Skip to main content

Advertisement

Log in

Analysis of heart rate dynamics based on nonlinear lagged returned map for sudden cardiac death prediction in cardiovascular patients

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Sudden cardiac death (SCD) generally applied to an unpredicted death from a cardiovascular cause in a subject with or without preexisting heart disease. The main goal of this study was analyzing the Electrocardiogram (ECG) signal to design an algorithm to predict SCD risk. In this paper, ECG signals of 23 subjects (13 males, 8 females and 2 unknown), ranging from 17 to 89 years old necessary for the research were obtained from the Physionet database. For this purpose, we developed a new method to predict SCD, a 10-min prior heart attack using the return map. The aim of this study is a novel method based on Lag return map for in control patients and SCD classes. Return map with six different lags (1–6) was constructed in two-time intervals. After that, the non-linear features that include SD1, SD2, SD1/SD2 for each Lag was measured. The result shows that the rate of changes in SD1 and SD1/SD2 with increasing lags were increased significantly but in SD2 with increasing lags was decreased in two intervals. Statistical analysis indicates that return map parameters show changes in the transition to death episode (p < 0.05). Besides, there were significant changes (p < 0.01) in closer segments to death. In conclusion, it will be possible to predict SCD based on the nonlinear feature that can alarm doctors of an imminent SCD, helping them provide timely treatments that can increase the survival rate of patients and thus reduce the mortality rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BLPF:

Butterworth low pass filter

BPNN:

Backpropagation neural network

DBNN:

Decisionbased neural network

DFA:

Detrended fluctuation analysis

ECG:

Electrocardiography

FFT analysis:

Fast Fourier transform

HF:

High frequency

HRV:

Heart rate variability

KNN:

K-nearest neighbour

LF:

Low frequency

LFP:

Low-frequency power

LMS:

Least mean square

MNN:

Mean of all NN intervals

MRI:

Magnetic resonance imaging

PD2i:

Point correlation dimension

PNN:

Probabilistic neural network

PNN50:

Probability the difference of successive intervals be more than 50 ms

RMSSD:

Root mean square of the successive differences

RRI:

The interval between R waves in the ECG

RQA:

Recurrence quantification analysis

SCD:

Sudden cardiac death

SD1:

Standard deviations one

SD2:

Standard deviations two

SDANN:

Standard deviation of the mean of sinus R–R intervals

SDNN:

Standard deviation of the NN intervals

SDSD:

Standard deviation of successive differences

STD:

Standard deviation

SVM:

Support vector machine

TF:

Time–frequency

VF:

Ventricular fibrillation

VFib:

Ventricular fibrillation

VFL:

Ventricular flutter

VT:

Ventricular tachyarrhythmia

References

  • Acharya, U. R., Faust, O., Sree, V., Swapna, G., Martis, R. J., Kadri, N. A., et al. (2014). Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Computer Methods and Programs in Biomedicine, 113, 55–68.

    Article  Google Scholar 

  • Acharya, U. R., Fujita, H., Oh, S. L., Raghavendra, U., Tan, J., Adam, M., et al. (2017). Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using a convolutional neural network. Future Generation Computer Systems, 79, 952–959.

    Article  Google Scholar 

  • Acharya, U. R., Fujita, H., Sudarshan, V. K., Ghista, D. N., Lim, W. J. E., & Koh, J. E. (2015a) Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals. In IEEE international conference on systems, man, and cybernetics.

  • Acharya, U. R., Fujita, H., Sudarshan, V. K., Sree, V., Eugene, L. W. J., Ghista, D. N., et al. (2015b). An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowledge-Based Systems, 83, 149–158.

    Article  Google Scholar 

  • Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: A review. Medical & Biological Engineering & Computing, 44(12), 1031–1051.

    Article  Google Scholar 

  • Acharya, U. R., Kannathal, N., Hua, L. M., & Leong, M. Y. (2005). Study of heart rate variability signals at sitting and lying postures. Elsevier Journal of Bodywork and Movement Therapies, 9, 134–141.

    Article  Google Scholar 

  • Acharya, U. R., Kannathal, N., Sing, O. W., Ping, L. Y., & Chua, T. L. (2004). Heart rate analysis in normal subjects of various age groups. BioMedical Engineering OnLine, 3, 24.

    Article  Google Scholar 

  • Acharya, U. R., Sudarshan, V. K., Ghista, D. N., Li, W. J. E., Molinari, F., & Sankaranarayanan, M. (2015c). Computer-aided diagnosis of diabetic subjects by heart rate variability signals using a discrete wavelet transform method. Knowledge-Based Systems, 81, 56–64.

    Article  Google Scholar 

  • Acharya, U. R., Suri, J. S., Spaan, A. E., & Krishnan, S. M. (2007). Advances in cardiac signal processing. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Azuaje, F., Dubitzky, W., Wu, X., Lopes, P., Black, N. D., et al. (1997). A neural network approach to coronary heart disease risk assessment based on short-term measurement of RR intervals. In Computers in cardiology (pp. 53–56).

  • Bilgin, S., Colak, O. H., Polat, O., & Koklukaya, E. (2009). Estimation and evaluation of sub-bands on LF and HF base-bands in HRV for ventricular tachyarrhythmia patients. Expert Systems with Applications, 36, 10078–10084.

    Article  Google Scholar 

  • Bracic, M., & Stefanovska, A. (1998). Wavelet-based analysis of human blood-flow dynamics. The Bulletin of Mathematical Biology, 60, 919–935.

    Article  MATH  Google Scholar 

  • Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability. IEEE Transactions on Biomedical Engineering, 48, 1342–1347.

    Article  Google Scholar 

  • Danchin, N., Puymirat, E., & Simon, T. (2013). The (possibly) deceptive figures of decreased coronary heart disease mortality in Europe. European Heart Journal, 34, 3014–3016.

    Article  Google Scholar 

  • De Vito, G., Galloway, S. D., SNimmo, M. A., Maas, P., & McMurray, J. J. (2002). Effects of central sympathetic inhibition on heart rate variability during steady-state exercise in healthy humans. Clinical Physiology and Functional Imaging, 22, 32–38.

    Article  Google Scholar 

  • Ebrahimzadeh, E., Fayaz, F., Ahmadi, F., & Rahimi Dolatabad, M. J. (2018). Linear and nonlinear analyses for detection of sudden cardiac death (SCD) using ECG and HRV signals. Open-Access Text, 1(1), 1–2.

    Google Scholar 

  • Ebrahimzadeh, E., & Pooyan, M. (2011). Early detection of sudden cardiac death by using classical linear techniques and time-frequency methods on electrocardiogram signals. Journal of Biomedical Science and Engineering, 4, 699–706.

    Article  Google Scholar 

  • Faust, O., Acharya, U. R., Molinari, F., Chattopadhyay, S., & Tamura, T. (2012). Linear and non-linear analysis of cardiac health in diabetic subjects. Biomedical Signal Processing and Control, 7, 295–302.

    Article  Google Scholar 

  • Fujita, H., Acharya, U. R., Sudarshan, V. K., Ghista, D. N., Sree, S. V., Eugene, L. W. J., et al. (2016). Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Applied Soft Computing, 43, 510–519.

    Article  Google Scholar 

  • Giri, D., Acharya, U. R., Martis, R. J., Sree, S. V., Lim, T. C., Ahamed, V. I., et al. (2013). Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowledge-Based Systems, 37, 274–282.

    Article  Google Scholar 

  • Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., et al. (2000). PhysioBank, PhysioToolKit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101, 215–220.

    Article  Google Scholar 

  • Goshvarpour, A., Goshvarpour, A. T., & Rahati, S. (2011). Analysis of lagged Poincare plots in heart rate signals during meditation. Digital Signal Processing, 21, 208–214.

    Article  Google Scholar 

  • Greenwald, S. D. (1986). Development and analysis of a ventricular fibrillation detector. M.S. Thesis, MIT Dept. of Electrical Engineering and Computer Science.

  • Hoogenhuyze, D. V., Martin, G., et al. (1998). Spectrum of heart rate variability. Proceedings of Computers in Cardiology, 65, 13–16.

    Google Scholar 

  • Huikuri, H. V., Makikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U., & Moller, M. (2000). Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after acute myocardial infarction. Circulation, 101, 47–53.

    Article  Google Scholar 

  • Ichimaru, Y., et al. (1988) circadian changes of heart rate variability. In Proceedings of computers in cardiology, Washington, DC, 25–28 September (pp. 315–318).

  • Joo, S., Choi, K. J., & Huh, S. (2012). Prediction of spontaneous ventricular tachyarrhythmia by an artificial neural network using parameters gleaned from short-term heart rate variability. Expert Systems with Applications, 39, 3862–3866.

    Article  Google Scholar 

  • Kitlas, A., Oczeretko, E., Kowalewski, M., Borowska, M., & Urban, M. (2005). Nonlinear dynamics methods in the analysis of the heart rate variability. Annales Academiae Medicae Bialostocensis, 50, 46–47.

    Google Scholar 

  • Makikallio, T. H., Huikuri, H. V., Makikallio, A., Sourander, L. B., Mitrani, R. D., Castellanos, A., et al. (2001). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. Journal of the American College of Cardiology, 37, 1395–1402.

    Article  Google Scholar 

  • Manis, G., Nikolopoulos, S., Arsenos, P., Gatzoulis, K., & Stefanadis, C. (2013). Risk stratification for arrhythmic sudden cardiac death in heart failure patients using machine learning techniques. Computers in Cardiology, 40, 141–144.

    Google Scholar 

  • Moridani, M. K., & Farhadi, H. (2017). Heart rate variability as a biomarker for epilepsy seizure prediction. Bratislava Medical Journal, 118(1), 3–8.

    Article  Google Scholar 

  • Moridani, M. K., & Marjani, S. (2020). A review of the methods for sudden cardiac death detection: A guide for emergency physicians. iJOE, 16(9), 137–158.

    Google Scholar 

  • Moridani, M. K., Setarehdan, S. K., Nasrabadi, A. M., & Hajinasrollah, E. (2015). Analysis of heart rate variability as a predictor of mortality in cardiovascular patients of intensive care unit. Biocybernetics and Biomedical Engineering, 35(4), 217–226.

    Article  Google Scholar 

  • Moridani, M. K., Setarehdan, S. K., Nasrabadi, A. M., & Hajinasrollah, Esmaeil. (2016). Non-linear feature extraction from HRV signal for mortality prediction of ICU cardiovascular patient. Journal of Medical Engineering & Technology, 40(3), 87–98.

    Article  Google Scholar 

  • Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M. T., Wolf, J. P., et al. (2004a). Decrease in heart rate variability with overtraining: Assessment by the Poincaré plot analysis. Clinical Physiology and Functional Imaging, 24, 10–18.

    Article  Google Scholar 

  • Mourot, L., Bouhaddi, M., Perrey, S., Rouillon, J. D., & Regnard, J. (2004b). Quantitative Poincaré plot analysis of heart rate variability: Effect of endurance training. European Journal of Applied Physiology, 91, 79–87.

    Article  Google Scholar 

  • Murukesan, L., Murugappan, M., & Iqbal, M. (2013) Sudden cardiac death prediction using ECG signal derivative (Heart Rate Variability). In: IEEE 9th international colloquium on signal processing and its applications.

  • Nichols, M., Townsend, N., Scarborough, P., & Rayner, M. (2013). Trends in age-specific coronary heart disease mortality in the European Union over three decades: 1980–2009. European Heart Journal, 34, 3017–3027.

    Article  Google Scholar 

  • Obayya, M., & Chadi, F. A. (2008). Data fusion for heart diseases classification using multi-layer feed forward neural network. In IEEE (pp. 67–70).

  • Pagidipati, N. J., & Gaziano, T. A. (2013). Estimating deaths from cardiovascular disease. A review of global methodologies of mortality measurement. Circulation, 127, 749–756.

    Article  Google Scholar 

  • Passman, R., & Goldberger, J. J. (2012). Predicting the future risk stratification for sudden cardiac death in patients with left ventricular dysfunction. Circulation, 125, 3031–3037.

    Article  Google Scholar 

  • Patidara, S., Pachoria, R. B., & Acharya, U. R. (2015). Automated diagnosis of coronary artery disease using a Tunable-Q wavelet transform applied on heart rate signals. Knowledge-Based Systems, 82, 1–10.

    Article  Google Scholar 

  • Rea, T. D., & Page, R. L. (2010). Community approaches to improve resuscitation after out-of-hospital cardiac arrest. Circulation, 121, 1134–1140.

    Article  Google Scholar 

  • Rovere, M. T. L., Pinna, G. D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., et al. (2003). Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation, 107, 565–570.

    Article  Google Scholar 

  • Shen, T. W., Shen, H. P., Lin, C., & Ou, Y. (2007) Detection and prediction of Sudden Cardiac Death (SCD) for personal healthcare. In 29th annual international conference of the IEEE, Buenos Aires, 22–26 August, 2578.

  • Shi, M., He, H., Geng, W., Wu, R., Zhan, C., Jin, Y., et al. (2020). Early detection of sudden cardiac death by using ensemble empirical mode decomposition-based entropy and classical linear features from heart rate variability signals. Frontiers in Physiology, 18, 1–18.

    Google Scholar 

  • Skinner, J. E., Anchin, J. M., & Weiss, D. N. (2008). Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death. Ther Clin Risk Manage, 4, 549–557.

    Article  Google Scholar 

  • Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology, 271(1 Pt. 2), 244–252.

    Google Scholar 

  • Voss, A., Kurths, J., Kleiner, H. J., Witt, A., Wessel, N., Saparin, P., et al. (1996). The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovascular Research, 31, 419–433.

    Article  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karimi Moridani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, F.S., Moridani, M.K. & Jalilehvand, Y. Analysis of heart rate dynamics based on nonlinear lagged returned map for sudden cardiac death prediction in cardiovascular patients. Multidim Syst Sign Process 32, 693–714 (2021). https://doi.org/10.1007/s11045-020-00755-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00755-8

Keywords

Navigation