Skip to main content
Log in

On how the computational paradigm can help us to model and interpret the neural function

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Virtually from its origins, with Alan Turing and W.S. McCulloch’s formulations, the use of the computational paradigm (CP) as a conceptual and theoretical framework to help to explain Neurophysiology and Cognition has aroused controversy. Some of the objections raised, relating to its constitutive and formal limitations, still prevail. We believe that others stem from the assumption that its objectives are different from those of a methodological approach to the problem of neural modeling.

In this work we start from the hypothesis that it is useful to look at the neuronal circuits assuming that they are the neurophysiological support of a calculus, whose full description requires considering, at least, three levels of organization: circuits and mechanisms, neurophysiological symbols and knowledge and emerging behavior. We also stress the figure of the external observer and the need to distinguish between two description domains in each level: the level’s own domain and the domain of the external observer. Finally, we describe a procedure for using the computational paradigm qualitatively in order to try to do “reverse neurophysiology”, drawing on two abstraction processes that link the calculus at signal level with cognition. We end by considering the real limitations (constitutive) and apparent (wrong objectives) of the CP and its integrating and non-exclusive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brooks R (1991) Intelligence Without Reason. A.i. memo, MIT

  • Cariani P (2001) Symbols and dynamics in the brain. Biosystems, p. 60

  • Chalmers D (1993) A Computations Foundation for the Study of Cognition. http://www.ling.ucsc.edu/chalmers/papers/computation.html

  • Clancey W (1997) Situated Cognition. On Human Knowledge and Computer Representation. Univ. Press, Cambridge

    Google Scholar 

  • Clancey W. (1999) Conceptual Coordination. Lawrence Erlbaum Associates, pub. mahwah edition, New Jersey

    Google Scholar 

  • Craik K (1943) The Nature of Explanation. Cambridge University Press, Cambridge

    Google Scholar 

  • Dayan P and Abbott L (2001) Theoretical Neuroscience. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Dreyfus H. (1994) What Computers Still Can’t do. The MIT Press, Cambridge, MA

    Google Scholar 

  • Edelman G (1987) Neural Darwinism. Basic Books Inc., New York

    Google Scholar 

  • Fodor J (1984) El Lenguaje del Pensamiento. Alianza Editorial, Madrid

    Google Scholar 

  • Gibson J (1979) The Ecological Approach to Visual Perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gould S (1987) An Urchin in the Storm. Norton, NY

    Google Scholar 

  • Grobstein P (1990) Strategies for analyzing complex organization in the nervous system. I. Lesion experiments. In: Schwartz E (eds) Computational Neuroscience, pp. 19–35. MIT Press, Cambridge, MA

    Google Scholar 

  • Johnson-Laird P (1988) How could consciousness arise from computations of the brain. In: Blakemore C and Greenfiels S (eds) Mindwaves, pp. 247–257. Basil Blackwell

  • Kandel E, Schwartz J and Jessell T (1991) Principles of Neural Science. Prentice Hall

  • Kleene S (1956) Representation of events in nerve nets and finite automata. In: Shannon and McCarty J (eds) Automata Studies, pp. 3–42. Princeton Univ. Press, Princenton, NJ

  • Kuhn T (1971) La Estructura de las Revoluciones Científicas. Fondo de Cultura EconómicaFondo de Cultura Económica, México

    Google Scholar 

  • Lashley K (1950) In Search of the Engram, Society of Experimental Biology Symposium nž, Vol. 4. Physiological Mechanisms in Animal Behaviour, pp. 454–480. University Press, Cambridge MA

  • Lettvin J, Maturana H, McCulloch W and Pitts W (1959) What the frog’s eye tells the frog’s brain. Proceedings of the IRE 47(11): 1940–1951

    Article  Google Scholar 

  • Luria A (1974) Cerebro y Lenguaje. Ed. Fontanella, Barcelona

    Google Scholar 

  • Marr D (1982) Vision. Freeman, New York

    Google Scholar 

  • Maturana H. (1975) The organization of the living: a theory of the living organization. International Journal of Man-Machine Studies 7: 313–332

    Article  Google Scholar 

  • Maturana H (2002) Ontology of observing. The biological foundations of self consciousness and the physical domain existence. http://www.inteco.cl/biology/ontology/.

  • Maturana H and Varela F (1990) El Árbol del Conocimiento Humano. Ed. Debate, Madrid

    Google Scholar 

  • McCulloch W (1965) Embodiments of Mind. The MIT Press, Cambridge, MA

    Google Scholar 

  • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115–133

    Article  MATH  MathSciNet  Google Scholar 

  • Mira J (1995) Reverse neurophysiology: the embodiments of mind revisited. In: Moreno-Díaz R and Mira-Mira J (eds) Brain Processes, Theories and Models. The MIT Press, MA

    Google Scholar 

  • Mira J (1998) Operaciones ‘inteligentes’ en Sistemas Artificiales: La Perspectiva de la inteligencia Artificial en la Comprensión del Sistema Nervioso. Revista de la Real Academia de Medicina de Catalunya 12(1): 87–107

    Google Scholar 

  • Mira J and Delgado A (1987) Some comments on the antropocentric viewpoint in the neurocybernetic methodology. In: Proc of the Seventh International Congress of Cybernetics and Systems, pp. 891–895

  • Mira J and Delgado A (2003a) Neural modeling in cerebral dynamics. BioSystems 71: 133–144

    Article  Google Scholar 

  • Mira J and Delgado A (2003b) Where is knowledge in robotics? Some methodological Issues on symbolic and connectionist perspectives of AI. In: Zhou C, Maravall D and Rua D (eds) Autonomous Robotic Systems, pp. 3–34. Physical-Verlag Springer, Berlin

    Google Scholar 

  • Mira J and Delgado A (2004) From modeling with words to computing with numbers. In: Proceedings ISDA 2004, Budapest, pp. 7–13

  • Mira J, Delgado A, Boticario J, Díez F (1995) Aspectos básicos de la inteligencia artificial. Sanz y Torres, SL, Madrid

    Google Scholar 

  • Montserrat J (1998) La Percepción Visual. Ed Biblioteca Nueva, Madrid

    Google Scholar 

  • Moreno R, Mira J (1996) Logic and neural nets: variations on themes by W.S. McCulloch. In: Moreno R and Mira J (eds) Brain Processes, Theories and Models, pp. 24–36. The MIT Press, MA

    Google Scholar 

  • Moreno-Diaz R (1971) Deterministic and probabilistic neural nets with loops. Mathematical Biosciences 11: 129–136

    Article  MATH  Google Scholar 

  • Newell A (1981) The knowledge level. AI Magazine, 120

  • Newell A and Simon H (1976) Computer science as empirical inquiry: symbols and search. Communications of ACM 19: 113–126

    Article  MathSciNet  Google Scholar 

  • Patee H (2001) The physics of symbols: brining the epistemic cut. Biosystems 60: 5–12

    Article  Google Scholar 

  • Pylyshyn S (1986) Computation and Cognition. Towards a Foundation of Cognitive Science. The MIT Press

  • Schmitt F and Worden F (1979) The Neuroscience Fourth Study Program. The MIT Press, Cambridge, MA

    Google Scholar 

  • Schreiber G, Akkermans H and de Anjo Anjewierden R (1999) Engineering and Managing Knowledge: The CommonKADS Methodology. The MIT Press, Cambridge, MA

    Google Scholar 

  • Searle J (1985) Minds, brains and programs. In: Haugeland J (ed) Mind Design. Philosophy, Psychology, Artificial Intelligence. The MIT Press

  • Searle J (1989) Minds and brains without programs. In: Blakemore C and Greenfield S (eds) Mindwaves. Basil Blackwell

  • Shepherd G (ed) (1990) The Synaptic Organization of the Brain. Oxford Univ. Press

  • Varela F (1979) Principles of Biological Autonomy. The North Holland Series in General Systems Research, New York

    Google Scholar 

  • von Foester H (2003) Understanding Understanding. Springer

  • von Neumann J (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon and McCarthy (eds) Automata Studies. Princenton Univ. Press, Princenton, NJ

  • Wiener N (1948) Cybernetics. The Technology Press, John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonimous reviewer for his work and suggestions and comments including proposals for future work. We are also grateful to the Spanish Ministerio de Educación y Ciencia for supporting this work under research project TIN 2004-07991-C02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mira Mira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mira, J.M., García, A.E.D. On how the computational paradigm can help us to model and interpret the neural function. Nat Comput 6, 211–240 (2007). https://doi.org/10.1007/s11047-006-9008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-006-9008-6

Keywords

Navigation