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Abstract In this paper, we explicitly analyze the performance effects of several
orthogonal and bi-orthogonal wavelet families. For each family, we explore the im-
pact of the filter order (length) and the decomposition depth in the multiresolution
representation. In particular, two contexts of use are examined: compression and
denoising. In both cases, the experiments are carried out on a large dataset of
different signal kinds, including various image sets and 1D signals (audio, electro-
cardiogram and seismic). Results for all the considered wavelets are shown on each
dataset. Collectively, the study suggests that a meticulous choice of wavelet pa-
rameters significantly alters the performance of the above mentioned tasks. To the
best of authors’ knowledge, this work represents the most complete analysis and
comparison between wavelet filters. Therefore, it represents a valuable benchmark
for future works.

Keywords Sub-band coding · Discrete Wavelet Transform · Wavelet filter
comparison · multiresolution analysis.

1 Introduction

Wavelets are a mathematical framework largely used for many signal processing
applications [1,2]. Differently from classical transforms, like the Discrete Fourier
Transform (DFT), the Discrete Walsh-Hadamard Transform (DWHT), the Dis-
crete Cosine Transform (DCT), and so on, the Discrete Wavelet Transform (DWT)
can be specifically optimized to the considered target objective by adjusting sev-
eral design properties such as coding gain, smoothness, stop-band attenuation of
the wavelet filters, etc.

One of the most outstanding applications is transform-based image compres-
sion. Typically, in image coding the data is transformed to remove redundancy.
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Then, the transformed coefficients are quantized, which is the only lossy opera-
tion. Finally, the quantized values are entropy coded. The wavelet transform has
positively contributed to the compression field because of its remarkable energy
compaction, in addition to a significant correspondence with the human visual
system. It is today one of the most well established compression technique [3].
This is specifically due to the tight connection with the concept of multiresolution
analysis, i.e., sub-band decomposition through filter banks.

Basically, the wavelet basis functions have short support for high frequencies
and long support for low frequencies. So, very few bits are sufficient to describe
extended smooth areas of an image, while potential extra bits may be added to
represent high frequency details. Furthermore, working with variable-length basis
functions also allows to avoid blocking artifacts. The latter are instead typically
present with linear block transforms which use fixed-length eigenvectors, e.g., at
medium-low bit rates in images compressed using the well-known JPEG (Joint
Photographic Experts Group) standard.

Of course, wavelets can be used not just for 2D signals, namely images. For
example, the separable processing can be extended from 2D to 3D volumes for
video compression. In particular, a 3D separable filter bank is used to transform
the video sequences, adopting specific approaches such as Motion-Compensated
Temporal Filtering (MCTF) [4]. Moreover, wavelets are also well suited for speech
and audio compression. Indeed, human hearing is associated with critical bands,
and such non-uniform frequency intervals can be well estimated by tree-structured
filter banks. Still concerning the 1D domain, compression of electrocardiogram
(ECG) waveforms can take advantage of a wavelet representation too. As a matter
of fact, wavelets are able to minimize the distortion of ECG data, while keeping
all the significant signal features needed to detect potential heart arrhythmia or
disorders.

Another signal processing field where wavelets play an important role is de-
noising. The considered signals usually exhibit low frequency energy concentration.
Under this assumption, thresholding, i.e., the zeroing of coefficients with energy
lower than a given threshold, generally returns a lowpass version of the original
signal. Also, in practical scenarios the noise power is much smaller than the signal
power, and the noise source has approximately constant power spectral density.
This means that thresholding the wavelet coefficients at the last level of the mul-
tiresolution decomposition of a noisy signal basically removes the high frequency
content associated to noise. Clearly, this process will also delete part of the sig-
nal power. However, for denoising, simple sub-band thresholding allows to achieve
good Signal Noise to Ratio (SNR) performance, thanks to the excellent approxi-
mation properties of the wavelet decomposition.

1.1 Contributions

In this paper, we examine a large set of wavelet functions in order to provide
a performance comparison in both compression and denoising frameworks. The
evaluation will be carried out by exploring how some of the main wavelet properties
impact the efficiency of the investigated system, namely:

– orthogonality vs. bi-orthogonality;
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– filter order (strictly associated to the filter length) that, in turn, determines
other characteristics, such as regularity, degree of smoothness, and band at-
tenuation;

– number of levels in the sub-band decomposition.

For both tasks, the analysis will be performed on multiple databases, including
standard and high definition images (2D signals), as well as audio, ECG and seismic
signals (1D signals). Differently from other similar works, that we discuss in what
follows, this paper expands its test set beyond specific cases, and compare a large
group of the best well known wavelet families. Observing the results that will be
shown, we will try to infer some rules of thumb for the wavelet family best selection
on the particularly considered frameworks. While doing so, this paper also suggests
to always adopt feasible procedures, like the one presented here, to determine the
most suitable DWT in any processing context. To this aim, we also provide the
original code, and the experimental datasets, to let the interested reader further
his/her wavelet-based research topic.

The rest of the paper is organized as follows. Section 2 presents the state of the
art related to some of the aforementioned signal processing tasks, in which wavelets
are largely used. Then, in Section 3, the main theoretical aspects are illustrated.
The description of the experimental evaluation is provided in Section 4, with a
focus on dataset selection, considered wavelet properties, and quality evaluation
metrics. Section 5 reports and discusses the experimental results. Finally, some
conclusions are drawn in Section 6.

2 Related work

Wavelet-based methods have significant advantages in many signal processing
fields, applicable to various types of data. The first important works in the litera-
ture on the practical use of wavelets date to the early 90s. These very influential
papers [5,6,7] concern image compression. Shortly after, JPEG 2000 defined an
image coding system based on the wavelet transform [8], that superseded the pre-
ceding DCT-based JPEG standard. In JPEG 2000 (or J2K), two types of wavelet
filters are used, namely Cohen-Daubechies-Feauveau (CDF) 5/3 for lossless com-
pression, and CDF 9/7 for lossy compression. However, no evidence was given to
prove the optimality under some criterion for such filters. Then, other wavelet im-
age compression methodologies have been introduced as well, such as the popular
zerotree-based algorithms [9,10], techniques using morphological operators [11],
and so on.

Still focusing on visual data, wavelet-based algorithms have been later com-
bined with more modern techniques, e.g., compressive sensing [12,13], or applied
to recently introduced typologies of visual data. Examples of the latter include
hyperspectral [14] and volumetric medical [15] images. 3D data have been con-
sidered as well, e.g., in [16] the authors analyze the ciclostationary oscillations in
a 3D wavelet coding framework. Such oscillations model the reconstruction er-
ror, which is due to the wavelet sub-bands quantization, with respect to the filter
properties. Wavelets have been also proposed for scalable video coding [17]. There
are many more recent applications that have exploited the potentialities of the
wavelet analysis. Examples include, but are not limited to denoising [18,19,20],
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watermarking [21,22], resolution enhancement [23,24], and image fusion [25,26,
27].

The wavelet transform is largely used to deal with other types of signals too. For
example, in [28] the authors propose an adaptive audio watermarking algorithm
based on the singular value decomposition in the wavelet domain. Wavelets have
been employed for electrocardiogram (ECG) signals too. In [29], the authors use
wavelets for ECG signals denoising. In [30], the ability of the DWT to provide good
time and frequency resolutions is exploited to decipher the hidden complexities
in the ECG, allowing to classify them. Other wavelet-based methods have been
applied on seismic data. For instance, in [31] wavelets-based denoising techniques
are used to enhance the first-arrival picking on seismic traces. In [32], the wavelet
transform is proposed to obtain a sparse representation of the seismic data for
compression purposes.

Typically, all of the just mentioned signal processing applications do not take
into account, much less operate, a meticulous analysis to choose which particular
wavelet function could be the best performing (in some sense). Actually, we shall
show how an accurate selection of wavelet characteristics may actually improve
any particular task results. On the other hand, a handful of works have been
already proposed in order to identify optimal wavelets in limited settings. For
example, some of these papers [33,34,35] report a performance comparison of
various wavelet filters for image compression. However, the analysis has always
been limited to a restricted set of standard resolution images, thus reducing the
universality of the results. Then, another work [36] have proposed a procedure to
choose the wavelet filter more suited for ECG signals denoising, with the specific
goal to ensure accurate signal peaks. Furthermore, the analysis in [37] has searched
for the optimal wavelet parameters in order to construct functional brain networks.
The objective was to enhance the classification accuracy for psychiatric disease and
neurological disorders.

All things considered, the knowledge of an appropriate setting of wavelet pa-
rameters is fundamental in many wavelet-based signal processing tasks. An all-
encompassing analysis aimed to identify optimal settings in all possible contexts
of use is a very ambitious task. Nevertheless, this paper provides a first attempt
in this direction.

3 Background

The wavelet transform may operate both in the continuous and in the discrete
time domain [1], respectively referred to as Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform (DWT). Its core principle is that it represents
a signal as a sum of wavelet functions at different scales and locations. There
are two stages: decomposition (or analysis), and reconstruction (or synthesis).
Basically, the decomposition stage requires two waveforms: one to represent the
high frequencies (a wavelet function ψ(t)) and, when the scaling is not iterated
infinitely, one to represent the low frequencies (a scaling function φ(t)). These
two waveforms are translated and scaled on the time axis. Low scales are able to
describe fast variations of the signal, while high scale are used to represent the
smooth parts. Instead, translations allow to characterize the content of the signal
at different locations. In the end, the result of the decomposition stage, i.e., the
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Fig. 1: A 1D, two channels filter bank.

wavelet transform, is a set of coefficients that quantify the similarity between the
wavelets, for each position and scale, with the input signal.

Focusing on discrete-time signals, one of the main results for discrete wavelet
analysis was the connection with Perfect Reconstruction (PR) filter banks [38].
A filter bank is a structure of filters that allows to separate an input signal into
sub-bands. The term “Perfect Reconstruction” refers to the fact that, under spe-
cific constraints, the sub-bands can be recombined to reconstruct, without any
distortion, the original signal.

The architecture of a 1D, two channels, PR filter bank is shown in Fig. 1 (in the
Z-transform domain). First, the input signal U(z) is decomposed into two signals
by the low-pass filter HD(z) and the high-pass filter GD(z), leading respectively
to the signals ULP (z) and UHP (z). Then, both of the filtered versions of U(z) are
decimated by a factor of 2, generating ULPD(z) and UHPD(z). The set of these
operations represents the analysis phase of the sub-band decomposition process.
To reconstruct the original signal, the filtered and down-sampled signals ULPD(z)
and UHPD(z) are first numerically interpolated by a factor of 2, producing the
signals VLP (z) and VHP (z). Then, the synthesis stage is completed by passing
the up-sampled signals through the reconstruction low-pass and high-pass filters,
HR(z) and GR(z), respectively. The recovered signal V (z) is obtained by summing
the two outputs.

Although down-sampling preserves the original sampling rate, it introduces
aliasing, since HD(z) and GD(z) in general are not ideal, brick-wall filters. Fur-
thermore, there is also amplitude and phase distortion associated with the anal-
ysis filters. Nevertheless, by properly designing the filters, a PR filter bank with
an l-step delay can be achieved, so that V (z) = U(z)z−l. In particular, the two
conditions that have to be satisfied are the following:

HR(z)HD(−z) +GR(z)GD(−z) = 0︸ ︷︷ ︸
Alias cancellation

(1)

HR(z)HD(z) +GR(z)GD(z) = 2z−l︸ ︷︷ ︸
No distortion

(2)

By iterating the analysis step, the signal can be decomposed into different
sub-bands, leading to a pyramid structure, or dyadic tree. To elaborate, for the



6 Alessandro Gnutti et al.

HD(z)
ULP(z) U

(1)

(z)
2

U(z)

GD(z)
UHP(z) UHPD(z)

2

HD(z)
U
(1)
LP(z)

2

GD(z) 2
U
(1)
HP(z) U

(1)
HPD(z)

U
(2)

(z)

HD(z)
U
(2)
LP(z)

2

GD(z) 2
U
(2)
HP(z) U

(2)
HPD(z)

U
(3)

(z)

Fig. 2: The analysis stage of a three-levels, 1D filter bank.

second level, the low-pass and sub-sampled signal output by the first level is filtered
again using the same low-pass and high-pass filters, i.e., HD(z) and GD(z). Then,
decimation follows too. This procedure can be repeated for a number of times
(a three-levels decomposition is depicted in Fig. 2). The output coefficients tree
is known as the Discrete Wavelet Transform, or DWT. The DWT is particularly
useful since it allows to achieve a sparse distribution of the signal energy into a
small number of wavelet coefficients.

DWT for 2D signals, e.g., images, can be derived from the 1D DWT, adopting
a separable framework. The 2D separable DWT is usually implemented as a 1D
row transform followed by a 1D column transform. Thus, a wavelet-based multires-
olution analysis, as used in image compression, generates a hierarchic pyramidal
structure. The number of decomposition levels, i.e., the number of employed 2D
filter stages, determines the depth of the sub-band partition. As an example, a
three-levels, 2D decomposition is shown in Fig. 3. At the end of each decomposi-
tion level, four signals are generated. These signals are obtained by concatenating
the low-pass (L) and high-pass (H) filtering in the row direction with the low-pass
and high-pass filtering in the column direction. Referring to Fig. 3, after the first
decomposition level the four obtained sub-bands are usually named LL, LH, HL
and HH. Then, the multiresolution process continues by iterating the decompo-
sition process on the LL sub-band alone, this way generating four more filtered
signals, namely LLLL, LLLH, LLHL, and LLHH. Finally, LLLL is decomposed
again into four additional sub-bands, producing LLLLLL, LLLLLH, LLLLHL, and
LLLLHH. Of course, the process could continue until the desired decomposition
depth is reached.

According with the constraints expressed in Eqs. (1) and (2), the wavelet de-
composition can be designed with different peculiarities. In particular, the choices
related to the wavelet filters, including their length, and the multiresolution depth,
lead to DWTs with defined characteristics, namely: approximation order, regular-
ity, smoothness and magnitude response. Based on the application goal and the
examined signal nature, some of these properties may play a more important role
than others. Generally speaking, it is clear that the employed DWT properties
strongly influence the performance of a given wavelet-based task. A more detailed
discussion on these and other properties, e.g., orthogonality, and how they can be
achieved is deferred until Section 4.4.



Title Suppressed Due to Excessive Length 7

HD(z) 2

U(z)

GD(z)

HD(z) 2

GD(z) 2

2

Row Column

HD(z) 2

GD(z) 2

HD(z) 2

GD(z)

HD(z) 2

GD(z) 2

2

HD(z) 2

GD(z) 2

HD(z) 2

GD(z)

HD(z) 2

GD(z) 2

2

HD(z) 2

GD(z) 2

First decomposition level

Row Column
Second decomposition level

Row Column
Third decomposition level

HH

HL

LH

LLHH

LLHL

LLLH

LLLLHH

LLLLHL

LLLLLH

LLLLLL

LL

LLLL

Fig. 3: The analysis stage of a three-levels, 2D filter bank.

4 Description of the experiments

In this section, we first present the datasets used in our study, describing the vari-
ous categories taken into account. Then, the procedure to evaluate the performance
for each wavelet setting is illustrated. The results are classified depending on the
considered application, namely compression and denoising. Next, the wavelet fil-
ters and the corresponding properties considered in this paper are presented. At
the end of this section, preliminary results will also show the impact of the num-
ber of levels reached in the wavelet decomposition. The experiments have been
implemented in MATLAB. The code and the datasets used in the experiments are
publicly available: they can be found at [39].

4.1 Dataset selection

It is clear that it is not possible to identify a universal optimal set of wavelet pa-
rameters independently by the input data content. Nonetheless, in this work the
experiments will cover a large number of variegated datasets, in the hope of deriv-
ing a useful set of rules, or at least some hints, from the subsequent experiments.

For 2D signals, i.e., images, the considered datasets have been taken from [40]
and [41]. In the former, the images are in a standard definition (SD) quality. They
are of various sizes (256×256 pixels, 512×512 pixels, or 1024×1024 pixels), and all
of them are gray-scale and 8 bpp (bits per pixel). They are further divided in three
categories based on the content type: miscellaneous (41 images), aerial (30 images)
and textures (64 images). The second dataset instead contains high definition (HD)
quality images coming from a wide variety of sources. They include both standard
range (8 bpp) and high dynamic range (16 bpp) images. In total, this dataset
comprises 30 images of sizes ranging from 2000×3000 to 7216×5412 pixels.

For the non-visual data, three types of 1D signals have been collected:
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– several audio tracks, consisting of various musical genres and vocal sound ef-
fects, sampled at CD quality (44.1 kHz, 16 bits per sample);

– a selection of ECG signals taken from the PhysioNet database [42];
– a number of seismic data extracted from the IRIS database [43].

4.2 First application: compression

Here, we report the procedure used to evaluate the compression efficiency of the
2D and 1D DWT. In particular, we describe the coding technique and the quality
assessments employed to characterize the performance.

In order to test the compression ability, when a wavelet decomposition is per-
formed on a r×c image I with a precision of b bits per pixel, the Embedded Zerotree
Wavelet (EZW) technique is used to encode the wavelet coefficients [9]. Even if
more recent coding/compression schemes may be employed for the same goal, e.g.,
Set Partitioning in Hierarchical Trees (SPIHT), Set Partitioned Embedded Block
(SPECK), and Embedded Block Coding with Optimized Truncation (EBCOT),
the simplicity of EZW makes it more suitable to appreciate the approximation
abilities of the different types of wavelets. Furthermore, it has been shown that
by properly modifying the EZW algorithm, it can reach similar, or even superior,
performance with respect to the other techniques [44].

To compute the rate-distortion (R-D) curves, as the target rate passed to
the encoder is varied, the quality of the uncompressed image Î at a given rate is
evaluated by computing two different metrics. The first is the Peak Signal-to-Noise
Ratio (PSNR), which is the most common objective measure, given by:

PSNR = 10 log10

(
D2

MSE

)
(3)

where D=2b−1 is the dynamic range of the pixel values, and b represents the bit
depth. The Mean Square Error (MSE) for r×c images is computed by:

MSE =
1

rc

r−1∑
i=0

c−1∑
j=0

[I(i, j)− Î(i, j)]2 (4)

The second metric is the Structural SIMilarity (SSIM) index, used for predict-
ing the perceived quality of digital images and video sequences. The SSIM index is
calculated taking overlapping, same-size image windows on matching locations in
the reference and the uncompressed image. The quality assessment between two
windows, say x and y, is then computed by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
(5)

where µx and σx are the average and standard deviation of x, µy and σy are the
average and standard deviation of y, and σxy is the covariance of x and y. The
constants c1 and c2 are equal to (k1D)2 and (k2D)2, respectively, where k1 =0.01
and k2 = 0.03. Finally, the SSIM metric is taken as the average of SSIM(x, y)
across all window locations.
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As mentioned, these metrics are associated to the bit rate of the uncompressed
image to build the R-D curves. In addition, the Bjøntegaard’s metric [45] (BD

rate) will be used to compare them. It works by computing the average gain in
PSNR, or the average per-cent saving in bit rate.

On the other hand, for 1D signals, after decomposing a signal s into S using
the DWT, the wavelet expansion coefficients are discarded using a global positive
threshold, generating the truncated transform S̃ (we also briefly consider other
thresholding strategies as well in the next section). The compression score Cs

is given by the percentage of discarded coefficients (namely, that are put to 0).
Instead, the recovered energy Er (that is, the `2-norm of the reconstructed signal
compared to that of the original one, given in percentage) is given by:

Er = 100
||S̃||
||S||

(∗)
= 100

||ŝ||
||s|| (6)

The (∗) indicates the hypothesis of orthogonal filters.In that case, Er can be also
evaluated using ŝ, which is the uncompressed version of s, namely, the signal
reconstructed from S̃.

Note that, for every considered dataset, each performance curve represents
the average between the outputs associated to all of the elements of the dataset.
Standard deviations and/or variance ranges are also provided, where necessary, to
attest the statistical significance of the results.

4.3 Second application: denoising

To test the denoising ability, a white, zero-mean, Gaussian noise signal w, with
variance σw (and thus power Pw = σ2w), is added to the reference signal x with
power Px, generating the noisy signal y=x+w. The denoised version of y, say x̂,
is generated by an empirical Bayesian method with a posterior median threshold
rule applied to the wavelet coefficients. The similarity between x and x̂ is mea-
sured by calculating the MSE between the two signals. Different Signal-to-Noise
Ratio (SNR = Px/Pw) values are considered by modifying Pw, the power of the
noise added to the signal. Note that a number of noise realizations equals to the
cardinality of the considered dataset is generated for each investigated noise level.
So, in the end several realizations of noise are taken into account in the overall
process, this way giving a statistical soundness to the results.

The same procedure is independently applied both for 1D and 2D signals.
As for the compression framework, for every considered dataset, the performance
curve represents the average between the outputs associated to all of the elements
of the dataset, and other statistical moments like the variance are provided where
needed.

4.4 Wavelet properties

In this section, we discuss the wavelet properties that have been investigated in this
work, that is orthonormality, filter order and decomposition depth. While doing
so, we discuss why we have chosen the wavelet families considered in this work.
We will also show with some experiments how the depth of the decomposition can
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strongly affect the filter performance. Therefore, we will report the optimal number
of decomposition levels for each signal type, based on the considered application.

4.4.1 Orthonormality

Orthonormal filters bring to orthonormal wavelet functions, leading to an energy
preserving transform. For an orthogonal PR filter bank [46], the synthesis filters
are time-reversed versions of the analysis filters, that is to say HR(z)=HD(−z) and
GR(z)=GD(−z). In addition, the high-pass filter is the delayed alternating flip of
the low-pass filter, i.e., GD(z)=−z−LHD(−z−1), where L is the filter length. This
means that the entire filter bank is completely defined by just one filter, namely
the low-pass analysis filter HD(z).

One of the advantages of the orthonormality property is that the MSE orig-
inated by the quantization of the DWT coefficients is the same as the MSE
generated in the reconstructed signal. In other words, orthogonal wavelet filters
preserve the energy in the analysis stage. This is a crucial property in different
fields of signal processing, e.g., in data compression, where the well-known process
”transformation-quantization” is performed. In this case, the energy preservation
property allows to straightforwardly design the quantizer in the transform do-
main. Furthermore, orthogonality allows fast implementation algorithms. For all
these reasons, in this paper we consider the Daubechies Wavelets (db) and Coiflet
Wavelets (coif ), two classical orthonormal wavelet filters. They are largely used
for data compression, e.g., the coif wavelet has been used for a fingerprint image
compression analysis, as described in [47]. They are also used in data denoising,
e.g., the db wavelet has been tested for speech denoising, as reported in [48].

Conversely, bi-orthogonal wavelets (bior) do not constitute an orthogonal trans-
form. However, differently from the orthonormal case, the bi-orthogonal wavelet
functions can be symmetric. So, the associated filters have the important linear
phase property, which may be convenient for some application contexts. In the case
of a bi-orthogonal PR filter bank, the PR conditions are given by GD(z)=HR(−z)
and GR(z)=HD(−z). Then, in this case we need to design two filters, the analysis
and the synthesis low-pass filters, while still satisfying the perfect reconstruction
conditions. Generally, bi-orthogonal wavelets play a fundamental role especially in
image processing, thanks to their linear phase property. Indeed, they are used both
in image compression and denoising, where using bi-orthogonal wavelets typically
does not introduce visual distortions in the image.

Bi-orthogonal wavelet transforms can be also designed by using lifting scheme
techniques [49]. Lifting schemes enable to construct transforms with predetermined
properties, and provide a means for flexible adaptation of the transforms to any
problem under consideration. For example, in [50] the authors have proposed a
new family of bi-orthogonal wavelet transforms, by inspecting polynomial splines
derived in a lifting manner. To obtain different transforms, various combinations
of both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
have been explored for the prediction and update steps used in the lifting method-
ology. The experiments have been tested for image compression, and the results
show comparable performance with respect to the other state-of-the-art wavelets.
More recently, in [51,52] the authors have extended the previous cited work by
considering a larger set of configurations, focusing on the search for the best order
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of the filters. Since their performance is quite interesting for compression, we in-
clude some of these new bi-orthogonal wavelets in our overall analysis. However,
to keep a fair comparison with respect to the other wavelets, we will just consider
filters with a finite impulse response: such filters can be derived from [50].

4.4.2 Filter order and filter length

Each wavelet family can be specified through an integer N that establishes the filter
order. Low filter orders lead to a compact support in the time domain, allowing a
better time localization and, consequently, a good preservation of content details.
On the contrary, high filter orders generate wide functions in the time domain,
that are able to achieve a high degree of smoothness, hence a good frequency lo-
calization. Moreover, it has to be noted that increasing N causes a deterioration in
the implementation efficiency, since it adds complexity in the DWT computation,
as shown by the computational efficiency that we discuss in the next section.

The filter length L is determined by the filter order, however, the relation
between N and L varies depending on the wavelet family. For example, for the
Daubechies Wavelets (db) the filter length is L = 2N , whereas for the Coiflet
Wavelets (coif ) it is L = 6N .

Differently from orthogonal wavelets, bi-orthogonal filters admit distinct orders
for decomposition (ND) and reconstruction (NR), say, biorND.NR. It means that
the length of the analysis and synthesis filters can be different too. Generally, for
bi-orthogonal wavelets, the filter length is approximately equal to 2ND + 2 for
decomposition filters and 2NR + 2 for reconstruction filters. However, the exact
value of L has to be specifically computed for each filter type.

In the following, the filter orders examined in our experiments are listed for
each wavelet family. Note that testing a larger number of orders allows to include
more wavelets with different characteristics, such as the level of smoothness, so
that the different nature of the data may be better represented. To distinguish
traditional bi-orthogonal wavelets from bi-orthogonal wavelets implemented in a
lifting mode, we add the subscript l to the latter. Therefore, they are:

1. db: 1, 2, 3, 4, 5, and 10;
2. coif : 1, 2, 3, 4, and 5;
3. bior : 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 4.4, 5.5, and 6.8.
4. biorl: 4.4, 6.6, and 4.6.

4.4.3 Decomposition level

One additional crucial property of the wavelet transform is the depth of the de-
composition, say J , that indicates how many times the input signal is processed
through the analysis stage, i.e., filtered and decimated. Thus, this parameter deter-
mines the resolution of the lowest level in the wavelet domain. Typically, increasing
the decomposition depth allows to distribute the signal energy into a smaller num-
ber of transform coefficients, therefore inducing the desired property of sparsity.

However, an unlimited number of levels is not recommended, basically for two
reasons. First, there exists an upper bound, that is automatically associated to
both the signal size and the filter length. They determine the maximum decom-
position level, say Jmax, beyond which the PR condition stops to be valid. For
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orthogonal and bi-orthogonal wavelets, Jmax=blog2
M

L−1c, where M is the 1D sig-
nal length (or the smallest dimension, in case of multidimensional signals), and L

is the filter length, as mentioned above. Second, increasing too much the number
of filtering stages may lead to a saturation in the subsequent coding efficiency.

In what follows, we investigate how the choice of J can as a matter of fact
impact the filter performance. In Fig. 4, the R-D curves related to the examined
wavelet families are reported for SD miscellaneous images1. To assure coherence
in the results, data are grouped and compared depending on their size, so that
Jmax remains fixed for a given wavelet family and for all the images. Each graph
shows a comparison of the performance associated to a specific wavelet filter by
varying the number of decompositions J . In the majority of cases, the performance
curves show that J=Jmax leads to the best performance, although there are some
exceptions. For example, db3 exhibits better results for J =Jmax−1, similarly to
db10 and coif3, specifically for high rates. Furthermore, at high rates bior1.3 and
bior3.1 perform better when J=Jmax−2.

Proceeding with the investigation, Fig. 5 shows the R-D curves related to the
HD standard precision image set2. J=Jmax still usually provides the best results,
however there are some exceptions in this case as well. For example, we can observe
that for bior3.1 the decomposition levels J = 3, 4, 5 appear to be slightly more
performing than J = Jmax = 8. Also, bior3.7 and db10 give better performance
when the multiresolution analysis stops at Jmax−1 or Jmax−2.

To summarize, the optimal decomposition levels number for each wavelet filter
is reported in Table 1. It shows the performance with respect to all the above
mentioned image datasets, namely miscellaneous, aerial and textures SD images,
and both standard and high dynamic range for HD images. When two values are
reported for a given wavelet filter, the top one refers to low rates, whereas the
bottom one refers to high rates. The threshold between low and high rates is de-
fined as 2 bpp for SD images and 0.5 bpp for HD standard dynamic range images,
respectively, chosen empirically where the performance curves intersect. The de-
composition levels given in Table 1 will be used for the wavelet filter comparison
test, described in the next section. Note that for Aerials and Textures images, Jmax

is always the best decomposition level, independently of the wavelet filter.
The same study has been conducted on 1D signals (audio, ECG, and seismic

data) as well. The corresponding R-D curves can be generated through the code
in [39]. In these cases, J=Jmax always provides the optimal decomposition level.
This result is not surprising, since a global positive threshold to zero the wavelet
coefficients is used. In fact, the finer is the resolution, the more sparse are the
wavelet coefficients. For similar reasons, for denoising the maximum decomposi-
tion level will also provide the best performance, independently from the wavelet
family. Therefore, for 1D signal compression and 1D/2D signal denoising, the de-
composition levels number will be set to J = Jmax, for all the wavelet filters. We
defer further discussion on these outcomes until Section 5.4.

Note that we have chosen a global positive threshold since in our experiments
it has shown better performance than involving level-dependent thresholds. Fur-
thermore, in the latter case, selecting optimal level-dependent thresholds can be

1 For conciseness sake, the curves associated to the SD aerials and textures are not shown
here. However, they can be reproduced from [39]. We report that they are consistent with the
ones provided in this paper.

2 Again, refer to [39] for the HD high precision image set performance.
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arduous, since the procedure typically needs to set a lot of parameters. However,
for the sake of completeness, we mention here that should a different threshold be
adopted for each level of the wavelet decomposition, the optimal decomposition
levels number could assume different values with respect to Jmax.
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Fig. 4: Image compression performance curves for different types of filter wavelets,
for different values of J . These curves refer to SD 256× 256 Miscellaneous images.
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Fig. 4: (cont’d) Image compression performance curves for different types of filter
wavelets, for different values of J . These curves refer to SD 256×256 Miscellaneous

images.
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Fig. 5: Image compression performance for various filter wavelets, and for different
J values. These curves refer to HD standard precision 2048×2048 images.
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Fig. 5: (cont’d) Image compression performance for various filter wavelets, and for
different J values. These curves refer to HD standard precision 2048×2048 images.

As an example of such behavior, we discuss the case of denoising when the level-
dependent thresholds are computed using the Birgé-Massart strategy with sparsity
parameter set to 3. In this case, the optimal decomposition level always varies
between 2 and 3, and often Jmax actually leads to much poorer performance. In
Fig. 6a, the curves associated to the high dynamic range and HD images dataset are
shown as a demonstrative example. As usual, different local thresholds techniques
can be tested using the code placed in [39].
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Table 1: Optimal decomposition levels for image compression. The values are ex-
pressed taking the maximum level Jmax as the reference for each wavelet filter.

Wavelet filter Filter order Dataset

SD images HD images

Miscellaneous Aerials Textures Standard precision High precision

Daubechies

db1 Jmax

Jmax Jmax

Jmax

Jmax − 6
Jmax − 2

db2 Jmax − 1
Jmax

Jmax − 4
Jmax − 3

db3 Jmax − 1 Jmax Jmax − 1

db4 Jmax Jmax Jmax

db5 Jmax Jmax Jmax-2

db10
Jmax

Jmax − 1
Jmax

Jmax − 1
Jmax

Coiflets

coif1 Jmax − 1 Jmax − 1 Jmax

coif2 Jmax Jmax Jmax-1

coif3
Jmax

Jmax − 1
Jmax − 1 Jmax-2

coif4 Jmax Jmax Jmax-2

coif5 Jmax Jmax Jmax-1

Biorthogonal

bior1.1 Jmax Jmax − 6 Jmax-4

bior1.3
Jmax

Jmax − 2
Jmax − 2 Jmax − 1

bior1.5 Jmax Jmax Jmax-1

bior2.2 Jmax − 1 Jmax Jmax-3

bior2.4 Jmax Jmax Jmax

bior2.6 Jmax Jmax Jmax-2

bior2.8 Jmax Jmax Jmax-1

bior3.1
Jmax

Jmax − 3
Jmax

Jmax − 5
Jmax

bior3.3 Jmax Jmax Jmax-2

bior3.5 Jmax Jmax-1 Jmax

bior3.7 Jmax Jmax-1 Jmax-1

bior3.9 Jmax
Jmax

Jmax − 1
Jmax-3

bior4.4 Jmax Jmax − 1 Jmax

bior5.5 Jmax Jmax − 1 Jmax-1

bior6.8 Jmax Jmax Jmax-1

biorl4.4 Jmax Jmax Jmax-2

biorl6.6 Jmax Jmax-1 Jmax

biorl4.6 Jmax Jmax Jmax-2

5 Results

In this section, the experimental outcomes of this study are reported. The results
are partitioned into three subsections, that is:

1. image compression;
2. image denoising;
3. 1D signal compression and denoising.

The discussion on the results then follows in Section 5.4.
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(a) Image denoising performance for various
J , using level-dependent thresholds, for the
bior1.1 wavelet. The optimum levels number
is 2, which is no longer close to Jmax.
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dependent thresholds, for a subset of wavelet
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Fig. 6: An example of employing a local threshold strategy in the analysis. On the
left, the impact on the number of levels. On the right, the denoising performance
using J=2, which is worse than those obtained with the global threshold (Fig. 8).
The curves are associated to the HD high precision 2048×2048 image dataset.

5.1 Image compression

The left column of Fig. 7 presents the R-D curves describing the performance
of the wavelet filters in the compression framework. They are presented in the
following order: miscellaneous, aerials and textures SD images, followed by standard
and high dynamic range, HD images. For each dataset, for conciseness four curves
are shown, associated to the two best wavelet families (blue and red lines, in
order of performance), and the two worst ones (yellow and violet, in order of
performance). Note that each point of the curves represents the average between
the PSNR outputs associated to all of the elements of the dataset for a given rate.

For example, for the miscellaneous dataset the wavelet db4 turns out to be
the optimal filter, immediately followed by bior2.2, whereas db10 and bior3.1 lead
to the worst performance. It can be observed that the wavelet bior3.1 represents
the worst choice for all the image sets, except for HD high dynamic range images
where it precedes db10. For this last dataset, the performance gap between the
various wavelets is narrow in any case.

To further extend the statistical analysis, in Table 2 the standard deviations
are also reported, for some bpp values. The average values are of course the same
as those shown in Fig. 7 for the corresponding cases. However, for the sake of
readability, just the values corresponding to the “winner” wavelet for each dataset
are actually shown. For each rate, both the PSNR (top) and the SSIM (bottom)
results are presented.

In Table 3 the Bjøntegaard’s metric is used to measure to what degree the
best wavelet outperforms the other filters, in terms of rate saving. Each column
is referred to a specific image dataset. A negative percentage means the bit rate
decrease related to the best wavelet with respect to the second, the second-to-
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last and the last wavelet, respectively, for the same PSNR. The reported values
show that an accurate choice of the wavelet filter allows to save more than 50%
of the bit rate, as happens for miscellaneous, aerials and HD images. For the sake
of completeness, Table 4 reports the associated average gain in PSNR as well. In
this case, positive numbers indicate an average increase of PSNR for the same bit
rate.

In addition to an objective quality measure, that is, employing metrics such as
the PSNR, for digital images a perceptual assessment can be also useful to appre-
ciate the performance of a compression algorithm. In this study, the SSIM index
is therefore computed for predicting the perceived quality of the reconstructed
image. To this purpose, the right column of Fig. 7 illustrates the SSIM curves,
varying the bit rate. For each image dataset, three curves are shown. The first
curve indicates the wavelet filter leading to the highest SSIM values (black line).
The second one represents the wavelet that resulted the best one in terms of R-
D performance (blue line). Finally, the third one points out the filter returning
the lowest performance in R-D measured in terms of SSIM (red line). As before,
Table 2 reports the standard deviation values.

Examining these results, in general the performance associated to a perceptual
quality measure seems in contradiction with respect to that related to an objective
quality measure. For example, by keeping aerials as the reference image set, the
experiments show that db4 outperforms bior4.4 by more than 0.1 on average in the
normalized SSIM scale. However, the latter is instead the best wavelet in terms of
the objective PSNR metric. Interestingly, SD miscellaneous and HD, high dynamic
range images are not subject to this consideration. The two datasets behave consis-
tently across metrics: indeed, the filters biorl4.4 and bior2.2, respectively, provide
the best performing filters both in terms of PSNR and SSIM.

Finally, we provide here a quick survey on the computational time complexity.
These times are obtained for running the Matlab code at [39] on a standard desktop
computer (Matlab v2019a, Intel Core i7 @3.07GHz, 12GB RAM). For both SD and
HD images, bior3.1 is the fastest filter, while coif4 is the slowest one. The times
when employing the former range from 0.19 ms to 2.61 ms, while the latter ones
range from 0.29 ms to 3.08 ms. The just reported maximum and minimum times
are obtained when a bit rate equal to 0.2 bpp and 2 bpp are fixed, respectively.
Note that these times take into account the whole experimental process, that is,
compression and subsequent decompression.

5.2 Image denoising

To recap, in order to test the denoising ability of different wavelet filters, a zero-
mean Gaussian white noise with varying variance σw is added to the considered
image. Then, a denoised version is obtained using a global positive threshold to
discard the less significant wavelet coefficients. Such threshold is calculated as the
universal threshold of Donoho and Johnstone [53], suitably scaled by a robust
estimate of the variance. The values considered for σw range from 0.01 to 0.05.
Note that such values refer to images whose pixel values go from 0 to 1. There-
fore, depending on the image dynamic, the appropriate normalization needs to be
applied.
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Fig. 7: DWT comparison test for image compression.
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Table 2: Average and standard deviation corresponding to the best performing
wavelet (reported in the last rows) associated to each dataset for image compres-
sion, in terms of PSNR (top value in each box) and SSIM (bottom value).

Dataset

SD images HD images

Miscellaneous Aerials Textures Standard precision High precision

bpp

0.25
30±1.01 23±0.99 16.9±1.7 36±1.26 37±1.14

0.45±0.03 0.49±0.03 0.33.9±0.07 0.62±0.04 0.4±0.06

0.5
32±0.90 24.2±0.82 18±1.34 40,1±1.14 41.8±0.93

0.58±0.05 0.56±0.03 0.55±0.08 0.69±0.05 0.52±0.05

1
36±1.18 27.2±0.97 22±1.39 45.2±0.72 49±1.12

0.71±0.06 0.66±0.03 0.65±0.07 0.8±0.05 0.68±0.05

1.5
38±1.13 28.8±0.97 23.2±1.58 49±0.91 54±0.87

0.76±0.04 0.79±0.04 0.79±0.07 0.89±0.05 0.79±0.04

2
40±1.15 30.3±1.21 25.1±1.26 50.1±1.12 58.1±1.14

0.81±0.03 0.91±0.04 0.9±0.06 0.97±0.02 0.87±0.05

PSNR
Wavelet

biorl4.4 bior4.4 bior6.8 bior2.6 bior2.2

SSIM biorl4.4 db4 db5 db1 bior2.2

Table 3: BD metric (delta rate) associated to Fig. 7, to compare the R-D curves.

Wavelet rank
Dataset

SD images HD images

Miscellaneous Aerials Textures Standard precision High precision

1st biorl4.4 bior4.4 bior6.8 bior2.6 bior5.5

2nd
db4 bior6.8 coif4 bior2.2 bior2.6

-5.96% -15.38% -0.38% -4.71% -3.35%

. . . . . . . . . . . . . . . . . .

Second-to-last
db10 coif1 bior3.3 bior1.5 bior3.1

-53.49% -39.28% -16.79 -31.21% -33.38%

Last
bior3.1 bior3.1 bior3.1 bior3.1 db1

-57.95% -55.65% -40.74 -51.42% -52.21%

Table 4: BD metric (delta PSNR) associated to Fig. 7, to compare the R-D curves.

Wavelet rank
Dataset

SD images HD images

Miscellaneous Aerials Textures Standard precision High precision

1st biorl4.4 bior4.4 bior6.8 bior2.6 bior5.5

2nd
db4 bior6.8 coif4 bior2.2 bior2.6

0.32 0.35 0.02 0.1 0.21

. . . . . . . . . . . . . . . . . .

Second-to-last
db10 coif1 bior3.3 bior1.5 bior3.1

3.68 2.71 1.43 1.92 2.02

Last
bior3.1 bior3.1 bior3.1 bior3.1 db1

3.97 3.1 2.95 3.6 3.4
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Fig. 8: Comparison test for image denoising.
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Table 5: Average and standard deviation corresponding to the best performing
wavelet (reported in the last rows) associated to each dataset for image denoising,
in terms of PSNR (top value in each box) and SSIM (bottom value).

Dataset

SD images HD images

Miscellaneous Aerials Textures Standard precision High precision

σw

0.01
24.1±0.98 24.1±1.19 23.8±1.41 26±0.9 27±0.97

0.71±0.06 0.81±0.07 0.8.9±0.05 0.78±0.07 0.85±0.04

0.02
21.2±1.18 23.1±0.91 23.6±1.24 23.1±1.1 24.1±0.85

0.46±0.11 0.71±0.09 0.8±0.07 0.76±0.08 0.62±0.09

0.03
18.5±0.91 21.6±1.05 23.3±1.34 21.6±0.92 22.5±1.03

0.34±0.07 0.62±0.11 0.79±0.08 0.75±0.1 0.52±0.12

0.04
17.2±1.12 20.3±0.77 23.1±1.08 20.4±0.96 21.5±0.97

0.27±0.09 0.53±0.08 0.78±0.07 0.74±0.1 0.43±0.14

0.05
16.5±0.82 19.5±0.72 22.8±1.36 19.6±1.02 20.4±1.11

0.24±0.05 0.47±0.11 0.76±0.07 0.73±0.1 0.39±0.14

PSNR
Wavelet

coif3 bior2.8 bior3.9 bior3.7 bior3.9

SSIM bior2.8 bior3.9 bior3.9 bior4.4 bior3.3

In Fig. 8, the outcomes of the denoising experiments are shown. Similarly to the
compression case described earlier, the results are depicted in two columns. In the
left column, the curves describing the PSNR for different σw are reported, limiting
the plots to the two best and worst performing filters. In the right column, the
SSIM value are indicated for the best and worst performing wavelets, in addition
to the best one in terms of PSNR.

Similarly to what we have done for the compression case, in order to provide
additional statistical significance to the result, Table 5 further reports the standard
deviation values associated to the best performing wavelet, for each dataset and
for both metrics. The values are reported for various σw. Note that the average
values can be also extracted from Fig. 8.

As we already mentioned, the global positive threshold strategy has been se-
lected since it has achieved higher performance than involving a level-dependent
threshold. However, as an example, Fig. 6b illustrates the PSNR performance
curves when a local threshold is applied on the high dynamic range and HD im-
ages datasets. In this case, the wavelet decomposition stops at the second level for
each family. In fact, recall from Section 4.4.3 and Fig. 6a that this represents the
optimal decomposition level in this case.

To provide another way to appreciate to which extent the filter can impact
the efficiency of wavelet denoising, a visual comparison is illustrated in Fig. 9.
In particular, Fig. 9a shows a reference image acquired from the HD standard
dynamic range image dataset. A 2D Gaussian noise with σw = 0.03 is added
to the original image, generating the noisy version depicted in Fig. 9b. Finally,
Figs. 9c and 9d depict the denoised images generated by using the bior3.7 and
bior3.5 wavelets. As indicated by the left column of Fig. 8, they are the best
and worst performing filters, respectively. Notably, both the PSNR and SSIM
metrics strongly indicate a superior performance when bior3.7 is employed in the
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(a) Original image. (b) Noisy image (σw = 0.03).

(c) Input image after denoising, using bior3.7.
PSNR = 24.54 - SSIM = 0.68.

(d) Input image after denoising, using bior3.5.
PSNR = 22.98 - SSIM = 0.56.

Fig. 9: Visual comparison between the denoised images. The most and less per-
forming wavelets are employed, that is, bior3.7 and bior3.5, respectively.

denoising procedure in place of bior3.5. The different perceptual quality of the two
denoised images clearly exemplifies how the correct choice of wavelet parameters
can be crucial, and thus how a properly wavelet filter setting allows to exploit the
characteristics of the image.

As we did for image compression, we include here a brief analysis on the time
efficiency. For both SD and HD images, db3 results to be the fastest wavelet, while
coif3 is the slowest one. On average, the former takes 51.1 µs, while the latter takes
about 89.3 µs, of course independently by the noise variance.

5.3 1D signals compression and denosing

In Fig. 10 the results obtained for 1D signals are reported. In particular, the left
column shows the compression curves for audio, ECG and seismic signals. They
depict the relation between the percentage of wavelet coefficients that have been
discarded, i.e., the compression score Cs, and the recovered energy Er. It can be
noted that the wavelet bior3.3 outperforms the others filters for audio and ECG
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Table 6: Standard deviation range associated to the curves of the best performing
wavelets reported in Fig. 10.

Application
Dataset (1D signals)

Audio ECG Seismic

Compression
bior3.3 bior3.3 bior3.9

0.1 - 0.9 0.1 - 0.4 0.1 - 0.8

Denoising
bior3.1 bior3.1 bior3.1

0.3 - 1.5 0.2 - 1.6 0.5 - 1.8
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Fig. 10: DWT comparison test for 1D signals compression and denoising.

signals, whereas bior3.9 achieves the best result for seismic data. Interestingly, the
wavelet db1 completely fails in all of the datasets.
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Next, in the experiments aimed to test the denoising ability of the wavelet
filters, the 1D white Gaussian noise is added to the original signal. As usual, we
vary the SNR, the power ratio between the original signal and the noise. The
considered values for the SNR range from 5dB to 20dB for audio and seismic
signals, and from 30dB to 50dB for ECG signals. This choice gives the opportunity
to visualize comparable values of MSE for every dataset: in fact, ECG signals are
usually much more sensitive to noise. Therefore, in the right column of Fig. 10 the
denoising curves are depicted. Interestingly, both the “winner” wavelet, namely
bior3.1, and the less performing one, namely bior6.8, are shared for all three types
of signal. This evidence strengthens both the adeptness and the inefficiency of such
wavelet types for processing generic 1D signals in tasks.

In Table 6, the standard deviation ranges corresponding to the best performing
wavelet curves (given above each value), for both applications and for each dataset,
are reported. Since they are always quite narrow, for conciseness we have chosen to
just indicate the minimum and maximum standard deviation found across every
working point of the corresponding curves.

5.4 Discussion

The understanding of why a certain filter is optimal in a specific task for a given
input data is of course a challenging problem. However, this work throws some
light on which families of filters are adapted (or not adapted) based on the signal
type and the considered task, by suggesting correct and adverse parameter setting
for wavelet-based applications.

Generally speaking, the results show that an accurate selection of the wavelet
parameters notably affects the performance for the above considered tasks. Ta-
bles 7 and 8 review the conclusions that we have drawn from our experiments.
They report the better and worst wavelet selection for each dataset, based on
objective and subjective quality measures.

The results in the compression framework seem to confirm that the particular
image type and content have a strong influence on the most performing filter. That
is because a suitable selection of wavelet filters allows to exploit the particular
image set characteristics, and so it is possible to obtain a sparser representation
in the transform domain. Furthermore, we can also confirm that the PSNR-based
performance evaluation can be misleading when perceptual quality is sought after.
This in yet another indicator that the best wavelet function is highly dependent on
the application type. However, usually bi-orthogonal wavelets provides the safest
bet in this context, since they usually perform very well at all bit rates.

For image denoising also, from the presented results it is possible to observe how
the characteristics and the peculiarities of the examined images play a key role in
the selection the optimal wavelet filter. Mainly, bi-orthogonal wavelets emerge as a
more than valid choice in this context as well. For example, bior3.9 results to be the
best wavelet for textures and HD, high precision images in terms of the objective
metric. Furthermore, adopting this filter returns the best performance also for
aerials and textures images when considering SSIM as the subjective measure.
Interestingly enough, the experiments carried out on miscellaneous images report
a different and unique behavior. Indeed, the two most performing wavelet filters in
terms of PSNR are coif3 and coif5, with very similar performance (the two curves
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Table 7: Final recap indicating the best and worst wavelet filters for each dataset
and task in terms of quadratic error.

Dataset
Compression Denoising

First Last First Last

SD
images

Miscellaneous biorl4.4 bior3.1 coif3 bior3.1

Aerials bior4.4 bior3.1 bior2.8 bior3.1

Textures bior6.8 bior3.1 bior3.9 bior5.5

HD
images

Standard
precision

bior2.6 bior3.1 bior3.7 bior3.5

High
precision

bior2.2 db10 bior3.9 coif1

1D
signals

Audio bior3.3 db1 bior3.1 bior6.8

ECG bior3.3 db1 bior3.1 bior6.8

Seismic bior3.9 db1 bior3.1 bior6.8

Table 8: Final recap indicating the best and worst wavelet filters for each dataset
and task in terms of the perceptual metric.

Dataset
Compression Denoising

First Last First Last

SD
images

Miscellaneous biorl4.4 bior1.5 bior2.8 bior5.5

Aerials db4 bior3.1 bior3.9 bior5.5

Textures db5 bior3.1 bior3.9 bior5.5

HD
images

Standard
precision

db1 db10 bior4.4 bior1.3

High
precision

bior2.2 db1 bior3.3 bior3.7

basically overlap). In addition, coif3 shows high performance from a SSIM point of
view too, even if it is slightly outperformed by the bior2.8 filter. Therefore, though
the landscape is more varied in the denoising framework, bi-orthogonal wavelets
still represent a valid choice.

Finally, we move on to 1D signals. Here, the conclusions that can be drawn
appear to be a bit less data-dependent and more general. As a matter of fact,
for data compression bior3.3 returns the highest performance for both audio and
ECG signals (note that for ECG data, also db4 is an efficient solution), while
bior3.9 outperforms the other wavelet filters when applied to seismic data. On the
contrary, db1 produces the worst results for all the three considered datasets: this
fact is not surprising since the waveform of that filter does not fit with the dynamic
nature of those signals. As a last note, for denoising application the experimental
results lead to a comprehensive conclusion: indeed, bior3.1 is evidently the best
wavelet filter independently by the considered 1D signal datasets.
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6 Conclusions

In this paper, a number of wavelet filters have been compared in order to test
their efficiency in two important signal processing applications, i.e., compression
and denoising. The investigated wavelets have either orthogonal or bi-orthogonal
properties. For each of them, it has been experimentally shown how much the
choice of the filter influences the performance in the task. In particular, the fil-
ter order (or equivalently the filter length) and the decomposition depth are the
most crucial. The experiments have been conducted on a large variety of datasets,
including standard definition images (aerials, textures, and miscellaneous), high
definition images (standard and high dynamic range), and 1D signals (ECG, seis-
mic, and audio).

It is expected that the results, and the accompanying discussion, provided
here can be significantly extended to other similar application domains in which
wavelet-based representations are adopted. In addition, by adopting the same anal-
ysis carried out in this paper, it is possible to choose the best wavelet family for
any task at hand. Indeed, this work proves that just choosing the wrong DWT
may significantly harm the performance.

Furthermore, the kind of study presented in this paper can be also effectively
used as a support for different analysis purposes. For example, one possible target
could be to derive a deeper knowledge of the characteristics of the signals con-
sidered in this work. In fact, by analyzing the reasons why a particular relation
(signal, application) � (wavelet) works better than another one, which still is a
challenging issue, it could be possible to reveal significant and valuable data and
filter properties to exploit in different signal processing tasks. We hope that the
code at [39] can help to foster research on these and similar research fields.
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