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Abstract

This paper is concerned with factor left prime factorization problems for multivariate polynomial

matrices without full row rank. We propose a necessary and sufficient condition for the existence

of factor left prime factorizations of a class of multivariate polynomial matrices, and then design

an algorithm to compute all factor left prime factorizations if they exist. We implement the

algorithm on the computer algebra system Maple, and two examples are given to illustrate the

effectiveness of the algorithm. The results presented in this paper are also true for the existence

of factor right prime factorizations of multivariate polynomial matrices without full column rank.

Keywords: Multivariate polynomial matrices, Matrix factorization, Factor left prime (FLP),

Column reduced minors, Free modules

1. Introduction

The factorization problems of multivariate polynomial matrices have attracted much attention

over the past decades because of their fundamental importance in multidimensional systems, cir-

cuits, signal processing, controls, and other related areas (Bose, 1982; Bose et al., 2003). Up to

now, the factorization problems have been solved for univariate and bivariate polynomial matri-

ces (Guiver and Bose, 1982; Morf et al., 1977). However, there are still many challenging open

problems for multivariate (more than two variables) polynomial matrix factorizations due to the

lack of a mature polynomial matrix theory.

Youla and Gnavi (1979) studied the basic structure of multidimensional systems theory, and

proposed three types of factorizations for multivariate polynomial matrices: zero prime fac-

torization, minor prime factorization and factor prime factorization. The existence problem of

zero prime factorizations for multivariate polynomial matrices with full rank first raised in (Lin,

1999), and has been solved in (Pommaret, 2001; Wang and Feng, 2004). In recent years, the fac-

torization problems of multivariate polynomial matrices without full rank deserve some attention.

Lin and Bose (2001) studied a generalization of Serre’s conjecture, and they pointed out some
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relationships between the existence of a zero prime factorization for a multivariate polynomial

matrix without full rank and its an arbitrary full rank submatrix.

Wang and Kwong (2005) completely solved the existence problem of minor prime factoriza-

tions for multivariate polynomial matrices with full rank, and proposed an effective algorithm.

Guan et al. (2019) extended the main result in (Wang and Kwong, 2005) to the case of non-full

rank. In order to study the existence problem of factor prime factorizations for multivariate poly-

nomial matrices with full rank, Wang (2007) proposed the concept of regularity and obtained a

necessary and sufficient condition. Guan et al. (2018) gave an algorithm to determine whether a

class of multivariate polynomial matrices without full rank has factor prime factorizations.

Although some achievements have been made on the existence for factor prime factoriza-

tions of some classes of multivariate polynomial matrices, factor prime factorizations are still

open problems. Therefore, we focus on factor left prime factorization problems for multivariate

polynomial matrices without full row rank in this paper.

The rest of the paper is organized as follows. In section 2, we introduce some basic concepts

and present the two major problems on factor left prime factorizations. We present in section

3 a necessary and sufficient condition for the existence of factor left prime factorizations of a

class of multivariate polynomial matrices without full row rank. In section 4, we construct an

algorithm and use two examples to illustrate the effectiveness of the algorithm. We end with

some concluding remarks in section 5.

2. Preliminaries and Problems

We denote by k an algebraically closed field, z the n variables z1, . . . , zn where n ≥ 3. Let k[z]

be the polynomial ring, and k[z]l×m be the set of l × m matrices with entries in k[z]. Throughout

this paper, we assume that l ≤ m. In addition, we use “w.r.t.” to represent “with respect to”.

For any given polynomial matrix F ∈ k[z]l×m, let rank(F) and FT be the rank and the trans-

posed matrix of F, respectively; if l = m, we use det(F) to denote the determinant of F; we denote

by ρ(F) the submodule of k[z]1×m generated by the rows of F; for each i with 1 ≤ i ≤ rank(F), let

di(F) be the greatest common divisor of all the i× i minors of F; let Syz(F) be the syzygy module

of F, i.e., Syz(F) = {~v ∈ k[z]m×1 : F~v = ~0}.

2.1. Basic Notions

The following three concepts, which were first proposed in (Youla and Gnavi, 1979), play an

important role in multidimensional systems.

Definition 1. Let F ∈ k[z]l×m be of full row rank.

1. If all the l× l minors of F generate k[z], then F is said to be a zero left prime (ZLP) matrix.

2. If all the l × l minors of F are relatively prime, i.e., dl(F) is a nonzero constant, then F is

said to be an minor left prime (MLP) matrix.

3. If for any polynomial matrix factorization F = F1F2 in which F1 ∈ k[z]l×l, F1 is necessarily

a unimodular matrix, i.e., det(F1) is a nonzero constant, then F is said to be a factor left

prime (FLP) matrix.

Let F ∈ k[z]m×l with m ≥ l, then a ZRP (MRP, FRP) matrix can be similarly defined. Note

that ZLP⇒MLP⇒ FLP. Youla and Gnavi proved that when n = 1, the three concepts coincide;

when n = 2, ZLP is not equivalent to MLP, but MLP is the same as FLP; when n ≥ 3, these

concepts are pairwise different.

A factorization of a multivariate polynomial matrix is formulated as follows.
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Definition 2. Let F ∈ k[z]l×m with rank r and f is a divisor of dr(F), where 1 ≤ r ≤ l. F is said

to admit a factorization w.r.t. f if F can be factorized as

F = G1F1 (1)

such that F1 ∈ k[z]r×m, G1 ∈ k[z]l×r with dr(G1) = f . In particular, Equation (1) is said to be a

ZLP (MLP, FLP) factorization of F w.r.t. f if F1 is a ZLP (MLP, FLP) matrix.

In order to state conveniently problems and main conclusions of this paper, we introduce the

following concepts and results.

Definition 3. Let K be a submodule of k[z]1×m, and J be an ideal of k[z]. We define K : J =

{~u ∈ k[z]1×m : J~u ⊆ K}, where J~u is the set { f~u : f ∈ J}.

Obviously,K ⊆ K : J. Let I ⊂ k[z] be another ideal, it is easy to show that

K : (IJ) = (K : I) : J. (2)

Equation (2) is a simple generalization of Proposition 10 in subsection 4, Zariski closure and

quotients of ideals in (Cox et al., 2007). For convention, we write K : 〈 f 〉 as K : f for any

f ∈ k[z].

Definition 4. Let K be a k[z]-module. The torsion submodule of K is defined as Torsion(K) =

{~u ∈ K : ∃ f ∈ k[z]\{0} such that f~u = ~0}.

We refer to (Eisenbud, 2013) for more details about the above two concepts. Let K1,K2 be

two k[z]-modules, we define K1/K2 = {~u + K2 : ~u ∈ K1}. Liu and Wang (2015) established a

relationship between Definition 3 and Definition 4.

Lemma 5. Let F ∈ k[z]l×m be of full row rank, d = dl(F) and K = ρ(F). Then (K : d)/K =

Torsion(k[z]1×m/K).

Moreover, Liu and Wang further extended the Youla’s MLP lemma, which had been used to

give another proof of the Serre’s problem.

Lemma 6. Let F ∈ k[z]l×m be of full row rank and d = dl(F). Then for each i = 1, . . . , n, there

exists Vi ∈ k[z]m×l such that FVi = dϕiIl×l, where ϕi is nonzero and independent of zi.

Guan et al. (2018) proved the following lemma, which is similar to the above result.

Lemma 7. Let G ∈ k[z]l×r be of full column rank with l ≥ r, and g be an arbitrary r × r minor

of G. Then there exists G′ ∈ k[z]r×l such that G′G = gIr×r.

In order to study the properties of multivariate polynomial matrices, Lin (1988) and Sule

(1994) introduced the following important concept.

Definition 8. Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. For any given integer i with 1 ≤ i ≤ r,

let a1, . . . , aβ denote all the i × i minors of F, where β =
(

l

i

)

·
(

m

i

)

. Extracting di(F) from a1, . . . , aβ
yields

a j = di(F) · b j, j = 1, . . . , β.

Then, b1, . . . , bβ are called all the i × i reduced minors of F.
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Lin (1988) showed that reduced minors are important invariants for multivariate polynomial

matrices.

Lemma 9. Let F1 ∈ k[z]r×t be of full row rank, b1, . . . , bγ be all the r × r reduced minors of F1,

and F2 ∈ k[z]t×(t−r) be of full column rank, b̄1, . . . , b̄γ be all the (t − r) × (t − r) reduced minors of

F2, where r < t and γ =
(

t

r

)

. If F1F2 = 0r×(t−r), then b̄i = ±bi for i = 1, . . . , γ, and signs depend

on indices.

Let F ∈ k[z]l×m with rank r, where 1 ≤ r < l. Let F̄1, . . . , F̄η ∈ k[z]l×r be all the full column

rank submatrices of F, where 1 ≤ η ≤
(

m

r

)

. According to Lemma 9, it follows that F̄1, . . . , F̄η
have the same r × r reduced minors. Based on this phenomenon, we give the following concept

which was first proposed in (Lin and Bose, 2001).

Definition 10. Let F ∈ k[z]l×m with rank r, and F̄ ∈ k[z]l×r be an arbitrary full column rank

submatrix of F, where 1 ≤ r < l. Let c1, . . . , cξ be all the r× r reduced minors of F̄, where ξ =
(

l

r

)

.

Then c1, . . . , cξ are called all the r × r column reduced minors of F.

The above concept will play an important role in this paper. Obviously, the calculation

amount of all the r × r column reduced minors of F is much less than that of all the r × r

reduced minors of F in general.

Lemma 11. Let U ∈ k[z]l×m be a ZLP matrix, where l < m. Then there exists a ZRP matrix

V ∈ k[z]m×l such that UV = Il×l. Moreover, Syz(U) is a free submodule of k[z]m×1 with rank

m − l.

The above result is called the Quillen-Suslin theorem. In order to solve the problem whether

any finitely generated projective module over a polynomial ring is free, Quillen (1976) and Suslin

(1976) solved the problem positively and independently.

Using the Quillen-Suslin theorem, Pommaret (2001) and Wang and Feng (2004) solved the

Lin-Bose conjecture.

Lemma 12. Let F ∈ k[z]l×m be of full row rank, where l < m. If all the l × l reduced minors of F

generate k[z], then F has a ZLP factorization.

Let F ∈ k[z]l×m be of full row rank, and f be a divisor of dl(F). In order to study a factorization

of F w.r.t. f , Wang (2007) introduced the concept of regularity. f is said to be regular w.r.t. F

if and only if dl([ f Il×l F]) = f up to multiplication by a nonzero constant. Then, Wang obtained

the following result.

Lemma 13. Let F ∈ k[z]l×m be of full row rank, and f be regular w.r.t. F. Then F has a

factorization w.r.t. f if and only if ρ(F) : f is a free module of rank l.

2.2. Problems

According to Lemma 13, Wang proposed a necessary and sufficient condition to verify

whether F has a FLP factorization w.r.t. f . After that, Guan et al. (2018) considered the case

of multivariate polynomial matrices without full row rank. When f satisfies a special property,

they obtained a necessary condition that F has a factorization w.r.t. f , and designed an algorithm

to compute all FLP factorizations of F if they exist. In this paper we will further consider the

following two problems concerning FLP factorizations.
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Problem 14. Let F ∈ k[z]l×m with rank r, and f be a divisor of dr(F), where 1 ≤ r < l. Determine

whether F has a FLP factorization w.r.t. f .

Problem 15. Let F ∈ k[z]l×m with rank r, where 1 ≤ r < l. Constructing an algorithm to compute

all FLP factorizations of F.

Youla and Gnavi used an example to show that it is very difficult to judge whether a mul-

tivariate polynomial matrix is a FLP matrix. Hence, Problem 14 and Problem 15 may be very

difficult in general. In this paper, we will give partial solutions to the above two problems.

3. Main Results

Let F ∈ k[z]l×m with rank r, and f be a divisor of dr(F), where 1 ≤ r < l. We use the

following lemma to illustrate that all the r× r column reduced minors of F play an important role

in a factorization of F w.r.t. f .

Lemma 16. Let F ∈ k[z]l×m with rank r, f be a divisor of dr(F), and c1, . . . , cξ be all the r × r

column reduced minors of F, where 1 ≤ r < l. If there exist G1 ∈ k[z]l×r and F1 ∈ k[z]r×m such

that F = G1F1 with dr(G1) = f , then Ir(G1) = 〈 f c1, . . . , f cξ〉.

Proof. Since F is a matrix with rank r, there exists a full row rank matrix A ∈ k[z](l−r)×l such that

AF = 0(l−r)×m. Let F̄ ∈ k[z]l×r be an arbitrary full column rank submatrix of F, then AF̄ = 0(l−r)×r .

Based on Lemma 9, all the r × r reduced minors of A are c1, . . . , cξ. It follows from rank(F) ≤

min{rank(G1), rank(F1)} that G1 is a full column rank matrix and F1 is a full row rank matrix.

Then AG1F1 = 0(l−r)×m implies that AG1 = 0(l−r)×r . Using Lemma 9 again, all the r × r reduced

minors of G1 are c1, . . . , cξ. Consequently, Ir(G1) = 〈 f c1, . . . , f cξ〉 since dr(G1) = f .

Now, we give the first main result in this paper.

Theorem 17. Let F ∈ k[z]l×m with rank r, f be a divisor of dr(F) and c1, . . . , cξ be all the r × r

column reduced minors of F, where 1 ≤ r < l. Let d = dr(F) and K = ρ(F), then the following

are equivalent:

1. F has a factorization w.r.t. f ;

2. there exists F1 ∈ k[z]r×m with full row rank such that dr(F1) = d
f

and K ⊆ ρ(F1) ⊆ K :

〈 f c1, . . . , f cξ〉.

Proof. 1→ 2. Suppose that F has a factorization w.r.t. f . Then there exist G1 ∈ k[z]l×r and F1 ∈

k[z]r×m such that F = G1F1 with dr(G1) = f . Clearly, K ⊆ ρ(F1). From dr(F) = dr(G1)dr(F1)

we have dr(F1) = d
f
. According to Lemma 16, Ir(G1) = 〈 f c1, . . . , f cξ〉. Let g be any r × r minor

of G1, then there exists G′ ∈ k[z]r×l such that G′G1 = gIr×r by Lemma 7. Multiplying both left

sides of F = G1F1 by G′, we get G′F = G′G1F1 = gF1. This implies that g · ρ(F1) ⊆ K . Noting

that g is an arbitrary r × r minor of G1, we obtain ρ(F1) ⊆ K : Ir(G1) = K : 〈 f c1, . . . , f cξ〉.

2 → 1. Thanks to K ⊆ ρ(F1), there exists G1 ∈ k[z]l×r such that F = G1F1. It follows from

dr(F) = dr(G1)dr(F1) that dr(G1) = f . Then, F has a factorization w.r.t. f .

Although Theorem 17 gives a necessary and sufficient condition for F to have a factorization

w.r.t. f , it is difficult to find a full row rank matrix F1 ∈ k[z]r×m that satisfies dr(F1) = d
f

and

K ⊆ ρ(F1) ⊆ K : 〈 f c1, . . . , f cξ〉. Next, we will further study the relationship between ρ(F) and

ρ(F1).
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Theorem 18. Let F ∈ k[z]l×m with rank r, f be a divisor of dr(F) and c1, . . . , cξ be all the r × r

column reduced minors of F, where 1 ≤ r < l. Suppose there exist G1 ∈ k[z]l×r and F1 ∈ k[z]r×m

such that F = G1F1 with dr(G1) = f . Let d = dr(F), K = ρ(F) and K1 = ρ(F1), then the

following are equivalent:

1. (K1 : d
f
)/K1;

2. (K : 〈dc1, . . . , dcξ〉)/K1;

3. Torsion(k[z]1×m/K1).

Proof. It follows from rank(F) ≤ min{rank(G1), rank(F1)} that F1 is a full row rank matrix. Since

dr(F) = dr(G1)dr(F1), we have dr(F1) = d
f
. It is apparent from Lemma 5 that

(K1 :
d

f
)/K1 = Torsion(k[z]1×m/K1). (3)

If the following equation

K1 :
d

f
= K : 〈dc1, . . . , dcξ〉 (4)

holds, then (K1 : d
f
)/K1 and (K : 〈dc1, . . . , dcξ〉)/K1 are obviously equivalent.

We first verifyK1 : d
f
⊆ K : 〈dc1, . . . , dcξ〉. Proceeding as in the proof of 1→ 2 in Theorem

17, we get

K1 ⊆ K : 〈 f c1, . . . , f cξ〉. (5)

Using Equation (2), we can derive

K1 :
d

f
⊆ (K : 〈 f c1, . . . , f cξ〉) :

d

f
= K : 〈dc1, . . . , dcξ〉. (6)

Next we show K : 〈dc1, . . . , dcξ〉 ⊆ K1 : d
f
. For any vector ~u ∈ K : 〈dc1, . . . , dcξ〉 =

⋂ξ

j=1
(K :

dc j), there exists ~v j ∈ k[z]1×l such that

dc j~u = ~v jF = ~v jG1F1, j = 1, . . . , ξ. (7)

Using Lemma 6, for each i = 1, . . . , n, there exists Vi ∈ k[z]m×r such that

F1Vi =
d

f
ϕiIr×r , (8)

where ϕi is nonzero and independent of zi. Combining Equation (7) and Equation (8), we see

that

dc j~uVi = ~v jG1F1Vi = ~v jG1(
d

f
ϕiIr×r) =

d

f
ϕi~v jG1. (9)

As gcd(ϕ1, . . . , ϕn) = 1, we have dc j |
d
f
~v jG1. This implies that

~v jG1

f c j
is a polynomial vector.

Then, it follows from Equation (7) that

d

f
~u =
~v jG1

f c j

F1, j = 1, . . . , ξ. (10)

Thus, ~u ∈ K1 : d
f
, and we infer that K : 〈dc1, . . . , dcξ〉 ⊆ K1 : d

f
.

Consequently, (K1 : d
f
)/K1 = (K : 〈dc1, . . . , dcξ〉)/K1.
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In Theorem 18, we obtain K1 : d
f
= K : 〈dc1, . . . , dcξ〉. Naturally, we consider under what

conditionsK1 and K : 〈 f c1, . . . , f cξ〉 are equal. Now, we propose the following conclusion.

Theorem 19. Let F ∈ k[z]l×m with rank r, f be a divisor of dr(F) and c1, . . . , cξ be all the r × r

column reduced minors of F, where 1 ≤ r < l. Suppose there exist G1 ∈ k[z]l×r and F1 ∈ k[z]r×m

such that F = G1F1 with dr(G1) = f . Let d = dr(F), K = ρ(F) andK1 = ρ(F1). If gcd( f , d
f
) = 1,

then K1 = K : 〈 f c1, . . . , f cξ〉 andK : 〈 f c1, . . . , f cξ〉 is a free module of rank r.

The above theorem is a generalization of Theorem 3.11 in (Guan et al., 2018). The proof

of Theorem 19 is basically the same as that of Theorem 3.11, except that we explicitly give a

system of generators of Ir(G1). Hence, the proof is omitted here. Evidently, the calculation

amount of ρ(F1) = ρ(F) : 〈 f b1, . . . , f bβ〉 in Theorem 3.11 is much larger than that of ρ(F1) =

ρ(F) : 〈 f c1, . . . , f cξ〉 in Theorem 19.

Suppose gcd( f , d
f
) = 1. Let K : 〈 f c1, . . . , f cξ〉 be a free module of rank r, and a free basis of

the module constitutes F1 ∈ k[z]r×m. Then, ρ(F1) = K : 〈 f c1, . . . , f cξ〉. Given K ⊆ ρ(F1), there

exists G1 ∈ k[z]l×r such that F = G1F1 with dr(G1) = f ′, where f ′ is a divisor of d. Notice that

f and f ′ may be different. The condition that K : 〈 f c1, . . . , f cξ〉 is a free module of rank r is

only a necessary condition for the existence of a factorization of F w.r.t. f . In order to study the

relationship between f ′ and f , we first introduce a result in (Liu and Wang, 2015).

Lemma 20. Let F ∈ k[z]l×m be of full row rank, d = dl(F) andK = ρ(F). If there exists a divisor

f of d such that K : f = K , then f is a constant.

Now, we can draw the following conclusion.

Proposition 21. Let F ∈ k[z]l×m with rank r, and c1, . . . , cξ be all the r × r column reduced

minors of F, where 1 ≤ r < l. Let K = ρ(F), d = dr(F) be a square-free polynomial and f be

a divisor of d. Suppose K1 = K : 〈 f c1, . . . , f cξ〉 is a free module of rank r and F1 ∈ k[z]r×m is

composed of a free basis of K1. Then, there is no a proper divisor f ′ of f such that F = G1F1,

where G1 ∈ k[z]l×r with dr(G1) = f ′.

Proof. Note that K ⊆ K1, there exists G1 ∈ k[z]l×r such that F = G1F1 with dr(G1) = f ′, where

f ′ is a divisor of d. Since d is a square-free polynomial, gcd( f ′, d
f ′

) = 1. According to Theorem

19, it follows that K1 = K : 〈 f ′c1, . . . , f ′cξ〉, i.e.,

K : 〈 f c1, . . . , f cξ〉 = K : 〈 f ′c1, . . . , f ′cξ〉. (11)

Assume that f ′ is a proper divisor of f . It can easily be seen from Equation (11) that

K1 :
f

f ′
= K1. (12)

Because dr(F1) = d
f ′

, we have
f

f ′
| dr(F1). Based on Lemma 20,

f

f ′
is a constant. This contradicts

the fact that f ′ is a proper divisor of f .

Before giving a new necessary and sufficient condition for the existence of a factorization of

F w.r.t. f , we present the following result.

Lemma 22. Let F ∈ k[z]l×m with rank r, and c1, . . . , cξ be all the r × r column reduced minors

of F, where 1 ≤ r < l. Then the following are equivalent:
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1. there exist U ∈ k[z]l×r and F1 ∈ k[z]r×m such that F = UF1 with U being a ZRP matrix;

2. 〈c1, . . . , cξ〉 = k[z].

Proof. 1 → 2. Suppose there exist U ∈ k[z]l×r and F1 ∈ k[z]r×m such that F = UF1, where

U is a ZRP matrix. Using Lemma 16, c1, . . . , cξ are all the r × r reduced minors of U. Then,

〈c1, . . . , cξ〉 = k[z] since U is a ZRP matrix.

2→ 1. Because rank(F) = r, there exists a full row rank matrix H ∈ k[z](l−r)×l such that

HF = 0(l−r)×m. (13)

According to Lemma 9, c1, . . . , cξ are all the (l − r) × (l − r) reduced minors of H. Assume that

〈c1, . . . , cξ〉 = k[z]. By Lemma 12, H has a ZLP factorization

H = GH1, (14)

where G ∈ k[z](l−r)×(l−r), and H1 ∈ k[z](l−r)×l is a ZLP matrix. Let ~v ∈ Syz(H), then H~v =

GH1~v = ~0. Since G is a full column rank matrix, H1~v = ~0. This implies that ~v ∈ Syz(H1). Let

~u ∈ Syz(H1), it is obvious that ~u ∈ Syz(H). It follows that

Syz(H) = Syz(H1). (15)

Thus we conclude that Syz(H) is a free module of rank r by the Quillen-Suslin theorem.

Suppose that U ∈ k[z]l×r is composed of a free basis of Syz(H). It follows from HU = 0(l−r)×r

that all the r × r reduced minors of U generate k[z]. Using Lemma 12 again, there exist U1 ∈

k[z]l×r and G1 ∈ k[z]r×r such that

U = U1G1 (16)

with U1 being a ZRP matrix. Since G1 is a full row rank matrix, from HU1G1 = 0(l−r)×r we have

HU1 = 0(l−r)×r. (17)

This implies that

ρ(UT
1 ) ⊆ ρ(UT). (18)

Using dr(U) = dr(U1)det(G1), we get dr(U) = δdet(G1), where δ is a nonzero constant. If

det(G1) ∈ k[z] \ k, then Equation (16) implies that

ρ(UT) ( ρ(UT
1 ). (19)

This leads to a contradiction. Thus, det(G1) is a nonzero constant. Consequently, we infer that

U is a ZRP matrix.

Equation (13) implies that the columns of F belong to Syz(H), then there exists F1 ∈ k[z]r×m

such that

F = UF1. (20)

Now, we give the second main result in this paper.

Theorem 23. Let F ∈ k[z]l×m with rank r, and c1, . . . , cξ be all the r × r column reduced minors

of F, where 1 ≤ r < l. Let K = ρ(F), d = dr(F) and f be a divisor of d with gcd( f , d
f
) = 1. If

〈c1, . . . , cξ〉 = k[z], then the following are equivalent:
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1. F has a factorization w.r.t. f ;

2. K : f is a free module of rank r.

Proof. 1 → 2. Suppose that F has a factorization w.r.t. f . Then there exist G1 ∈ k[z]l×r and

F1 ∈ k[z]r×m such that F = G1F1 with dr(G1) = f . According to Theorem 19, ρ(F1) = K :

〈 f c1, . . . , f cξ〉. It follows from 〈c1, . . . , cξ〉 = k[z] that 〈 f c1, . . . , f cξ〉 = 〈 f 〉. Then, ρ(F1) = K :

f . As F1 is a full row rank matrix,K : f is a free module of rank r.

2→ 1. Since 〈c1, . . . , cξ〉 = k[z], by Lemma 22 we obtain

F = UF′, (21)

where U ∈ k[z]l×r is a ZRP matrix and F′ ∈ k[z]r×m. Without loss of generality, we assume

that dr(U) = 1. Clearly, ρ(F) ⊆ ρ(F′). Based on the Quillen-Suslin theorem, there is a ZLP

matrix V ∈ k[z]r×l such that VU = Ir×r. Then, F′ = VF. This implies that ρ(F′) ⊆ ρ(F). Thus,

ρ(F′) = K , dr(F
′) = dr(F) and ρ(F′) : f is a free module of rank r. Since gcd( f , d

f
) = 1, f is

regular w.r.t. F′. By Lemma 13, there exist G′ ∈ k[z]r×r and F1 ∈ k[z]r×m such that

F′ = G′F1 (22)

with det(G′) = f . By substituting Equation (22) into Equation (21), we get

F = (UG′)F1. (23)

Let G1 = UG′, then dr(G1) = dr(U)det(G′) = f . Thus F has a factorization w.r.t. f .

Remark 24. Wang (2007) proved that f is regular w.r.t. F′ if gcd( f , d
f
) = 1.

Let F ∈ k[z]l×m with rank r and f be a divisor of dr(F), where 1 ≤ r < l. We define the

following set:

M( f ) = {h ∈ k[z] : f | h and h | dr(F)}.

Now, we give a partial solution to Problem 14.

Theorem 25. Let F ∈ k[z]l×m with rank r, and c1, . . . , cξ be all the r × r column reduced minors

of F, where 1 ≤ r < l. Let K = ρ(F), d = dr(F) and f be a divisor of d. Suppose every h ∈ M( f )

satisfies gcd(h, d
h
) = 1 and 〈c1, . . . , cξ〉 = k[z], then the following are equivalent:

1. F has a FLP factorization w.r.t. f ;

2. K : f is a free module of rank r, but K : h is not a free module of rank r for every

h ∈ M( f ) \ { f }.

Remark 26. With the help of Theorem 23, the proof of Theorem 25 is similar to that of Theorem

3.2 in (Wang, 2007), and is omitted here.

In the above theorem, we need to verify whether a submodule of k[z]1×m is a free module of

rank r. The traditional method is to calculate the r-th Fitting ideal of the submodule. We refer to

(Cox et al., 2005; Eisenbud, 2013; Greuel and Pfister, 2002) for more details. Next, we will give

a simpler verification method.
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Proposition 27. Let F ∈ k[z]l×m with rank r, and J ⊂ k[z] be a nonzero ideal, where 1 ≤ r < l.

Suppose F0 ∈ k[z]s×m is composed of a system of generators of ρ(F) : J, then the following are

equivalent:

1. ρ(F) : J is a free module of rank r;

2. all the r × r column reduced minors of F0 generate k[z].

Proof. It is evident that ρ(F) : J = ρ(F0). According to Proposition 3.14 in (Guan et al., 2018),

the rank of ρ(F) : J is r. This implies that rank(F0) = r and s ≥ r.

1 → 2. Suppose that ρ(F) : J is a free module of rank r. Let F1 ∈ k[z]r×m be composed of

a free basis of ρ(F) : J, then ρ(F1) = ρ(F0). On the one hand, ρ(F0) ⊆ ρ(F1) implies that there

exists G1 ∈ k[z]s×r such that F0 = G1F1. On the other hand, it follows from ρ(F1) ⊆ ρ(F0) that

there exists G0 ∈ k[z]r×s such that F1 = G0F0. Combining the above two equations, we have

F1 = (G0G1)F1. Because F1 is a full row rank matrix, we obtain Ir×r = G0G1. According to the

Binet-Cauchy formula, all the r × r minors of G1 generate k[z]. Therefore, G1 is a ZRP matrix.

Based on Lemma 22, all the r × r column reduced minors of F0 generate k[z].

2 → 1. There are two cases. First, s > r. Using Lemma 22, there exist F1 ∈ k[z]r×m and

a ZRP matrix U ∈ k[z]s×r such that F0 = UF1. It follows from the proof of 2 → 1 in Theorem

23 that ρ(F0) = ρ(F1). Since F1 is a full row rank matrix, ρ(F) : J is a free module of rank r.

Second, s = r. In this situation, F0 is a full row rank matrix. This implies that ρ(F) : J is a free

module of rank r. Obviously, all the r × r column reduced minors of F0 are only one polynomial

which is the constant 1, and generate k[z]. In summary, ρ(F) : J is a free module of rank r.

4. Algorithm and Examples

4.1. Algorithm

Before solving Problem 15, we make the following analysis on the main results obtained in

section 3. We first construct a polynomial matrix set of k[z]l×m as follows:

M = {F ∈ k[z]l×m : dr(F) is a square-free polynomial},

where r = rank(F). Let F ∈ M, d = dr(F),K = ρ(F), f be an arbitrary divisor of d, and c1, . . . , cξ
be all the r × r column reduced minors of F, where 1 ≤ r < l. There are two cases as follows.

First, 〈c1, . . . , cξ〉 = k[z]. According to Theorem 23, F has a factorization w.r.t. f if and only

ifK : f is a free module of rank r. Since f is an arbitrary divisor of d, we can compute all matrix

factorizations of F. After that, we obtain all FLP factorizations of F by Theorem 25.

Second, 〈c1, . . . , cξ〉 , k[z]. We only get a necessary condition for the existence of a factor-

ization of F w.r.t. f in Theorem 19. Nevertheless, we can get all factorizations of F. The specific

process is as follows. Let f1, . . . , fs be all different divisors of d and K j = K : 〈 f jc1, . . . , f jcξ〉,

then we verify whether K j is a free module of rank r, where j = 1, . . . , s. For each j, one of the

following three cases holds:

1. K j is not a free module of rank r, then F has no factorization w.r.t. f j;

2. K j is a free module of rank r, and a free basis of K j constitutes F j ∈ k[z]r×m,

2.1 if dr(F j) =
d
f j

, then F has a factorization w.r.t. f j;

2.2 if dr(F j) ,
d
f j

, then F has a factorization w.r.t. fi, where fi ∤ f j.
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Let F = Gi1Fi1 = · · · = Git Fit be all different factorizations of F and Ki j
= ρ(Fi j

), where

Gi j
∈ k[z]l×r, Fi j

∈ k[z]r×m, j = 1, . . . , t and 0 ≤ t ≤ s (t = 0 implies that F has no factorizations).

For eachKi j
, if there does not exist j′ such thatKi j

( Ki j′
, then F = Gi j

Fi j
is a FLP factorization

of F. The reason is as follows. Assume that there exist G0 ∈ k[z]r×r and F0 ∈ k[z]r×m such that

Fi j
= G0F0. If det(G0) ∈ k[z] \ k, then Ki j

( ρ(F0). It can be seen that F = (Gi j
G0)F0 is a

factorization of F and it is different from F = Gi j
Fi j

. This contradicts the fact that there exists no

j′ such that Ki j
( Ki j′

. Then, det(G0) is a nonzero constant and Fi j
is a FLP matrix.

According to the above analysis, we now give a partial solution to Problem 15. We construct

the following algorithm to compute all FLP factorizations for F ∈ M.

Before proceeding further, let us remark on Algorithm 1.

(1) In step 14 and step 26, we need to compute free bases of free submodules in k[z]1×m.

Fabiańska and Quadrat (2007) first designed a Maple package, which is called QUILLEN-

SUSLIN, to implement the Quillen-Suslin theorem. At the same time, they implemented

an algorithm for computing free bases of free submodules in this package. Based on this

fact, Algorithm 1 is implemented on Maple. For interested readers, more examples can be

generated by the codes at: http://www.mmrc.iss.ac.cn/~dwang/software.html.

(2) In step 8 and step 20, we need to compute a system of generators of K : J, where

K ⊂ k[z]1×m and J is a nonzero ideal. Wang and Kwong (2005) proposed an algorithm to

computeK : J, and we have implemented this algorithm on Maple.

(3) In step 9 and step 21, if F′
i

is a full row rank matrix, then ρ(F′
i
) is a free module of rank r

and we do not need to compute a reduced Gröbner basis of all the r × r column reduced

minors of F′
i
; otherwise, we need to use Proposition 27 to determine whether K : J is a

free module of rank r.

(4) In step 20, ρ(F) : ( fiG) = ρ(F) : 〈 fic1, . . . , ficξ〉 since G is a reduced Gröbner basis of

〈c1, . . . , cξ〉. This can help us reduce some calculations.

(5) In step 15 and step 27, we need to compute Gi ∈ k[z]l×r such that F = GiFi. Lu et al. (2020)

designed a Maple package, which is called poly-matrix-equation, for solving multivariate

polynomial matrix Diophantine equations. We use this package to compute Gi.

(6) In step 15, Theorem 23 can guarantee that dr(Gi) = fi. In step 27, we can not ensure that

dr(Gi) = fi. Proposition 21 only tell us that there is no a proper divisor f ′
i

of fi such that

dr(Gi) = f ′
i
. Hence, we need to compute dr(Gi).

(7) In step 25 and step 29, we can use Gröbner bases to verify the inclusion relationship of

two submodules of k[z]1×m.

(8) In step 17, the element (F′
i
, fi) is also deleted since fi divides itself. Similarly, the element

(F′
i
, fi) in step 29 is also deleted since ρ(F′

i
) ⊆ ρ(F′

i
).

(9) In fact, we can obtain all factorizations of F by making appropriate modifications to Algo-

rithm 1.

11
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Algorithm 1: FLP factorization algorithm

Input : F ∈ M, the rank r of F and dr(F).

Output: all FLP factorizations of F.

1 begin

2 P := ∅ and W := ∅;

3 compute all different divisors f1, . . . , fs of dr(F);

4 compute all the r × r column reduced minors c1, . . . , cξ of F;

5 compute a reduced Gröbner basis G of 〈c1, . . . , cξ〉;

6 if G = {1} then

7 for i from 1 to s do

8 compute a system of generators of ρ(F) : fi, and use all the elements in the

system to constitute a matrix F′
i
∈ k[z]si×m;

9 if the reduced Gröbner basis of all the r × r column reduced minors of F′
i

is

{1} then

10 P := P ∪ {(F′
i
, fi)};

11 while P , ∅ do

12 select any element (F′
i
, fi) from P;

13 if there is no other elements (F′
j
, f j) ∈ P such that fi | f j then

14 compute a free basis of ρ(F′
i
), and use all the elements in the basis to

constitute a matrix Fi ∈ k[z]r×m;

15 compute a matrix Gi ∈ k[z]l×r such that F = GiFi;

16 W := W ∪ {(Gi,Fi, fi)};

17 delete all elements (F′t , ft) that satisfy ft | fi from P;

18 else

19 for i from 1 to s do

20 compute a system of generators of ρ(F) : ( fiG), and use all the elements in

the system to constitute a matrix F′
i
∈ k[z]si×m;

21 if the reduced Gröbner basis of all the r × r column reduced minors of F′
i

is

{1} then

22 P := P ∪ {(F′
i
, fi)};

23 while P , ∅ do

24 select any element (F′
i
, fi) from P;

25 if there is no other elements (F′
j
, f j) ∈ P such that ρ(F′

i
) ( ρ(F′

j
) then

26 compute a free basis of ρ(F′
i
), and use all the elements in the basis to

constitute Fi ∈ k[z]r×m;

27 compute a matrix Gi ∈ k[z]l×r such that F = GiFi with dr(Gi) = f ′
i
;

28 W := W ∪ {(Gi,Fi, f ′
i
)};

29 delete all elements (F′t , ft) that satisfy ρ(F′t) ⊆ ρ(F
′
i
) from P;

30 return W.
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4.2. Examples

We first use the example in (Guan et al., 2018) to illustrate the calculation process of Algo-

rithm 1.

Example 28. Let

F =





















z1z2 − z2 0 z3 + 1

0 z1z2 − z2 z2
1
− 2z1 + 1

z2
1
z2 − z1z2 z1z2

2
− z2

2
z2

1
z2 − 2z1z2 + z1z3 + z1 + z2





















be a multivariate polynomial matrix in C[z1, z2, z3]3×3, where z1 > z2 > z3 and C is the complex

field.

It is easy to compute that the rank of F is 2, and d2(F) = (z1 − 1)z2. Since d2(F) is a square-

free polynomial, F ∈ M. Then, we can use Algorithm 1 to compute all FLP factorizations of F.

The input of Algorithm 1 are F, r = 2 and d2(F) = (z1 − 1)z2.

Let P = ∅ and W = ∅. All different divisors of d2(F) are: f1 = 1, f2 = z1 − 1, f3 = z2 and

f4 = (z1 − 1)z2. All the 2 × 2 column reduced minors of F are: c1 = 1, c2 = z2 and c3 = −z1.

The reduced Gröbner basis of 〈c1, c2, c3〉 w.r.t. the degree reverse lexicographic order is G = {1}.

Now, we use the steps from 7 to 17 to compute all FLP factorizations of F.

(1) When i = 1, we first compute a system of generators of ρ(F) : f1 and the system is

{[z1z2 − z2, 0, z3 + 1], [0, z1z2 − z2, z2
1
− 2z1 + 1]}. Let

F′1 =

[

z1z2 − z2 0 z3 + 1

0 z1z2 − z2 z2
1
− 2z1 + 1

]

.

Since ρ(F′
1
) = ρ(F) : f1 and F′

1
is a full row rank matrix, ρ(F) : f1 is a free module of rank 2.

(2) When i = 2, a system of generators of ρ(F) : f2 is {[0, z2, z1 − 1], [z1z2 − z2, 0, z3 + 1]}.

Let

F′2 =

[

0 z2 z1 − 1

z1z2 − z2 0 z3 + 1

]

.

Since ρ(F′
2
) = ρ(F) : f2 and F′

2
is a full row rank matrix, ρ(F) : f2 is a free module of rank 2.

(3) When i = 3, a system of generators of ρ(F) : f3 is {[z1z2− z2, 0, z3+1], [0, z1z2− z2, z2
1
−

2z1 + 1], [z3
1
− 3z2

1
+ 3z1 − 1, − z1z3 − z1 + z3 + 1, 0]}. Let

F′3 =





















z1z2 − z2 0 z3 + 1

0 z1z2 − z2 z2
1
− 2z1 + 1

z3
1
− 3z2

1
+ 3z1 − 1 −z1z3 − z1 + z3 + 1 0





















.

All the 2×2 column reduced minors of F′
3

are (z1−1)2,−z2, z3+1. Since 〈(z1−1)2,−z2, z3+1〉 ,

C[z1, z2, z3], ρ(F) : f3 is not a free module of rank 2.

(4) When i = 4, a system of generators of ρ(F) : f4 is {[0, z2, z1 − 1], [z1z2 − z2, 0, z3 +

1], [z2
1
− 2z1 + 1, − z3 − 1, 0]}. Let

F′4 =





















0 z2 z1 − 1

z1z2 − z2 0 z3 + 1

z2
1
− 2z1 + 1 −z3 − 1 0





















.

All the 2 × 2 column reduced minors of F′
4

are z1 − 1, z2, z3 + 1. Since 〈z1 − 1, z2, z3 + 1〉 ,

C[z1, z2, z3], ρ(F) : f4 is not a free module of rank 2.
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Then, P = {(F′
1
, f1), (F′

2
, f2)}. Since f2 is a proper multiple of f1, F has a FLP factorization

w.r.t. f2. Obviously, the rows of F′
2

constitute a free basis of ρ(F) : f2. Let F2 = F′
2
, we compute

a polynomial matrix G2 ∈ C[z1, z2, z3]3×2 such that

F = G2F2 =





















0 1

z1 − 1 0

z1z2 − z2 z1





















[

0 z2 z1 − 1

z1z2 − z2 0 z3 + 1

]

,

where d2(G2) = f2 and F2 is a FLP matrix. Then, W = {(G2,F2, f2)}.

Remark 29. Since 〈c1, c2, c3〉 = 〈1〉, we can use Theorem 25 to compute all FLP factorizations

of F. The above calculation process is simpler than that of Example 3.20 in (Guan et al., 2018).

Obviously, Algorithm 1 is more efficient than the algorithm proposed in (Guan et al., 2018).

Example 30. Let

F =





















z1z2
2

z1z2
3

z2
2
z3 + z3

3

z1z2 0 z2z3

0 z2
1
z3 z1z2

3





















be a multivariate polynomial matrix in C[z1, z2, z3]3×3, where z1 > z2 > z3 and C is the complex

field.

It is easy to compute that the rank of F is 2, and d2(F) = z1z2z3. Since d2(F) is a square-free

polynomial, F ∈ M. Then, we can use Algorithm 1 to compute all FLP factorizations of F. The

input of Algorithm 1 are F, r = 2 and d2(F) = z1z2z3.

Let P = ∅ and W = ∅. All different divisors of d2(F) are: f1 = 1, f2 = z1, f3 = z2, f4 = z3,

f5 = z1z2, f6 = z1z3, f7 = z2z3 and f8 = z1z2z3. All the 2 × 2 column reduced minors of F are:

c1 = z1, c2 = z3 and c3 = z1z2. The reduced Gröbner basis of 〈c1, c2, c3〉 w.r.t. the degree reverse

lexicographic order is G = {z1, z3}. Now, we use the steps from 19 to 29 to compute all FLP

factorizations of F.

LetKi = ρ(F) : 〈 fic1, fic2, fic3〉, where i = 1, . . . , 8. Since G is a Gröbner basis of 〈c1, c2, c3〉,

for each i we have Ki = ρ(F) : 〈 fic1, fic2〉 = (ρ(F) : fic1) ∩ (ρ(F) : fic2).

(1) When i = 1, the systems of generators of ρ(F) : z1 and ρ(F) : z3 are {[z1z2, 0, z2z3], [0, z1z3,

z2
3
], [−z2z2

3
, z2z2

3
, 0]} and {[z1z2, 0, z2z3], [0, z1z3, z2

3
], [0, z2

1
, z1z3]}, respectively. Then, a sys-

tem of generators of K1 is

{[z1z2, 0, z2z3], [0, z1z3, z2
3], [−z1z2z2

3, z1z2z2
3, 0]}.

Let

F′1 =





















z1z2 0 z2z3

0 z1z3 z2
3

−z1z2z2
3

z1z2z2
3

0





















.

It is easy to compute that all the 2 × 2 column reduced minors of F′
1

are 1, z2z3, z
2
3
. Since

〈1, z2z3, z
2
3
〉 = C[z1, z2, z3], K1 is a free module of rank 2.

(2) When i = 2, the systems of generators of ρ(F) : z2
1

and ρ(F) : z1z3 are {[z1z2, 0, z2z3],

[0, z1z3, z2
3
], [z2z3, − z2z3, 0]} and {[z1z2, 0, z2z3], [0, z1, z3], [z2z3, − z2z3, 0]}, respectively.

Then, a system of generators of K2 is

{[z1z2, 0, z2z3], [0, z1z3, z2
3], [z2z3, − z2z3, 0]}.
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Let

F′2 =





















z1z2 0 z2z3

0 z1z3 z2
3

z2z3 −z2z3 0





















.

It is easy to compute that all the 2 × 2 column reduced minors of F′
2

are z1,−z2,−z3. Since

〈z1,−z2,−z3〉 , C[z1, z2, z3], K2 is not a free module of rank 2.

(3) According to the above same steps, we have that the systems of generators ofK3, . . . ,K8

are {[z1, 0, z3], [0, z1z3, z2
3
]}, {[0, z1, z3], [z1z2, 0, z2z3]}, {[−z3, z3, 0], [z1, 0, z3]}, {[0, z1, z3],

[z2, − z2, 0]}, {[z1, 0, z3], [0, z1, z3]} and {[0, z1, z3], [−1, 1, 0]}, respectively. Let F′
i
∈

C[z1, z2, z3]2×3 be composed of the above system of generators of Ki, where i = 3, . . . , 8. For

each i, it is easy to compute that rank(F′
i
) = 2. This implies that F′

i
is a full row rank matrix.

Then,Ki = ρ(F
′
i
) is a free module of rank 2. Then, we have

P = {(F′1, f1), (F′3, f3), . . . , (F′8, f8)}.

(4) Since ρ(F′
i
) ( ρ(F′

8
) for each 1 ≤ i ≤ 7 with i , 2, F has only one FLP factorization.

Since

F′8 =

[

0 z1 z3

−1 1 0

]

is a full row rank matrix, the rows of F′
8

constitute a free basis of K8 = ρ(F
′
8
). Let F8 = F′

8
, we

compute a polynomial matrix G8 ∈ C[z1, z2, z3]3×2 such that

F = G8F8 =





















z2
2
+ z2

3
−z1z2

2

z2 −z1z2

z1z3 0





















[

0 z1 z3

−1 1 0

]

,

where F8 is a FLP matrix. It is easy to compute that d2(G8) = f8. Then, W = {(G8,F8, f8)}.

5. Concluding Remarks

In this paper we have studied two FLP factorization problems for multivariate polynomial

matrices without full row rank. As we all know, FLP factorizations are still open problems so

far. In order to solve some special situations, we have introduced the concept of column reduced

minors. Then, we have proved a theorem which provides a necessary and sufficient condition

for a class of multivariate polynomial matrices without full row rank to have FLP factorizations.

Moreover, we have given a simple method to verify whether a submodule of k[z]1×m is a free

module by using column reduced minors of polynomial matrices. Compared with the traditional

method, the new method is more efficient. Based on our results, we have also proposed an

algorithm for FLP factorizations and have implemented it on the computer algebra system Maple.

Two examples have been given to illustrate the effectiveness of the algorithm.

Let F ∈ k[z]l×m, every full column rank submatrix of F is a square matrix if rank(F) = l. In

this case, all the l × l column reduced minors of F are only one polynomial which is the constant

1. Therefore, all the results in this paper are also valid for the case where F is a full row rank

matrix.

We can define the concept of row reduced minors, and all the results in this paper can be

translated to similar results for FRP factorizations of multivariate polynomial matrices without

full column rank. We hope the results provided in the paper will motivate further research in the

area of factor prime factorizations.
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