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THE CANONICAL CONTROLLER FOR DISTRIBUTED SYSTEMS

Shiva Shankar 1

Abstract. This paper generalises results of Willems-Trentelman, and van der Schaft,
on achievable behaviours, to the case of linear distributed systems defined by par-
tial differential or difference equations. It shows that the ‘minimal’ controller which
achieves a particular subsystem is the canonical controller of van der Schaft, thereby
answering the ‘open problem’ of [5] in the setting of infinite dimensional and n−D

systems. This result is used to describe the collection of all linear subsystems of
the electro-magnetic field, containing the vacuum solutions, that can be attained by
suitable choices of electric charge and current density.
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1. introduction

This paper generalises the results in [9] on achievable subsets of behaviours described
by ordinary differential equations, to the setting of distributed systems described by
partial differential or difference equations. Furthermore, it shows that there is a unique
minimal controller which accomplishes a given restriction, whose structure is identical
to that of the canonical controller of [5].

Recollect that by definition, a behaviour is the collection of all the evolutions, or
trajectories, of a dynamical system. Potentially, any possible evolution could perhaps
occur, but the laws that the system must obey, restrict the actual occurance to a subset.
These laws, if they are local, are described by differential or difference equations. For
example, the components of the electric and magnetic fields in space and time, could
a priori have been arbitrary functions in C∞(R4), but in fact must satisfy the Maxwell
equations. In this interpretation, a law serves to restrict the possible evolutions of
a system, and the collection of all the laws that it satisfies, defines the system. If a
system’s trajectories must be further restricted, according to some criteria (such as
stability, or rapid decay at infinity), then one must impose further laws, in the form
of a controller. This world view, initiated by Willems [8], does not require notions of
inputs or outputs in its formulation, and is a vast generalization of the classical state
space theory.

The problem addressed byWillems-Trentelman in [9] is to characterize all the ‘achiev-
able behaviours’ of a dynamical system. In this problem, the variables which describe
the attributes of a system are of two kinds, those which need to be controlled, denoted
w, and the variables by means of which control is accomplished, denoted c. In the
input-output paradigm of state space theory, or in the transfer function approach, c
would be the inputs to the system, and w its outputs. The trajectories of w and c that
can possibly occur, and the relationships between them, are described by the laws of
the system. The problem now is to characterize those subsets of trajectories to which
it is possible to restrict the evolution of the w variables, by imposing restrictions on
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the control variables. These are the achievable behaviours of the system. A complete
characterization of these behaviours is obtained in [9] for linear time invariant systems
described by ordinary differential equations. The work in [5] provides a partial gener-
alization in a very general context. Furthermore, in it, van der Schaft establishes the
existence of a ‘canonical’ controller that accomplishes the task of restriction, and in
the process uncovers an instance of the Internal Model Principle in its description.

This paper generalises all these results to distributed systems. The description of
achievable subsystems is a faithful generalisation of the results in [9]. There are several
conrollers which restrict a distributed system to a given subsystem, and amongst them,
there is a minimal controller, which turns out to be the faithful generalisation of the
canonical controller of [5]. This paper is thus an answer to the ‘open problem’ in [5],
in the setting of infinite dimensional and n−D systems.

The paper concludes with an application of these results to the control of the electro-
magnetic field in space and time. For instance, if the electric and magnetic fields
are the variables that must be controlled by suitable choices of electric current and
charge density, then the results here provide a complete characterisation of the possible
subsystems of the electro-magnetic field that can be so achieved.

2. achievable subsystems of a distributed systems

Let A be either the ring C[∂] = C[∂1, . . . , ∂n] of partial differential operators on R
n,

or the ring C[σ] = C[σ1, . . . , σn] of partial difference operators on the subset Nn ⊂ Z
n

of lattice points with positive integral coordinates. The attributes of the systems that
we study take values in the space D′ of distributions on R

n, in the first case, and
in the space C

Nn

, of all complex valued functions on N
n, in the second. An element

of C[∂] acts on an element in D′ by differentiation, and gives D′ the structure of a
C[∂]-module. Similarly, the action of σi on an f ∈ C

Nn

by shift in the i-th coordinate,
namely σi(f)(x1, . . . , xi, . . . , xn) = f(x1, . . . , xi + 1, . . . xn), makes CNn

a C[σ]-module.
More generally, the attributes of the system lie in an A-submodule of D′ or CNn

, as the
case may be, for instance the space C∞ of smooth functions in D′, or the submodule of
bounded functions in C

Nn

. We call this A-submodule ‘the space of signals’, and denote
it by F .

Let P be an A-submodule of Ak, k > 1, the free A-module of rank k. It is finitely
generated, say by p1, . . . , pℓ, where pi = (pi1, . . . , pik), 1 6 i 6 ℓ. This choice of
generators defines the matrix operator

P (·) : Fk −→ Fℓ

f = (f1, . . . , fk) 7→ (p1f, . . . , pℓf),

where P (·) is either the partial differential operator P (∂), or the partial difference

operator P (σ), depending upon the choice of A, and where pif =
∑k

j=1 pijfj, for all i.

The distributed system defined by P (·), in the signal space F , is the kernel KerF (P (·))
of the above operator. In Willems’ interpretation, the rows of P (·) are the laws that
determine the system, and to say P (·)f = 0 is to say that f satisfies these laws.

This kernel, however, depends not on the choice of generators for P which make up
the rows of P (·), but only on the submodule P . Indeed, by Malgrange [2], the above
kernel is isomorphic to the A-module HomA(A

k/P, F) of all A-linear maps from the
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quotient module Ak/P to the signal space F . This isomorphism is given by the map

(1)
KerF (P (·)) −→ HomA(A

k/P, F)
f = (f1, . . . , fk) 7→ φf ,

where φf ([ei]) = fi, 1 6 i 6 k, and where [e1], . . . , [ek] denote the images of the

standard basis e1, . . . , ek of Ak in Ak/P . The inverse of this map is

HomA(A
k/P, F) −→ KerF (P (·))
φ 7→ (φ([e1]), . . . , φ([ek ])) .

Hence, we denote this kernel by KerF (P ), and call it ‘the system defined by the
kernel of P in F ’. An element f ∈ KerF (P ) is a trajectory of the system.

Clearly, P ⊂ P ′ implies that KerF (P
′) ⊂ KerF (P ).

As explained earlier, the attributes f of the system KerF (P ) ⊂ Fk, are of two types,
the control variables fc ∈ F

kc , and the variables fw ∈ F
kw that are to be controlled,

where kw + kc = k. We then write an f ∈ Fk as (fw, fc) ∈ F
kw+kc . Correspondingly,

we denote an element p ∈ Ak by (pw, pc) ∈ Akw+kc . There are several injections
and surjections defined by this separation of variables, and we denote them as in the
following split exact sequences:

0→ Akw

ιw−→
πw←−

Akw+kc

πc−→
ιc←−

Akc → 0 ,

and

0← Fkw

πw←−
ιw−→
Fkw+kc

ιc←−
πc−→
Fkc ← 0 ,

where the second sequence is obtained from the first by applying the functor HomA(−, F)
to it.

An A-submodule P of Akw+kc then defines the A-submodules πw(P ) and ι−1
w (P ) of

Akw , and the submodules πc(P ) and ι−1
c (P ) of Akc . Similarly, the system KerF (P ) ⊂

Fkw+kc defined by P , defines the A-submodules πw(KerF (P )) and ι−1
w (KerF (P )) of

Fkw , and πc(KerF (P )) and ι−1
c (KerF (P )) of Fkc .

Remark 2.1: This notation is slightly different from the notation in [5], for instance
the A-module ι−1

w (KerF (P )) above, is denoted by P0 there. The notation here is meant
to emphasise the interchangeable roles of w and c. This symmetry is again observed
below, in the comment after Lemma 2.2.

In this terminology, we can state the control problem of this paper:
(i) Consider the set of trajectories in πw(KerF (P )). Suppose that we wish to restrict
it to a subset consisting of only those trajectories which satisfy some criterion defined
by the problem, and that this is to be achieved by restricting the control trajectories
in πc(KerF (P )) to a subset.

What are the subsets of πw(KerF (P )) that can be achieved by this process?

In the behavioural paradigm of Willems explained above, a restriction of the control
trajectories is achieved by imposing additional laws that the control variables must
satisfy. These additional laws constitute the controller. We can then ask:
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(ii) What is the structure of the controller that accomplishes the control task of (i)?

The rest of this section is dedicated to answering these questions.

We first establish relationships between the various A-submodules of Fkw and Fkc

derived from KerF (P ) above.

Proposition 2.1. Let F be any signal space, and P be an A-submodule of Akw+kc.
Then the submodules of Fkw described above satisfy

ι−1
w (KerF (P )) = KerF (πw(P )) ⊂ πw(KerF (P )) ⊂ KerF (ι

−1
w (P )) ,

and similarly for the corresponding submodules of the control signal space Fkc.

Proof: Set k = kw + kc. Applying the left exact functor HomA(−, F) to the exact

sequence Ak/P
πw−→ Akw/πw(P ) → 0, implies that 0 → HomA(A

kw/πw(P ), F)
ιw−→

HomA(A
k/P, F) is exact. The isomorphism of (1) proves the equality in the statement

of the proposition.
Similarly, the short exact sequence

0→ Akw/ι−1
w (P )

ιw−→ Ak/P
πc−→ Akc/πc(P )→ 0

yields the exact sequence

0→ KerF (πc(P ))
ιc−→ KerF (P )

πw−→ KerF (ι
−1
w (P )) ,

and hence the second inclusion of the statement.
Finally, if fw is in ι−1

w (KerF (P )), then (fw, 0) is in KerF (P ), and hence fw is also in
πw(KerF (P )). �

As we work in the category of systems that arise as kernels of differential or difference
operators, the first problem we encounter is that the projection of a system need not
always be a system.

Example 2.1: Let A = C[ d
dt
], and let F = D, the space of compactly supported smooth

functions on R. Let P ⊂ A2 be the cyclic submodule generated by (−1, d

dt
), and let

πw : A2 → A be the projection to the first factor.
Then, KerD(P ) = {( d

dt
f, f) | f ∈ D}, and πw(KerD(P )) = { d

dt
f | f ∈ D}. If this

image were the kernel of a differential operator, say the kernel of p( d

dt
) : D → D, then

it would follow that the composition p( d

dt
) ◦ d

dt
= 0. As A is a domain, this implies

that p( d

dt
) = 0, and hence that d

dt
: D → D is surjective. This is a contradiction, as the

image of d

dt
consists of only those elements in D that integrate to 0 on R.

We overcome this problem by restricting the choice of the signal space F to an
injective A-module. Recollect that to say F is injective, is to say that HomA(−, F) is
an exact functor. The celebrated Fundamental Principle of Palamadov and Malgrange
asserts that D′, C∞, and the space S ′ of temperate distributions, are injective C[∂]-
modules. Moreover, it is an elementary fact that the space C

Nn

is an injective C[σ]-
module.

Also recollect that an injective A-module M is a cogenerator if HomA(P,M) is
nonzero whenever P is nonzero. The C[∂]-modulesD′ and C∞ are cogenerators, whereas



CANONICAL CONTROLLER 5

S ′ is not a cogenerator, for instance [7]. Again it is elementary that CNn

is a cogenerator
as a C[σ]-module.

It follows that if F is injective, and a cogenerator, then there is an inclusion reversing
bijection between A-submodules P of Ak and systems KerF (P ) in Fk, [7].

Proposition 2.2. Let the signal space F be an injective A-module. Then the projection
of a system is also a system. Furthermore,

πw(KerF (P )) = KerF (ι
−1
w (P )),

i.e. the second inclusion of Proposition 2.1 is an equality.
Similarly, πc(KerF (P )) = KerF (ι

−1
c (P )).

Proof: It suffices to observe that the short exact sequence in the proof of Proposition
2.1, now yields a short exact sequence upon applying the exact functor HomA(−, F),
and hence that πw : KerF (P )→ KerF (ι

−1
w (P )) is surjective. �

Remark 2.2: When the signal space F is not an injective A-module, for example the
space D of Example 2.1, then the obstruction to the above projection being a kernel
lies in Ext

1
A(A

kc/πc(P ), F) (see for instance [6]).

Hence, we assume for the rest of the paper that the space of signals F is an injective
A-module.

We now state again the control problem that we study for such signal spaces:

(i) Given a distributed system B = KerF (P ) ⊂ Fkw+kc, it defines two other systems
by projection, Bw = πw(B) = KerF (ι

−1
w (P )) ⊂ Fkw , the system that is to be controlled,

and Bc = πc(B) = KerF (ι
−1
c (P )) ⊂ Fkc, the controller. The problem is to restrict Bw

to a desired subsystem by restricting the behaviour of the controller Bc. This is to be
achieved by augmenting the laws the controller must satisfy.

Characterize the subsystems of Bw that can be thus achieved.

The controller system Bc, and its subsystems obtained by restriction, mediate through
the system B (governed by the laws in the submodule P ⊂ Ak) to effect changes in the
system Bw. This imposes a priori constraints on the possible subsystems of Bw that
can be attained by the above process.

Lemma 2.1. The subsystem ι−1
w (B) of πw(B) is unchanged by additions to the con-

troller laws.

Proof: Imposing additional laws to restrict the behaviour Bc of the controller, translates
to specifying an A-submodule of Akc strictly containing the submodule ι−1

c (P ). These
laws correspond to laws of the form (0, q) ∈ Akw+kc that are not in P . The addition
of such laws to P in turn results in restricting the system B to a subsystem. However,
the submodule P ′, generated by P and these new laws, satisfies πw(P

′) = πw(P ). As
KerF (πw(P )) = ι−1

w (B), this subsystem of Bw remains unchanged when P is enlarged
to P ′. �

Corollary 2.1. The possible subsystems of Fkw that can be achieved by restricting
πc(B) with additional controller laws, all contain ι−1

w (B), and are contained in πw(B).

Proof: Together with the above lemma, it suffices to observe that additional controller
laws results in a larger set of laws that the system B must satisfy. Let it be given by
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a submodule P ′ containing P . It follows that ι−1
w (P ) ⊂ ι−1

w (P ′), and hence that the
controlled behaviour KerF (ι

−1
w (P ′)) must be contained in Bw. �

Thus, ι−1
w (B) is a residual subsystem of Bw, in the sense that every subsystem of

Bw that can be achieved by augmenting the controller Bc, contains it.

Dual to the above corollary is the following lemma which characterises the subsys-
tems of Fkc that can possibly restrict the behaviour of the system Bw.

Lemma 2.2. Every subsystem of Fkc that can restrict πw(B) is contained in πc(B),
and can be assumed to contain ι−1

c (B).

Proof: The first containment follows exactly as in the proof of the above corollary.
Next, let M be a submodule of Akc , and let q ∈M \πc(P ). Then there is no p ∈ Akw

such that (p, q) ∈ P , and thus ι−1
w (P +(0, q)) = ι−1

w (P ). This implies that the addition
of the law q to ι−1

c (P ) leaves Bw unchanged. Thus we may assume that M ⊂ πc(P ) by
replacing M with M ∩ πc(P ), and hence that ι−1

c (B) ⊂ KerF (M). �

Corollary 2.1 and Lemma 2.2 above, show that the variables w that are to be con-
trolled, and the control variables c, satisfy identical restrictions. In other words, Bw

can be restricted to a subsystem containing ι−1
w (B), by a controller that is contained

in Bc, and which contains ι−1
c (B). The above control problem is thus symmetric in the

w and c variables.

In light of these results, we make the following definition.

Definition: An A-submodule of Akw containing ι−1
w (P ), and which is contained in

πw(P ), is said to be admissible with respect to P (similarly for submodules of Akc

containing ι−1
c (P ) and contained in πc(P )).

Proposition 2.3. Let Φ assign an A-submodule N of Akw to the submodule Φ(N) =
ι−1
c (ιw(N) + P ) of Akc. Then Φ is a bijection between the admissible submodules of
Akw and the admissible submodules of Akc, with respect to P .

Proof: If N = ι−1
w (P ), then (ιw(N) + P ) = P , and so Φ(ι−1

w (P )) = ι−1
c (P ).

Now let N = πw(P ). For every (p, q) ∈ P , (p, 0) is in ιw(N), hence (0, q) is in
ιw(N)+P . Thus every q in πc(P ) is in ι−1

c (ιw(N)+P ), and hence Φ(πw(P )) = πc(P ).
As the assignment Φ is inclusion preserving, it follows that it maps an admissible

submodule of Akw to an admissible submodule of Akc , with respect to P .
Similarly, for an A-submodule M of Akc , define Ψ(M) = ι−1

w (ιc(M) + P ). It assigns
admissible submodules of Akc with respect to P to admissible submodules of Akw . It
is easily verified that Φ and Ψ are inverses of one another, and hence it follows that
they are both bijections. �

We can now characterize the achievable subsystems of Bw. For this purpose, we
assume further that F is a cogenerator. Thus F could be either D′ or C∞ in the case
of partial differential operators, or CNn

in the case of difference operators.
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Theorem 2.1. Let B = KerF (P ) be the system in Fkw+kc defined by the submodule
P ⊂ Akw+kc. Let the signal space F be an injective A-module, which is also a cogener-
ator. Then every subsystem of πw(B) containing ι−1

w (B) can be achieved by a unique
controller contained in πc(B) and containing ι−1

c (B).

Proof: Let B′ be a subsystem of πw(B) containing ι−1
w (B). As F is an injective

cogenerator, B′ equals KerF (N), for a unique submodule N of Akw . This submodule
N is admissible with respect to P , i.e., it satisfies ι−1

w (P ) ⊂ N ⊂ πw(P ). By the above
proposition Φ(N) equals an admissible submodule of Akc , say M .

Suppose that the laws ι−1
c (P ) of the system πc(B) are augmented to this submodule

M by the design of a controller. Then the laws of B, namely the submodule P ⊂ Ak,
are augmented to the submodule ιc(M) + P . The projection of the resultant system,
πw(KerF (ιc(M)+P )), to Fkw is a system whose laws are given uniquely by ı−1

w (ιc(M)+
P ), namely Ψ(M) of the above proposition. As Ψ is inverse to Φ, Ψ(M) = N .

Thus B′ is achieved by the unique subsystem of πc(B) defined by the submodule M .
�

Corollary 2.2. Amongst all the controllers that restrict πw(B) to a subsystem B′,
there is a unique minimal one whose laws are derived from the laws P of B.

Proof: As F is an injective cogenerator, the subsystem B′ is defined uniquely by a
submodule N ⊂ Akw , admissible with respect to P . Consider the submodule Φ(N) ⊂
πc(P ) determined by the correspondence of Proposition 2.3. By Theorem 2.1, the
controller determined by Φ(N) restricts B to B′. The expression for Φ shows that the
laws of this controller are derived from the laws P .

Now suppose that M is a set of laws that defines a controller which restricts Bw to
B′. By Lemma 2.2, it follows that M ′ = M ∩ πc(P ) also restricts B to B′. Again as F
is an injective cogenerator, it follows that M ′ must equal Φ(N).

Thus, the laws that determine any controller which restricts Bw to B′, must contain
Φ(N), and therefore Φ(N) is the unique minimal controller. �

Remark 2.3: The description of the above minimal controller is an instance of the In-
ternal Model Principle, in the sense that it has sufficient information about the system
B built into it, [1].

Recollect the notion of the canonical controller from [5]. Given an achievable sub-
system B′ of πw(B), its canonical controller is the subsystem of πc(B) defined by
Ccan = {fc ∈ F

kc | ∃ fw ∈ B′ with (fw, fc) ∈ B}.

Corollary 2.3. The unique minimal controller of the above corollary is the canonical
controller of B′.

Proof: Let B′ = KerF (N), for a unique submodule N of Akw , admissible with respect
to P . Then, by definition, the controller KerF (Φ(N)) of the above corollary is obtained
from B by restricting Bw to B′. This is precisely the canonical controller of van der
Schaft. �

These results also answer Problem (ii) above on the structure of controllers.

Remark 2.4: If we set k = 1, then we are in the realm of systems defined by ordinary
differential operators, and all the above results specialise to the results of [5] and [9].
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There are several other issues related to the construction of the canonical controller,
especially the notion of regular implementation (for instance [3] and [4]), which are,
however, not pursued here.

3. control of the electro-magnetic field

We study Maxwell’s equations in the context of the results of the previous section.

Let A be the ring C[∂x, ∂y, ∂z, ∂t] of differential operators on space and time. The
Maxwell equations (in Gaussian units) are

∇ · E − 4πρ = 0, ∇ ·B = 0,

∇×E +
1

c

∂tB = 0, ∇×B −
1

c

(4πJ + ∂tE) = 0 ,

where E,B are the electric and magnetic fields, ρ, J , the electric charge and electric
current densities, and c, the speed of light.

The partial differential operator defined by these equations is

P (∂) : F10 → F8 ,

where

P (∂) =

























∂x ∂y ∂z 0 0 0 −4π 0 0 0
0 0 0 ∂x ∂y ∂z 0 0 0 0
0 −∂z ∂y

1
c
∂t 0 0 0 0 0 0

∂z 0 −∂x 0 1
c
∂t 0 0 0 0 0

−∂y ∂x 0 0 0 1
c
∂t 0 0 0 0

1
c
∂t 0 0 0 ∂z −∂y 0 4π

c
0 0

0 1
c
∂t 0 −∂z 0 ∂x 0 0 4π

c
0

0 0 1
c
∂t ∂y −∂x 0 0 0 0 4π

c

























and where F is either D′(R4) or C∞(R4). The eight rows of this matrix correspond
to the two equations involving divergence, and the six equations involving curl. It
operates on (E1, E2, E3, B1, B2, B3, ρ, J1, J2, J3) ∈ F

10, the components of which are
the components of E,B, ρ and J . The electro-magnetic system is the kernel KerF (P (∂))
of this operator.

The problem is to control the electric and magnetic fields by suitable choices of
the control variables ρ and J . In the notation of the previous section, we have w =
(E1, E2, E3, B1, B2, B3), and c = (ρ, J1, J2, J3).

Let P ⊂ A10, be the submodule generated by the rows of P (∂). It determines the
submodules πw(P ) and ι−1

w (P ) of A6, and the submodules πc(P ), ι−1
c (P ) of A4. An

elementary calculation shows that ι−1
c (P ) is the submodule of A4 generated by the

continuity equation ∂tρ+∇ · J = 0, whereas πc(P ) = A4.
Similarly, the submodule ι−1

w (P ) ⊂ A6 is generated by the laws ∇ · B = 0 and
∇ × E + 1

c
∂tB = 0; these are the ‘homogeneous’ Maxwell equations given by the

submatrix defined by rows 2 to 5, and columns 1 to 6 of P (∂). Finally, the submodule
πw(P ) is generated by the rows of the 8 × 6 submatrix of P (∂) defined by its first
6 columns. They are the Maxwell equations in vacuum, namely the homogeneous
equations above, together with ∇ ·E = 0 and ∇×B − 1

c
∂tE = 0.

By Lemma 2.2, the laws governing the control variables ρ and J can be any A-
submodule M of A4 containing the continuity equation. Then, ρ and J would be
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restricted to lie in KerF (M). In other words, the control variables can be restricted by
any system of differential equations containing the continuity equation. Thus, charge
and current could be considered to play the classical role of inputs.

By Corollary 2.1, the restriction of ρ and J by the laws in M , results in a unique
subsystem of the system KerF (ι

−1
w (P )) of homogeneous solutions, and containing the

vacuum solutions KerF (πw(P )). This is the system determined by the admissible sub-
module Ψ(M) ⊂ A6 (in the notation of Proposition 2.3).

In other words, every achievable subsystem of the electro-magnetic field lies between
two systems, one, the solutions of the homogeneous Maxwell equations, and the other,
the solutions of the vacuum equations. They are obtained by imposing additional dif-
ferential constraints on the current and charge densities, and these constraints translate
to laws that the electric and magnetic fields must satisfy, in addition to the homoge-
neous equations. The canonical controller is determined by the single criterion that the
solutions of the controller equations contain the solutions of the continuity equations.
As every controller must satisfy the continuity equation, it folows that there is only
one controller that accomplishes a given restriction, and hence that this controller is
the canonical one.

As an example, suppose that the electric charge density ρ is set to 0, by the imposi-
tion of the law defined by the cyclic submodule of A4 generated by (1, 0, 0, 0). Let M
be the submodule of A4 generated by this law together with the continuity equation.
Thus, suppose that ρ = 0, and hence that ∇·J = 0. Then Φ(M) ⊂ A6 is the submodule
generated by the homogeneous equations together with ∇ ·E = 0, and the system Bw

is restricted to KerF (Φ(M)) by this control action.

Conversely, by Theorem 2.1, every electro-magnetic system contained between these
two extremes is achievable by suitably restricting electric charge and electric current,
in addition to satisfying the continuity equation.

This is precisely the physics of the electro-magnetic field.
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