCT
multiplicative filter, and the transfer function H(u) satisfy

h(t) =
1√
2π

∫ +∞

−∞
H(u)ejut/bdu. (18)

Then,
PAyy(u) = |H(u)|2PAxx(u). (19)

Proof. By (15), we have

y(t) = LA−1{LA{x(t)}(u)H(u)}(t). (20)

Using the convolution theorem ([7, Theorem 1]), we can rewrite (20) as

y(t) =
1√
2πb

∫ +∞

−∞
x(t− τ)ej

a

2b
(τ2−2tτ)h(τ)dτ. (21)

Thus,

Ryy(t1, t2) = E[y(t1)y
∗(t2)]

=
1√
2πb

∫ +∞

−∞
h∗(u)e−j

a

2b
(u2−2t2u)Ryx(t1, t2 − u)du

=
1√
2πb

∫ +∞

−∞
h∗(u)ej

a

b
t1u[Ryx(t1, t1 − (τ + u))e−j

a

2b
(u2+2τu)]du, (22)

where τ = t1 − t2. Combining (13) and (22), we get

RA,2yy (τ)

=Ryy(t1, t1 − τ)ej
a

b
t1τ

=
1√
2πb

∫ +∞

−∞
h∗(u)ej

a

b
t1(τ+u)Ryx(t1, t1 − (τ + u))e−j

a

2b
(u2+2τu)du

=
1√
2πb

∫ +∞

−∞
h∗(u)RA,2yx (τ + u)e−j

a

2b
(u2+2τu)du

=
1√
2πb

∫ +∞

−∞
h∗(−u)RA,2yx (τ − u)e

j a

2(−b)
(u2−2τu)

du. (23)

Therefore, we obtain

LA′{RA,2yy (τ)}(u) = H∗(−u)LA′{RA,2yx (τ)}(u). (24)

Substituting (10) and (11) into (24), we have

PAyy(u) = H∗(u)PAyx(u). (25)

It follows from (17) that
PAyy(u) = |H(u)|2PAxx(u).

This completes the proof.
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3 Nonuniform Sampling and Error Estimate for Random

Signals Bandlimited in the LCT Domain

In this section, we study the nonuniform sampling and error estimate for random signals
which are bandlimited in the LCT domain. First, we introduce the definition.

Definition 3.1. [10] We call a random signal x(t) bandlimited in the LCT domain, if its
LCT power spectral density PAxx(u) satisfies

PAxx(u) = 0, |u| > ur, (26)

where ur is the bandwidth.

Before stating our main results, we present a lemma that is useful in the following.

Lemma 3.2. Assume that a random signal x(t) is bandlimited in the LCT domain with

bandwidth ur, and x̃(t) = x(t)ej
a

2b
t2 is a wide sense stationary process. Then, x̃(t) is

bandlimited in the Fourier domain with bandwidth ur/b.

Proof. Since x̃(t) is stationary in a wide sense, it follows from (9) and (10) that

PAxx(u) =

√

1

−j2πbe
−j d

2b
u2LA{RAxx(τ)}(u)

=

√

1

−j2πbe
−j d

2b
u2LA{Rx̃x̃(τ)e−j

a

2b
τ2}(u)

=

√

1

−j2πb

√

1

j2πb

[

∫ +∞

−∞
Rx̃x̃(τ)e

−j 1
b
uτdτ

]

=
1

2πb
Px̃x̃(

u

b
). (27)

Note that
PAxx(u) = 0, |u| > ur. (28)

We have
Px̃x̃(u) = 0, |u| > ur

b
.

This completes the proof.

3.1 Nonuniform Sampling

First, we restate a nonuniform sampling theorem for deterministic signals which are ban-
dlimited in the LCT domain, as mentioned in [23].

Proposition 3.3. [23, Theorem 4] Suppose that a deterministic signal f(t) is bandlimited
in the LCT domain with bandwidth ur. If

|tn − n
bπ

ur
| ≤ D <

bπ

4ur
, (29)

6



then the function f(t) can be perfectly recovered by its samples f(tn) with the following
formula,

f(t) = e−j
a

2b
t2

+∞
∑

−∞
f(tn)e

j a

2b
t2n

G(t)

G′(tn)(t− tn)
, (30)

where

G(t) = eαt(t− t0)
∏

n 6=0

(1− t

tn

)

et/tn ,

α =
∑

n 6=0

1

tn
,

D ∈ R, and G′(t) is the derivative of G(t).

It is known that Lagrange interpolation functions often have distinct formats at dif-
ferent sampling times. Hence it is very complicated to recover signals by using Propo-
sition 3.3. In this paper, we give another recovery approach instead. We begin with
a nonuniform sampling model [31] as in Fig. 2, where {x(tn)} is the sampling sequence
of a random signal x(t), and {tn} is the sequence of sampling points. We assume that
tn = nT + ξn, where T ≤ πb

ur
is the average sampling interval, and {ξn} is a sequence

of independent identically distributed (i.i.d.) random variables with zero mean in the
interval (−T/2, T/2). This nonuniform sampling model is also called jitter sampling.
For jitter sampling, the sampling noise is introduced to the expected sampling time, i.e.,
tn = nT + τn with τn ∈ (−T/2, T/2) and E[τn] = 0. For example, the time base jitter of
a 50 GHz sampling oscilloscope is identified to have standard deviation 0.965 ps, that is,
the actual measurement time is corrupted by zero-mean Gaussian noise [26]. The jittered
samples often occur in biomedical devices and A/D converters due to the internal clock
imperfections [2, 11].

Next we show that in the sense of second order statistic characters, nonuniform sam-
pling is identical to uniform sampling after a pre-filter.

Theorem 3.4. Assume that a random signal x(t) is bandlimited in the LCT domain with

bandwidth ur, and x̃(t) = x(t)ej
a

2b
t2 is a wide sense stationary process. Then, in the sense

of second order statistic characters, the nonuniform sampling of x(t) is identical to the
uniform sampling after a LCT filter h1(t) established in Fig. 3, i.e.,

h1(t) =
1√
2π

∫ +∞

−∞
H1(u)e

jut/bdu, (31)

where T is the average sampling interval, tn = nT + ξn is the sampling point, v(t) is an
additive noise with zero mean and is independent of x(t), and the LCT auto-power spectral
density PAvv(u) of v(t) is P

A
xx(u)(1− |H1(u)|2). Here, H1(u) = φξ(

u
b ), where φξ(u) denotes

the characteristic function of ξn.

Proof. Since x̃(t) = x(t)ej
a

2b
t2 is a wide sense stationary process, the nonuniform sampling

can be described as in Fig 4. By the design of LCT filter in Fig 3, we have

PAyy(u) = |H1(u)|2PAxx(u). (32)
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Since v(t) is an additive noise with zero mean and v(t) is independent of x(t), the LCT
auto-correlation function RAzz(τ) of z(tn) is identical to R

A
yy(τ). Thus, combining (14) and

(32), we have

RAzz(nT, (n− k)T ) = RAyy(nT, (n − k)T )

=

∫ ur

−ur
PAyy(u)e

−j a

2b
(kT )2+j 1

b
ukTdu

=

∫ ur

−ur
|H1(u)|2PAxx(u)e−j

a

2b
(kT )2+j 1

b
ukTdu. (33)

Hence

Rz̃z̃(nT, (n− k)T ) = E[z(nT )z∗(nT − kT )ej
a

2b
((nT )2−(nT−kT )2)]

= ej
a

2b
(kT )2RAzz(nT, (n− k)T )

=

∫ ur

−ur
|H1(u)|2PAxx(u)ej

1
b
ukTdu. (34)

Since x(tn) and ξn are two random variables, by (14), we obtain

RAxx(tn, tn−k)

=E[RAxx(kT + ξn − ξn−k)]

=

∫ ur

−ur
PAxx(u)E[e

−j a

2b
(kT+ξn−ξn−k)

2+j 1
b
u(kT+ξn−ξn−k)]du. (35)

Combining (9) and (14), we have

E[Rx̃x̃(kT + ξn − ξn−k)]

=E[ej
a

2b
(kT+ξn−ξn−k)

2
RAxx(kT + ξn − ξn−k)]

=

∫ ur

−ur
PAxx(u)e

j 1
b
ukT

E[ej
1
b
u(ξn−ξn−k)]du. (36)

Let Z = ξn − ξn−k and fZ(η) be the probability density function of Z. Note that ξn
and ξn−k are independent and have identical distributions. Let fξ(η) be their common
probability density function. Then we have

fZ(η) = fξ(η) ⋆ fξ(−η), (37)

where ⋆ denote as the convolution operator. Hence

E[ej
1
b
u(ξn−ξn−k)] =

∫ +∞

−∞
fZ(η)e

j 1
b
uηdη

=

∫ +∞

−∞
[fξ(η) ⋆ fξ(−η)]ej

1
b
uηdη

=

∫ +∞

−∞
fξ(η)e

j 1
b
uηdη ×

∫ +∞

−∞
fξ(−η)ej

1
b
uηdη

= |φξ(
u

b
)|2, (38)
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where

φξ(u) =

∫ +∞

−∞
fξ(η)e

juηdη.

Substituting (38) into (36), we get

E[Rx̃x̃(kT + ξn − ξn−k)] =

∫ ur

−ur
PAxx(u)e

j 1
b
ukT

E[ej
1
b
u(ξn−ξn−k)]du

=

∫ ur

−ur
PAxx(u)|φξ(

u

b
)|2ej 1

b
ukTdu. (39)

By setting H1(u) = φξ(
u
b ) in (34), we get (39). Hence, the auto-correlation function

of x̃(tn) in Fig. 4 is equal to that of the output in Fig. 3. Therefore, the nonuniform
sampling is identical to the uniform sampling in Fig. 4, in the sense of second order
statistic characters. This completes the proof.

3.2 Approximate recovery approach

As we mention above, it is much easier to deal with uniform sampling than nonuniform
sampling. Since sinc interpolation leads to exact recovery for uniform sampling, Maymon
and Oppenheim [14] introduced a new approximate recovery formula of nonuniform sam-
pling for a random signal x(t) bandlimited in Fourier domain by utilizing sinc interpolation
function. The approximate recovery formula can be represented as follows:

x̂(t) =
T

TN

+∞
∑

n=−∞
x(tn)s(t− t̃n), (40)

where s(t) = sinc
(

πt
TN

)

, π
TN

is the bandwidth of x(t), t̃n = nT + ζn. Here, t̃n is not
required to be identical to the original sampling points tn. But, if the original random
signal x(t) is not bandlimited in the Fourier domain, the approximate recovery approach
might not work. Motivated by [14], Xu, Zhang, and Tao [31] considered the case when
the random signal is bandlimited in the fractional Fourier domain. Since LCT is a more
general transform, which includes Fourier transform and fractional Fourier transform as
its special cases, it is possible that a signal which is non-bandlimited in the Fourier domain
or the fractional Fourier domain, is bandlimited in the LCT domain. So, it is necessary to
investigate the corresponding approximate recovery result for random signal bandlimited
in the LCT domain.

Theorem 3.5. Assume that random a signal x(t) is bandlimited in the LCT domain with

bandwidth ur, and x̃(t) = x(t)ej
a

2b
t2 is a wide sense stationary process. Then x(t) can be

approximated from its nonuniform samples by utilizing the sinc interpolation function,

x̂(t) =
T

TN
e−j

a

2b
t2

+∞
∑

n=−∞
x(tn)e

j a

2b
t2nh2(t− t̃n), (41)

where h2(t) = sinc
(

urt
b

)

, T is the uniform sampling interval, TN is the Nyquist sampling
interval, tn = nT + ξn, t̃n = nT + ζn, and ξn is not necessarily equal to ζn.

9



Proof. From Lemma 3.2, we know that x̃(t) is bandlimited in the Fourier domain with
bandwidth ur

b . By (40), we have

x̄(t) =

+∞
∑

n=−∞

T

TN
x̃(tn)sinc

π(t− t̃n)

TN
. (42)

Substituting x̃(t) = x(t)ej
a

2b
t2 and x̄(t) = x̂(t)ej

a

2b
t2 into (42), we obtain (41), which

completes the proof.

From Theorem 3.5 we know that the approximate recovery approach for random signals
which are bandlimited in the LCT domain, can be expressed as the model presented in
Fig. 5.

3.3 Error estimate of reconstruction for random signals

In this subsection, we study the reconstruction error in the mean square sense by consid-
ering the sampling and reconstruction procedures as the system whose frequency response
is dependent on the probability density function of the perturbations. It follows from
Theorem 3.4 that, if the average sampling interval T is greater than the Nyquist sampling
interval TN , then the model presented in Fig. 6 is identical to the procedure, which includes
the nonuniform sampling mentioned in subsection 3.1, and the approximate reconstruction
approach by using sinc interpolation function described in Fig. 5, in the sense of second
order statistic characters.

Theorem 3.6. Assume that a random signal x(t) is bandlimited in the LCT domain with

bandwidth ur, x̂(t) is the approximation of x(t) obtained in Fig. 6, and x̃(t) = x(t)ej
a

2b
t2 is

a wide sense stationary process. Let the frequency response of the filter h3(t) be the joint
characteristic function of the random variables ξn and ζn, i.e., φξζ(u,−u). And let v(t)
be an additive noise with zero mean, which is uncorrelated with x(t) and has the power
spectral density

Pvv(u) = T

∫ ur

−ur
PAxx(u1)[1− φξζ(

u1
b
,−u)|2]du1, |u| < ur. (43)

Then the model described in Fig. 6 is identical to the procedure, which includes the nonuni-
form sampling mentioned in subsection 3.1 and the approximate reconstruction approach
by utilizing sinc interpolation function represented in Fig. 5, in the sense of second order
statistic characters. Furthermore, we have

E[|x̂(t)− x(t)|2] =

∫ ur

−ur
PAxx(u)|1 − φξζ(

u

b
,−u

b
)|2du

+
T

2πb

∫ ur

−ur
PAxx(u)

∫ ur

−ur
1− |φξζ(

u

b
,−u1

b
)|2du1du.

Proof. By Theorem 3.5, we have

x̄(t) = x̂(t)e−j
a

2b
t2 =

T

TN

+∞
∑

n=−∞
x(tn)e

j a

2b
t2nh2(t− t̃n), (44)

10



where h2(t) = sinc
(

ur
b t

)

. Thus, we can get the auto-correlation function of x̄(t) as follows:

Rx̄x̄(t, t− τ) =E[x̄(t)x̄(t− τ)]

=E

[ T

TN

+∞
∑

n=−∞
x(tn)e

j a

2b
t2nh2(t− t̃n)

× T

TN

+∞
∑

k=−∞
x∗(tk)e

−j a

2b
t2
kh∗2(t− τ − t̃k)

]

=
( T

TN

)2
E

[

+∞
∑

n=−∞
x(nT + ξn)e

j a

2b
(nT+ξn)2h2(t− nT − ζn)

×
+∞
∑

k=−∞
x∗(kT + ξk)e

−j a

2b
(kT+ξk)

2
h∗2(t− τ − kT − ζk)

]

=
( T

TN

)2
+∞
∑

n=−∞

+∞
∑

k=−∞
E

[

Rx̃x̃(nT − kT + ξn − ξk)

× h2(t− nT − ζn)h
∗
2(t− τ − kT − ζk)

]

=
( T

TN

)2
Rx̃x̃(0)

+∞
∑

n=−∞
E

[

h2(t− nT − ζn)h
∗
2(t− τ − nT − ζn)

]

+
( T

TN

)2 ∑

n 6=k
E

[

Rx̃x̃(nT − kT + ξn − ξk)h2(t− nT − ζn)

× h∗2(t− τ − kT − ζk)
]

,I + II. (45)

Next, we use two steps to compute Rx̄x̄(t, t− τ). Note that

∑

n

ej(u2−u1)nT = 2π
∑

k

δ((u2 − u1)T − 2πk) (46)

and

h2(t) =
1√
2π

∫ +∞

−∞
H2(u)e

j u

b
tdu

=
b√
2π

∫ +∞

−∞
H2(ub)e

jutdu. (47)

We obtain

I =
( T

TN

)2
Rx̃x̃(0)

+∞
∑

n=−∞
E

[

h2(t− nT − ζn)h
∗
2(t− τ − nT − ζn)

]

=
b2

2π

( T

TN

)2
Rx̃x̃(0)

∫ +∞

−∞

∫ +∞

−∞
H2(bu1)H

∗
2 (bu2)e

j(u1−u2)teju2τ

11



×
+∞
∑

n=−∞
ej(u2−u1)nTE[ej(u2−u1)ζn ]du1du2

=
( Tb

TN

)2
Rx̃x̃(0)

∫ ur

b

−ur

b

1

T
|H2(bu)|2ejuτdu

=
T

4π2

∫ ur

b

−ur

b

ejuτ
[

∫ ur

b

−ur

b

Px̃x̃(u1)du1

]

du, (48)

where we use the fact that H2(bu) =
TN
b
√
2π
χ[− π

TN
, π

TN
](u) in the last step.

Similarly, we have

II =
( T

TN

)2 ∑

n 6=k
E

[

Rx̃x̃(nT − kT + ξn − ξk)h2(t− nT − ζn)

× h∗2(t− τ − kT − ζk)
]

=
b2

(2π)2

( T

TN

)2 ∑

n 6=k
E

[

∫ ur

b

−ur

b

Px̃x̃(u)e
ju(nT−kT+ξn−ξk)du

×
∫ +∞

−∞
H2(bu1)e

ju1(t−nT−ζn)du1

∫ +∞

−∞
H∗

2 (bu2)e
−ju2(t−τ−kT−ζk)du2

]

=
b2

(2π)2

( T

TN

)2 ∑

n 6=k

∫ ur

b

−ur

b

∫ +∞

−∞

∫ +∞

−∞
Px̃x̃(u)H2(bu1)H

∗
2 (bu2)e

ju2τ

× ej(u1−u2)tej(u−u1)nT e−j(u−u2)kTE
[

ejuξne−juξk

× e−ju1ζneju2ζk
]

du1du2du

=
b2

(2π)2

( T

TN

)2
∫ ur

b

−ur

b

∫ +∞

−∞

∫ +∞

−∞
Px̃x̃(u)H2(bu1)H

∗
2 (bu2)φξζ(u,−u1)

× φ∗ξζ(u,−u2)eju2τej(u1−u2)t
∑

n

ej(u−u1)nT

×
∑

k

e−j(u−u2)kTdu1du2du− b2

(2π)2

( T

TN

)2
∫ ur

b

−ur

b

∫ +∞

−∞

∫ +∞

−∞

× Px̃x̃(u)H2(bu1)H
∗
2 (bu2)φξζ(u,−u1)φ∗ξζ(u,−u2)eju2τej(u1−u2)t

×
∑

n

ej(u2−u1)nTdu1du2du

=
( b

TN

)2
∫ ur

b

−ur

b

Px̃x̃(u)|H2(bu)|2|φξζ(u,−u)|2ejuτdu

− T

2π

( b

TN

)2
∫ ur

b

−ur

b

∫ ur

b

−ur

b

Px̃x̃(u1)|H2(bu)|2|φξζ(u1,−u)|2ejuτdu1du

=
( b

TN

)2
∫ ur

b

−ur

b

|H2(bu)|2ejuτ
[

Px̃x̃(u)|φξζ(u,−u)|2 −
T

2π

∫ ur

b

−ur

b

Px̃x̃(u1)

× |φξζ(u1,−u)|2du1
]

du

12



=
1

2π

∫ ur

b

−ur

b

ejuτ
[

Px̃x̃(u)|φξζ(u,−u)|2 −
T

2π

∫ ur

b

−ur

b

Px̃x̃(u1)

× |φξζ(u1,−u)|2du1
]

du. (49)

Combining (48) and (49), we obtain

Rx̄x̄(t, t− τ) =
T

4π2

∫
ur

b

−ur

b

(

∫
ur

b

−ur

b

Px̃x̃(u1)[1− |φξζ(u1,−u)|2]du1
)

ejuτdu

+
1

2π

∫
ur

b

−ur

b

ejuτPx̃x̃(u)|φξζ(u,−u)|2du. (50)

Similarly, we can obtain the cross-correlation function of x̄(t) and x̃(t) as follows,

Rx̄x̃(t, t− τ) =
1

2π

∫ ur

b

−ur

b

ejuτPx̃x̃(u)φξζ(u,−u)du. (51)

Therefore, we have

Px̄x̄(u) = Px̃x̃(u)|φξζ(u,−u)|2

+
T

2π

(

∫ ur

b

−ur

b

Px̃x̃(u1)[1− |φξζ(u1,−u)|2]du1
)

(52)

and
Px̄x̃(u) = Px̃x̃(u)φξζ(u,−u). (53)

Hence, the first term Px̃x̃(u)|φξζ(u,−u)|2 in (52) is the power spectral density of ỹ(t) in
Fig. 6. Substituting (27) into (43), we have

Pvv(u) = T

∫ ur

−ur
PAxx(u1)[1− φξζ(

u1
b
,−u)|2]du1

= T

∫ ur

−ur

1

2πb
Px̃x̃(

u1
b
)[1 − φξζ(

u1
b
,−u)|2]du1

=
T

2π

∫ ur

b

−ur

b

Px̃x̃(u1)[1− φξζ(u1,−u)|2]du1.

Thus, the second term T
2π

(

∫

ur

b

−ur

b

Px̃x̃(u1)[1− |φξζ(u1,−u)|2]du1
)

in (52) is identical to the

power spectral density of v(t). Consequently, the model described in Fig. 6 is equal to the
procedure, which includes the nonuniform sampling mentioned in subsection 3.1 and the
approximate reconstruction approach by utilizing sinc interpolation function represented
in Fig. 5, in the sense of second order statistic characters.

Next, we estimate the error E[|x̂(t) − x(t)|2]. Let ǫ(t) = x̂(t) − x(t). Combining (27)
and (52), we get

PAx̂x̂(u) =
1

2πb
Px̄x̄(

u

b
)

13



=
1

2πb
Px̃x̃(

u

b
)|φξζ(

u

b
,−u

b
)|2

+
T

4π2b

(

∫ ur

b

−ur

b

Px̃x̃(u1)[1− |φξζ(u1,−
u

b
)|2]du1

)

= PAxx(u)|φξζ(
u

b
,−u

b
)|2

+
T

2πb

(

∫ ur

−ur
PAxx(u1)[1− |φξζ(

u1
b
,−u

b
)|2]du1

)

. (54)

Similarly, we obtain

PAx̂x(u) =
1

2πb
Px̄x̃(

u

b
)

=
1

2πb
Px̃x̃(

u

b
)φξζ(

u

b
,−u

b
))

= PAxx(u)φξζ(
u

b
,−u

b
). (55)

Hence, the LCT auto-power spectral density of the reconstruction error ǫ(t) in Fig. 6 is

PAǫǫ (u) = PAx̂x̂(u)− PAx̂x(u)− PAxx̂(u) + PAxx(u)

= PAxx(u)|φξζ(
u

b
,−u

b
)|2 + T

2πb

(

∫ ur

−ur
PAxx(u1)

×[1− |φξζ(
u1
b
,−u

b
)|2]du1

)

− PAxx(u)φξζ(
u

b
,−u

b
)

−[PAxx(u)φξζ(
u

b
,−u

b
)]∗ + PAxx(u)

= PAxx(u)|1 − φξζ(
u

b
,−u

b
)|2 + T

2πb

(

∫ ur

−ur
PAxx(u1)

×[1− |φξζ(
u1
b
,−u

b
)|2]du1

)

. (56)

Therefore, it follows from (9) and (14) that

E[|ǫ(t)|2] = Rǫ̃ǫ̃(0)

= RAǫǫ(0)

=

∫ ur

−ur
PAǫǫ (u)du

=

∫ ur

−ur
PAxx(u)|1 − φξζ(

u

b
,−u

b
)|2du

+
T

2πb

∫ ur

−ur
PAxx(u)

∫ ur

−ur
1− |φξζ(

u

b
,−u1

b
)|2du1du.

This completes the proof.

Note that the reconstruction error E[|x̂(t)−x(t)|2] is related to the LCT auto-correlation
power spectral density PAxx(u) of the random signal x(t) and the joint characteristic func-
tion φξζ(u,−u) of two random variables ξn and ζn. In particular, when ξn and ζn are
constants and both are equal to zeros, i.e., the nonuniform sampling studied in this paper
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reduces to uniform sampling, we have E[|x̂(t) − x(t)|2] = 0 from Theorem 3.6. Therefore
the result of uniform sampling proposed in [10, Theorem 3.4] is a special case of Theorems
3.5 and 3.6 in this paper.

On the other hand, the LCT includes many widely used linear transforms as special

cases. For example, by setting A =

(

cos θ sin θ
− sin θ cos θ

)

with θ ∈ [−π, π) in (1), the LCT of

f(t) becomes the fractional Fourier transform of f(t) with angle θ. In this case, our results
coincide with those in [31], and in particular, when ξn and ζn are constants and equal
to zeros, our results coincide with the uniform sampling results in [24]. Furthermore, by

setting A =

(

0 1
−1 0

)

, the LCT of f(t) becomes the Fourier transform of f(t) multiplied

by a constant
√

1
j2π . In this case, our results coincide with those in [14].

3.4 Simulations

In this subsection, we consider a random signal x(t) = ej5πt+jψ−j
3
2
πt2 ,−4 ≤ t ≤ 4, where

ψ follows the standard Gaussian distribution. It is easy to verify that x̃(t) = x(t)ej
a

2b
t2

is wide sense stationary, and x(t) is approximately bandlimited with bandwidth 10 Hz

in the LCT domain with parameter A =

(

a b
c d

)

=

(

3 1/π
π 2/3

)

. Let T = TN = 0.1.

First, the approximate signal recovery results based on (41) for one realization of x(t) are
respectively shown in Fig. 7 in terms of two different nonuniform sampling models. Let
ξn follow the uniform distribution in the interval [−0.01 − 0.002 ∗ k, 0.01 + 0.002 ∗ k] and
integer k take a value from 0 to 15. Then, for each k, 0 ≤ k ≤ 15, we implement 5000
realizations of x(t) and estimate the mean square error of the reconstruction in terms of
four different nonuniform sampling models as shown in Fig. 8. One can see from Fig. 8
that the reconstruction from the nonuniform sampling with ζn = 0 is preferable. In fact,
the reconstruction is an approximate solution, and we cannot claim which sampling model
is the best in general. However, according to (44) in Theorem 3.6, a lower mean square
error of the reconstruction might be obtained by choosing a proper joint characteristic
function of ξn and ζn.

4 Conclusion

In this paper, we mainly discuss the nonuniform sampling for random signals, which are
bandlimited in the LCT domain. At the beginning, based on the concepts of the LCT
correlation function and power spectral density, we get the connection between the LCT
auto-power spectral density of the inputs and outputs. Moreover, we show that nonuniform
sampling for random signals bandlimited in the LCT domain can be identical to uniform
sampling after a pre-filter in the sense of second order statistic characters. Furthermore,
we derive an approximate reconstruction formula for random signals bandlimited in LCT
domain from their nonuniform samples, by utilizing the sinc interpolation functions. Fi-
nally, we investigate the error between the original random signal and its approximation in
the mean square sense, and verify the performances of our theoretical results by numerical
simulation.
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x(t) LCT
⊗

H(u)

Inverse LCT y(t)
X(u) Y (u)

Figure 1: The LCT multiplicative filter.

t0 t1 tn−1 tnT

ξ1 ξ2 ξn

x(t)
⊗

∑

n δ(t− tn)

x(tn)

Figure 2: The nonuniform sampling representation.

x(t)
⊗

ej
a

2b
t2

h1(t)
⊗

e−j
a

2b
t2

Sampling
⊕

v(nT )

⊗

ej
a

2b
(nT )2

z̃(nT )
x̃(t) ỹ(t) y(t) y(nT ) z(nT )

Figure 3: The equivalent system of the nonuniform sampling, where v(t) is an additive
noise with zero mean, v(t) is independent of x(t), and the LCT auto-power spectral density
of v(t) is PAxx(u)(1 − |H1(u)|2).
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x(t) Sampling

tn = nT + ξn

⊗

ej
a

2b
t2n

x̃(tn)
x(tn)

Figure 4: Another version of nonuniform sampling.

x(tn)
⊗

ej
a

2b
t2n

Synthesis
⊗

e−j
a

2b
t2

x̂(t)
x̃(tn) x̄(t)

Figure 5: The approximate reconstruction with sinc interpolation function, where x̄(t) =
∑

n

T
TN
x̃(tn)sinc

π(t−t̃n)
TN

.

x(t)
⊗

ej
a

2b
t2

h3(t)
⊕

v(t)

⊗

e−j
a

2b
t2

x̂(t)
x̃(t) ỹ(t) x̄(t)

Figure 6: The nonuniform sampling and reconstruction system, where v(t) is an additive
noise with zero mean, which is uncorrelated with x(t) and has the power spectral density
defined by (43).
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Figure 7: The approximate signal reconstruction: (a) when ξn is uniformly distributed
in the interval [−0.01, 0.01] and ζn = 0; (b) when ξn and ζn are i.i.d. with uniform
distribution in the interval [−0.01, 0.01].

21



0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

M
ea

n 
sq

ua
re

 e
rr

or

 

 

ζ
n
=0

ζ
n
 is independent of ξ

n
 and uniformly distributed in [−0.01,0.01]    

ζ
n
=ξ

n

ζ
n
 and ξ

n
 are i.i.d.

Figure 8: Mean square error of the reconstruction when ξn is uniformly distributed in the
interval [−0.01 − 0.002 ∗ k, 0.01 + 0.002 ∗ k], where k = 0, 1, · · · , 15.
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