Skip to main content
Log in

Robust anisotropic diffusion filter via robust spatial gradient estimation

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper aims to develop a robust anisotropic diffusion filter associated with a robust spatial gradient estimator for simultaneously removing the additive white Gaussian noise (AWGN) and impulsive noise. A robust spatial gradient estimator is first developed to more effectively achieve the separation of significant features and noise. This technique rejects the impulsive noise in the spatial domain and the small amplitude noise in the frequency domain while keeping the large amplitude gradient in the spatial domain and the medium amplitude wave in the frequency domain, and therefore the estimated spatial gradient can mask out various types of noise such as the additive white Gaussian noise and impulsive noise. Then, the spatial gradient obtained from the robust spatial gradient estimator is incorporated into the diffusivity function to obtain the desired robust anisotropic diffusion filter and the MAD estimator is further proposed to estimate the diffusion threshold under such circumstance. Experimental results indicate that the proposed filter remarkably outperforms some benchmark robust models with regard to the quantitative metrics and visual performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Barbu, T. (2014). Robust anisotropic diffusion scheme for image noise removal. Procedia Computer Science, 35, 522–530.

    Article  Google Scholar 

  • Black, M., Sapiro, G., Marimont, D., & Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7, 421–432.

    Article  Google Scholar 

  • Bredies, K., Kunisch, K., & Pock, T. (2010). Total generalized variation. SIAM Journal on Imaging Sciences, 3, 492–526.

    Article  MathSciNet  Google Scholar 

  • Catté, F., Lions, P., & Morel, J. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29, 182–193.

    Article  MathSciNet  Google Scholar 

  • Chambolle, A., & Lions, P. (1997). Image recovery via total variation minimization and related problems. Numerische Mathematik, 76, 167–188.

    Article  MathSciNet  Google Scholar 

  • Chao, S. M., & Tsai, D. M. (2010). An improved anisotropic diffusion model for detail and edge preserving smoothing. Pattern Recognition Letters, 31, 2012–2023.

    Article  Google Scholar 

  • Chen, K. (2005). Adaptive smoothing via contextual and local discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1552–1567.

    Article  Google Scholar 

  • Chen, Q., Montesinos, P., Sun, Q. S., & Xia, D. S. (2010). Ramp preserving Perona–Malik model. Signal Processing, 90, 1963–1975.

    Article  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. SIAM Journal on Multiscale Modeling & Simulation, 7, 1005–1028.

    Article  MathSciNet  Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2002). Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, 11, 689–703.

    Article  Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2004). Image enhancement and denoising by complex diffusion processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 1020–1036.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing. Prentice Hall.

  • Guo, Z. C., Sun, J. B., Zhang, D. Z., & Wu, B. Y. (2012). Adaptive Perona–Malik model based on the variable exponent for image denoising. IEEE Transactions on Image Processing, 21, 958–967.

    Article  MathSciNet  Google Scholar 

  • Ham, B., Min, D., & Sohn, K. (2012). Robust scale-space filter using second-order partial differential equations. IEEE Transactions on Image Processing, 21, 3937–3951.

    Article  MathSciNet  Google Scholar 

  • Karantzalos, K., & Argialas, D. (2006). Improving edge detection and watershed segmentation with anisotropic diffusion and morphological levellings. International Journal of Remote Sensing, 27, 5427–5434.

    Article  Google Scholar 

  • Kim, H. Y., Giacomantone, J., & Cho, Z. H. (2005). Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI. Computer Vision and Image Understanding, 99, 435–452.

    Article  Google Scholar 

  • Knaus, C., & Zwicker, M. (2014). Progressive image denoising. IEEE Transactions on Image Processing, 23, 3114–3125.

    Article  MathSciNet  Google Scholar 

  • Li, H. C., Fan, P. Z., & Khan, M. K. (2012). Context-adaptive anisotropic diffusion for image denoising. Electronics Letters, 48, 827–829.

    Article  Google Scholar 

  • Ling, J., & Bovik, A. C. (2002). Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Transactions on Medical Imaging, 21, 377–384.

    Article  Google Scholar 

  • Mafi, M., Martin, H., Cabrerizo, M., Andrian, J., & Barreto, A. (2019). A comprehensive survey on impulse and Gaussian denoising filters for digital images. Signal Processing, 157, 236–260.

    Article  Google Scholar 

  • Nair, R. R., David, E., & Rajagopal, S. (2019). A robust anisotropic diffusion filter with low arithmetic complexity for images. EURASIP Journal on Image and Video Processing, 48, 1–14.

    Google Scholar 

  • Papafitsoros, K., & Schönlieb, C. B. (2014). A combined first and second order variational approach for image reconstruction. Journal of Mathematical Imaging and Vision, 48, 308–338.

    Article  MathSciNet  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  • Prasath, V. B. S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., & Palaniappan, K. (2015). Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Transactions on Image Processing, 24, 5220–5235.

    Article  MathSciNet  Google Scholar 

  • Rial, R. M., & Herrero, J. M. (2018). Separable anisotropic diffusion. International Journal of Computer Vision, 126, 651–670.

    Article  MathSciNet  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. Wiley.

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MathSciNet  Google Scholar 

  • Siddig, A., Guo, Z. C., Zhou, Z. Y., & Wu, B. Y. (2018). An image denoising model based on a fourth-order nonlinear partial differential equation. Computers and Mathematics with Applications, 76, 1056–1074.

    Article  MathSciNet  Google Scholar 

  • Tsiotsios, C., & Petrou, M. (2013). On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognition, 46, 1369–1381.

    Article  Google Scholar 

  • Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612.

    Article  Google Scholar 

  • Wang, Y., Zhang, L., & Li, P. (2007). Local variance-controlled forward-and-backward diffusion for image enhancement and noise Reduction. IEEE Transactions on Image Processing, 16, 1854–1864.

    Article  MathSciNet  Google Scholar 

  • Xu, J. T., Jia, Y. Y., Shi, Z. F., & Pang, K. (2016). An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Processing, 119, 80–91.

    Article  Google Scholar 

  • Yang, J. H., Zhao, X. L., Mei, J. J., Wang, S., Ma, T. H., & Huang, T. Z. (2019). Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. Computers and Mathematics with Applications, 77, 1255–1272.

    Article  MathSciNet  Google Scholar 

  • Yao, W. J., Guo, Z. C., Sun, J. B., Wu, B. Y., & Gao, H. J. (2019). Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations. SIAM Journal on Imaging Sciences, 12, 839–873.

    Article  MathSciNet  Google Scholar 

  • You, Y. L., & Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9, 1723–1730.

    Article  MathSciNet  Google Scholar 

  • Yu, J., Wang, Y., & Shen, Y. (2008). Noise reduction and edge detection via kernel anisotropic diffusion. Pattern Recognition Letters, 29, 1496–1503.

    Article  Google Scholar 

  • Zhang, F., Yoo, Y. M., Koh, L. M., & Kim, Y. (2007). Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Transactions on Medical Imaging, 26, 200–211.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments that have led to a greatly improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Ethical statement

The authors declare that there are no the following cases: conflicts of interest, research involving Human Participants and/or Animals, informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by Key Program from Data Recovery Key Laboratory of Sichuan Province (Grant No. DRN19013)

Appendix

Appendix

Proof

With the help of the CFL condition \(0\le \lambda \le 1\), we below prove that the proposed filter (11) is conditionally stable. To this end, let \(I_{max}\) and \(I_{min}\) denote the maximum and the minimum of intensities across a given image, respectively. We can easily know that \(0\le c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\le 1\) for \(q\in \eta _{p}\). Since the inequality \(0\le \frac{\lambda }{{\mathcal {N}}(\eta _{p})}\le \frac{1}{8}\) holds for the eight-nearest spatial neighborhood (\({\mathcal {N}}(\eta _{p})=8\)), then we obtain that

$$\begin{aligned} 0\le 1-\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\le 1. \end{aligned}$$
(17)

Hence, we further achieve that

$$\begin{aligned} I^{n+1}_{p}&=I^{n}_{p}+\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\nabla I^{n}_{p,q} \nonumber \\&=\Big [1-\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\Big ]I^{n}_{p}+\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})I^{n}_{q} \nonumber \\&\ge \Big [1-\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\Big ]I_{min}+\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})I_{min}=I_{min}, \end{aligned}$$
(18)

we also have

$$\begin{aligned} I^{n+1}_{p}&=\Big [1-\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\Big ]I^{n}_{p}+\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})I^{n}_{q} \nonumber \\&\le \Big [1-\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})\Big ]I_{max}+\frac{\lambda }{{\mathcal {N}}(\eta _{p})}\sum _{q\in \eta _{p}}c(\Vert {\mathcal {D}}^{n}_{p,q}\Vert ,{\mathcal {K}}^{n})I_{max}=I_{max}. \end{aligned}$$
(19)

Combining (18) and (19) yields \(I_{min}\le I^{n+1}_{p}\le I_{max}\), which means that the intensity of any pixel p in a smoothed image is always bounded, and further confirms the stability of the proposed filter. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y. Robust anisotropic diffusion filter via robust spatial gradient estimation. Multidim Syst Sign Process 33, 501–525 (2022). https://doi.org/10.1007/s11045-021-00808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-021-00808-6

Keywords

Navigation