Skip to main content
Log in

Three-dimensional steerable discrete cosine transform with application to 3D image compression

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This work introduces the three-dimensional steerable discrete cosine transform (3D-SDCT), which is obtained from the relationship between the discrete cosine transform (DCT) and the graph Fourier transform of a signal on a path graph. One employs the fact that the basis vectors of the 3D-DCT constitute a possible eigenbasis for the Laplacian of the product of such graphs. The proposed transform employs a rotated version of the 3D-DCT basis. We then evaluate the applicability of the 3D-SDCT in the field of 3D medical image compression. We consider the case where we have only one pair of rotation angles per block, rotating all the 3D-DCT basis vectors by the same pair. The obtained results show that the 3D-SDCT can be efficiently used in the referred application scenario and it outperforms the classical 3D-DCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Such axes labels are used here with the purpose of distinguishing the coordinates in a three-dimensional (eigen)space only; we are not referring to axes x, y and z usually employed to characterize \(\mathbb {R}^3\).

  2. Unless otherwise stated, from this point forward, the eigenvectors of \(\mathbf {L}(\mathcal {L}_N)\) are expressed as \(1\times N^3\) vectors, formed by the entries of the corresponding \(N\times N\times N\) structure taken in the lexicographical order.

  3. The indexes are the same ones we have used to identify the eigenvalues and eigenvectors of \(\mathbf {L}(\mathcal {L}_N)\).

  4. A practical rule for obtaining the other two coefficients of a triple, from a coefficient \(F_{k,l,m}\) lying in the red part of the cubical structures we have considered, is to apply two sequential cyclic shifts to the left to indexes klm; in this manner, one obtains coefficients \(F_{l,m,k}\) and \(F_{m,k,l}\).

References

  • Ahmadzai, F., Rao, K. M. L., & Ulfat, S. (2019). Assessment and modelling of urban road networks using integrated graph of natural road network (a GIS-based approach). Journal of Urban Management, 8(1), 109–125.

    Google Scholar 

  • Atal, D. K., & Singh, M. (2020). A hybrid feature extraction and machine learning approaches for epileptic seizure detection. Multidimensional Systems and Signal Processing, 31, 503–525.

    MATH  Google Scholar 

  • Barboriak, D. (2015). Data from RIDER NEURO MRI.https://doi.org/10.7937/K9/TCIA.2015.VOSN3HN1.

  • Beferull-Lozano, B., Xie, H. & Ortega, A. (2003). Rotation-invariant features based on steerable transforms with an application to distributed image classification. In 2003 International Conference on Image Processing, 3, III–521.

  • Bjøntegaard, G. (2001). Calculation of average PSNR differences between RD-curves. ITU-T VCEG-M33.

  • Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications. New York: Elsevier.

    MATH  Google Scholar 

  • Brieva, J., Moya-Albor, E., Gomez-Coronel, S.L. & Ponce, H. (2017). Video motion magnification for monitoring of vital signals using a perceptual model. In 12th International Symposium on Medical Information Processing and Analysis (SPIE), 10160, (pp. 156–167).

  • Carvalho, M.B., Pereira, M.P., Alves, G., Silva, E.A.B., Pagliari, C.L., Pereira, F. & Testoni, V. (2018). A 4D-DCT-based lenslet light field codec. In 2018 25th IEEE International Conference on Image Processing (ICIP) (pp. 435–439).

  • Chakraborty, A., Dutta, T., Mondal, S., & Nath, A. (2018). Application of graph theory in social media. International Journal of Computer Sciences and Engineering, 6, 722–729.

    Google Scholar 

  • Chung, F. R. K. (1997). Spectral graph theory. Providence, RI: American Mathematical Society.

    MATH  Google Scholar 

  • Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al. (2013). The cancer imaging archive (TCIA): Maintaining and operating a public information repository. Journal of Digital Imaging, 26(6), 1045–1057.

    Google Scholar 

  • Conti, C., Soares, L. D., & Nunes, P. (2016). HEVC-based 3D holoscopic video coding using self-similarity compensated prediction. Signal Processing: Image Communication, 42, 59–78.

    Google Scholar 

  • Conti, C., Nunes, P., & Soares, L. D. (2018). Light field image coding with jointly estimated self-similarity bi-prediction. Signal Processing: Image Communication, 60, 144–159.

    Google Scholar 

  • Deri, J. A. & Moura, J. M. F. (2016). New York city taxi analysis with graph signal processing. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1275–1279).

  • Diestel, R. (1997). Graph theory. No. 173 in graduate texts in mathematics. New York: Springer.

    Google Scholar 

  • Escalante-Ramírez, B. (2008). The Hermite transform as an efficient model for local image analysis: An application to medical image fusion. Computers & Electrical Engineering, 34(2), 99–110.

    MATH  Google Scholar 

  • Estudillo-Romero, A., & Escalante-Ramirez, B. (2011). Rotation-invariant texture features from the steered Hermite transform. Pattern Recognition Letters, 32(16), 2150–2162.

    Google Scholar 

  • Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: A systematic review. Frontiers in Neuroscience, 13, 1–27.

    Google Scholar 

  • Fracastoro, G., & Magli, E. (2017). Steerable discrete Fourier transform. IEEE Signal Processing Letters, 24(3), 319–323.

    MATH  Google Scholar 

  • Fracastoro, G., Fosson, S. M., & Magli, E. (2017). Steerable discrete cosine transform. IEEE Transactions on Image Processing, 26(1), 303–314.

    MathSciNet  MATH  Google Scholar 

  • Grando, F., Noble, D. & Lamb, L.C. (2016). An analysis of centrality measures for complex and social networks. In IEEE Global Communications Conference, GLOBECOM, NA, (pp 1–6).

  • Hackl, J., & Adey, B. T. (2019). Estimation of traffic flow changes using networks in networks approaches. Applied Network Science, 4(28), 1–26.

    Google Scholar 

  • Horn, R. A., & Johnson, C. R. (1991). Topics in matrix analysis. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Hu, W., Cheung, G., Ortega, A., & Au, O. C. (2015). Multiresolution graph Fourier transform for compression of piecewise smooth images. IEEE Transactions on Image Processing, 24(1), 419–433.

    MathSciNet  MATH  Google Scholar 

  • Huang, X., Zhao, Y., Ma, C., Yang, J., Ye, X., & Zhang, C. (2016). TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 160–169.

    Google Scholar 

  • Jansen, S., & Terry, V. D. (2015). TCIA mouse-astrocytoma collection. https://doi.org/10.7937/K9TCIA.2017.SGW7CAQW

  • Jansen, S., Ileva, L., Lu, L., & Terry, V. D. (2015). TCIA mouse-mammary collection. https://doi.org/10.7937/K9/TCIA.2015.9P42KSE6.

  • Kandhway, P., & Bhandari, A. K. (2019). An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. Multidimensional Systems and Signal Processing, 30(4), 1859–1894.

    MATH  Google Scholar 

  • Kim, Y.K., He, Z. & Mitra, S.K. (2001). A novel linear source model and a unified rate control algorithm for H.263/MPEG-2/MPEG-4. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings, 3, (pp. 1777–1780).

  • Le Pennec, E., & Mallat, S. (2005). Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing, 14(4), 423–438.

    MathSciNet  Google Scholar 

  • Lee, M. C., Chan, R. K. W., & Adjeroh, D. A. (1997). Quantization of 3D-DCT coefficients and scan order for video compression. Journal of Visual Communication and Image Representation, 8(4), 405–422.

    Google Scholar 

  • Li, X., Abramson, R. G., Arlinghaus, L. R., Chakravarthy, A. B., Abramson, V. G., Sanders, M., et al. (2015). Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Investigative Radiology, 50(4), 195–204.

    Google Scholar 

  • Li, X., Abramson, R. G., Arlinghaus, L. R., Chakravarthy, A. B., Abramson, V. G., Sanders, M., et al. (2016). TCIA data from QIN-breast.,. https://doi.org/10.7937/K9/TCIA.2016.21JUebH0.

    Article  Google Scholar 

  • Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2014). Computer-aided detection of prostate cancer in MRI. IEEE Transactions on Medical Imaging, 33(5), 1083–1092.

    Google Scholar 

  • Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2017). ProstateX challenge data. https://doi.org/10.7937/K9TCIA.2017.MURS5CL.

  • Liu, D., An, P., Ma, R., Yang, C., & Shen, L. (2016). 3D holoscopic image coding scheme using HEVC with Gaussian process regression. Signal Processing: Image Communication, 47, 438–451.

    Google Scholar 

  • Lucchesi, F.R. & Aredes, N.D. (2016). Radiology data from the cancer genome atlas cervical squamous cell carcinoma and endocervical adenocarcinoma [TCGA-CESC] collection. https://doi.org/10.7937/K9/TCIA.2016.SQ4M8YP4.

  • Ma, F., Yao, B. & Yao, M. (2016). Non-planar unclustered peterson graphs as scale-free models of the internet of things. In 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference (pp. 1040–1043).

  • Merri, R. (1998). Laplacian graph eigenvectors. Linear Algebra and its Applications, 278(1), 221–236.

    MathSciNet  Google Scholar 

  • Mohan, D.M., Asif, M.T., Mitrovic, N., Dauwels, J. & Jaillet, P. (2014). Wavelets on graphs with application to transportation networks. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 1707–1712).

  • Moya-Albor, E., Escalante-Ramirez, B., & Vallejo, E. (2013). Optical flow estimation in cardiac CT images using the steered Hermite transform. Signal Processing: Image Communication, 28(3), 267–291.

    Google Scholar 

  • Moya-Albor, E., Mira, C., Brieva, J., Escalante-Ramirez, B. & Venegas, E. (2017). 3D optical flow estimation in cardiac CT images using the Hermite transform. In 12th Symposium on Medical Information Processing and Analysis, 10160 (pp. 288–298).

  • Ortega, A., Frossard, P., Kovacevic, J., Moura, J. M. F., & Vandergheynst, P. (2018). Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5), 808–828.

    Google Scholar 

  • Pereira, F.S.F., Amo, S. & Gama, J. (2016). Evolving centralities in temporal graphs: A twitter network analysis. In IEEE 17th International Conference on Mobile Data Management, MDM (pp. 43–48).

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069.

    Google Scholar 

  • Salomon, D., & Motta, G. (2009). Handbook of data compression (5th ed.). New York: Springer.

    MATH  Google Scholar 

  • Sandryhaila, A., & Moura, J. M. F. (2014). Discrete signal processing on graphs: Frequency analysis. IEEE Transactions on Signal Processing, 62(12), 3042–3054.

    MathSciNet  MATH  Google Scholar 

  • Santos, J. M., Assuncao, P. A. A., Cruz, L. A. S., Távora, L. M. N., Fonseca-Pinto, R., & Faria, S. M. M. (2018). Lossless coding of light field images based on minimum-rate predictors. Journal of Visual Communication and Image Representation, 54, 21–30.

    Google Scholar 

  • Sardellitti, S., Barbarossa, S., & Di Lorenzo, P. (2017). On the graph Fourier transform for directed graphs. IEEE Journal of Selected Topics in Signal Processing, 11(6), 796–811.

    Google Scholar 

  • Shoham, Y., & Gersho, A. (1988). Efficient bit allocation for an arbitrary set of quantizers (speech coding). IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(9), 1445–1453.

    MATH  Google Scholar 

  • Shuman, D. I., Faraji, M. J., & Vandergheynst, P. (2016). A multiscale pyramid transform for graph signals. IEEE Transactions on Signal Processing, 64(8), 2119–2134.

    MathSciNet  MATH  Google Scholar 

  • Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83–98.

    Google Scholar 

  • Shuman, D.I., Ricaud, B. & Vandergheynst, P. (2012). A windowed graph Fourier transform. In IEEE Statistical Signal Processing Workshop (SSP) (pp. 133–136).

  • Sporns, O. (2018). Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience, 20(2), 111–121.

    Google Scholar 

  • Steeb, W. H. H. (1997). Matrix calculus and the kronecker product with applications and C++ Programs. USA: World Scientific Publishing Co. Inc.

    MATH  Google Scholar 

  • Strang, G. (1999). The discrete cosine transform. SIAM Review, 41(1), 135–147.

    MathSciNet  MATH  Google Scholar 

  • Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine & Biology, 60(14), 5471–5496.

    Google Scholar 

  • van Djik, A. M., & Martens, J. B. (1997). Image representation and compression with steered Hermite transforms. Signal Processing, 56(1), 1–16.

    MATH  Google Scholar 

  • Vargas-Quintero, L., Escalante-Ramírez, B., Marín, L. C., Huerta, M. G., Cosio, F. A., & Olivares, H. B. (2016). Left ventricle segmentation in fetal echocardiography using a multi-texture active appearance model based on the steered Hermite transform. Computer Methods and Programs in Biomedicine, 137, 231–245.

    Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Google Scholar 

  • Zhang, J., & Moura, J. M. F. (2014). Diffusion in social networks as SIS epidemics: Beyond full mixing and complete graphs. IEEE Journal of Selected Topics in Signal Processing, 8(4), 537–551.

    Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq under Grants 309598/2017-6 and 409543/2018-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verusca S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, V.S., Madeiro, F. & Lima, J.B. Three-dimensional steerable discrete cosine transform with application to 3D image compression. Multidim Syst Sign Process 32, 491–519 (2021). https://doi.org/10.1007/s11045-020-00746-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00746-9

Keywords

Navigation