Skip to main content

Advertisement

Log in

Low-rank and joint-sparse signal recovery using sparse Bayesian learning in a WBAN

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Wireless body area networks (WBANs) will become increasingly important in future communication systems, especially in the area of wearable health monitoring systems, such as telemonitoring systems for the collection of electrocardiogram (ECG) data/electroencephalogram (EEG) data via WBANs for e-health applications. However, wearable devices usually require limited power consumption to ensure long battery life. Fortunately, compressed sensing (CS) has been proven to use less energy than traditional transform-coding-based methods. Because the spatial and temporal data collected by a WBAN have some closely correlated structures in certain transform domains (e.g., the discrete cosine transform (DCT) domain), we exploit these structures to propose a new low-rank and joint-sparse (L&S) signal recovery algorithm for recovering ECG/EEG data in the framework of CS. Using a simultaneously L&S signal model, we employ a Bayesian learning treatment. This treatment incorporates an L&S-inducing prior over the data and appropriate hyperpriors over all hyperparameters and thereby yields an effective reconstruction of L&S data. Simulation results with synthetic and real ECG/EEG data demonstrate that the proposed algorithm is superior to other state-of-the-art recovery algorithms in terms of reconstruction performance with comparable computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Available at https://physionet.org/physiobank/database/incartdb.

  2. Available at https://mmspg.epfl.ch/BCI_datasets.

References

  • Astrin, A. W., Li, H. B., & Kohno, R. (2009). Standardization for body area networks. IEICE Transactions on Communications, 92–B, 366–372.

  • Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  • Baraniuk, R. G., Cevher, V., Duarte, M. F., & Hegde, C. (2010). Model-based compressive sensing. IEEE Transactions on Information Theory, 56(4), 1982–2001.

    Article  MathSciNet  Google Scholar 

  • Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6), 717.

    Article  MathSciNet  Google Scholar 

  • Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  • Chen, W. (2018). Simultaneously sparse and low-rank matrix reconstruction via nonconvex and nonseparable regularization. IEEE Transactions on Signal Processing, 66(20), 5313–5323.

    Article  MathSciNet  Google Scholar 

  • Cotter, S. F., Rao, B. D., Engan, K., & Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7), 2477–2488.

    Article  MathSciNet  Google Scholar 

  • Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal) dictionaries via \(\ell _1\) minimization. Proceedings of the National Academy of Sciences, 100(5), 2197–2202.

    Article  MathSciNet  Google Scholar 

  • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  • Eldar, Y. C., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory, 55(11), 5302–5316.

    Article  MathSciNet  Google Scholar 

  • Ender, J. H. (2010). On compressive sensing applied to radar. Signal Processing, 90(5), 1402–1414.

    Article  Google Scholar 

  • Gamper, U., Boesiger, P., & Kozerke, S. (2008). Compressed sensing in dynamic MRI. Magnetic Resonance in Medicine, 59(2), 365–373.

    Article  Google Scholar 

  • Gorodnitsky, I. F., George, J. S., & Rao, B. D. (1995). Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm. Electroencephalography and Clinical Neurophysiology, 95(4), 231–251.

    Article  Google Scholar 

  • Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600–616.

    Article  Google Scholar 

  • Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2013). Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2117–2130.

    Article  Google Scholar 

  • Li, Y., Chen, W., Yin, C., & Han, Z. (2015). Approximate message passing for sparse recovering of spatially and temporally correlated data. In Proceedings of 2015 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. Shenzhen, China

  • Lu, C., Tang, J., Yan, S., & Lin, Z. (2014). Generalized nonconvex nonsmooth low-rank minimization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4130–4137

  • Majumdar, A., Gogna, A., & Ward, R. (2014). A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network. Sensors, 14(9), 15729–15748.

    Article  Google Scholar 

  • Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  • McLachlan, G., & Krishnan, T. (2007). The EM algorithm and extensions (Vol. 382). John Wiley & Sons.

  • Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. Siam Journal on Computing, 24(2), 227–234.

    Article  MathSciNet  Google Scholar 

  • Negra, R., Jemili, I., & Belghith, A. (2016). Wireless body area networks: Applications and technologies. Procedia Computer Science, 83, 1274–1281.

    Article  Google Scholar 

  • Oymak, S., Jalali, A., Fazel, M., Eldar, Y. C., & Hassibi, B. (2015). Simultaneously structured models with application to sparse and low-rank matrices. IEEE Transactions on Information Theory, 61(5), 2886–2908.

    Article  MathSciNet  Google Scholar 

  • Ravelomanantsoa, A., Rabah, H., & Rouane, A. (2014). Simple and efficient compressed sensing encoder for wireless body area network. IEEE Transactions on Instrumentation and Measurement, 63(12), 2973–2982.

    Article  Google Scholar 

  • Singh, W., Shukla, A., Deb, S., & Majumdar, A. (2014). Energy efficient acquisition and reconstruction of eeg signals. In Proceedings of 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1274–1277. IEEE

  • Vaswani, N. (2008). Kalman filtered compressed sensing. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), pp. 893–896. San Diego, CA, USA

  • Wipf, D. P., Rao, B. D., & Nagarajan, S. (2011). Latent variable Bayesian models for promoting sparsity. IEEE Transactions on Information Theory, 57(9), 6236–6255.

    Article  MathSciNet  Google Scholar 

  • Xin, B., Wang, Y., Gao, W., & Wipf, D. (2016). Exploring algorithmic limits of matrix rank minimization under affine constraints. IEEE Transactions on Signal Processing, 64(19), 4960–4974.

    Article  MathSciNet  Google Scholar 

  • Zhang, Z., Jung, T. P., Makeig, S., & Rao, B. D. (2013). Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ecg via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2), 300–309.

    Article  Google Scholar 

  • Zhang, Z., Jung, T. P., Makeig, S., & Rao, B. D. (2013). Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Transactions on Biomedical Engineering, 60(1), 221–224.

    Article  Google Scholar 

  • Zhang, Z., & Rao, B. D. (2011). Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912–926.

    Article  Google Scholar 

  • Ziniel, J., & Schniter, P. (2013). Efficient high-dimensional inference in the multiple measurement vector problem. IEEE Transactions on Signal Processing, 61(2), 340–354.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Beijing Natural Science Foundation-Haidian Original Innovation Foundation (L192003), in part by the National Natural Science Foundation of China under Grants 61629101 and 61871041, in part by Beijing Laboratory Funding under Grant 2019BJLAB01, and in part by the 111 Project under Grant B17007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Chuan Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YB., Huang, LT., Li, YQ. et al. Low-rank and joint-sparse signal recovery using sparse Bayesian learning in a WBAN. Multidim Syst Sign Process 32, 359–379 (2021). https://doi.org/10.1007/s11045-020-00743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00743-y

Keywords

Navigation