Skip to main content
Log in

Modelling the immune system: the case of situated cellular agents

  • Original paper
  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The immune system (IS) represents the defence mechanism of higher level organisms to micro organismic threats. It is a very complex system, genuinely distributed and providing mechanisms of adaptation to unknown threats by means of the interaction among the heterogenous autonomous entities it is composed of. The most relevant features of the overall system, such as learning capabilities and the possibility to tackle unknown threats in any part of the body, are a consequence of these interactions. This paper describes how a Multi-Agent approach, and more precisely the situated cellular agents (SCA) model, can be applied to represent specific elements and mechanisms of the IS. After a brief description of the IS, a brief overview of possible modelling approaches will be given, then the SCA model will be introduced and exploited to model some elements and mechanisms of the IS. This work is one of the results of an interdisciplinary research that has involved immunologists of the Advanced Biotechnology Center of Genova and computer scientists of the University of Milan-Bicocca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bandini S (1996) Hyper-cellular automata for the simulation of complex biological systems: a model for the immune system. Special issue on advances in mathematical modeling of biological processes. Int J Appl Sci Comput 3

  • Bandini S, Federici ML, Manzoni S, Vizzari G (2006a) Towards a methodology for SCA based crowd simulations. In: Sixth International Workshop Engineering Societies in the Agents’ World, vol. 3963 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp 203–220

  • Bandini S, Manzoni S, Simone C (2002) Heterogeneous agents situated in heterogeneous spaces. Appl Artif Int 16(9–10):831–852

    Article  Google Scholar 

  • Bandini S, Mauri G (1999) Multilayered cellular automata. Theoret Comp Sci 217(1):99–113

    Article  MATH  MathSciNet  Google Scholar 

  • Bandini S, Mauri G, Vizzari G (2006b) Supporting action-at-a-distance in situated cellular agents. Fundamenta Informaticae 69(3):251–271

    MATH  Google Scholar 

  • Celada F, Seiden PE (1992) A computer model of cellular interactions in the immune system. Immunol Today 13(2):56–62

    Article  Google Scholar 

  • Davidsson P, Logan B, Takadama K (eds) (2005) Multi-agent and multi-agent-based simulation, Joint Workshop MABS 2004, New York, NY, USA, July 19, 2004, Revised Selected Papers, vol. 3415 of Lecture Notes in Computer Science. Springer-Verlag

  • Ferber J (1999) Multi-agent systems. Addison-Wesley, Reading, MA

  • Hales D, Edmonds B, Norling E, Rouchier J (eds) (2003) Multi-agent-based simulation III, 4th International Workshop, MABS 2003, Melbourne, Australia, July 14th, 2003, Revised Papers’, vol. 2927 of Lecture Notes in Computer Science. Springer-Verlag

  • Kephart JO, Sorkin GB, Swimmer M, White SR (1999) Artificial immune systems and their applications, Chapt. Blueprint for a Computer Immune System, Springer-Verlag, pp 221–241

  • Kleinstein SH, Seiden PE (2000) Simulating the immune system. Comput Sci Eng 2(4):69–77

    Article  Google Scholar 

  • KrishnaKumar K, Neidhoefer J (1999) Artificial immune systems and their applications, Chapt. Immunized adaptive critics. Springer-Verlag, pp 242–261

  • Moss S, Davidsson P (eds) (2001) Multi-agent-based simulation, Second International Workshop, MABS 2000, Boston, MA, USA, July, 2000, Revised and Additional Papers’, vol. 1979 of Lecture Notes in Computer Science. Springer–Verlag

  • Puzone R, Kohler B, Seiden PE, Celada F (2002) IMMSIM, a flexible model for in machina experiments on immune system responses. Future Generation Comp Syst 18(7):961–972

    Article  MATH  Google Scholar 

  • Přiikrylová D, Jílek M, Waniewski J (1992) Mathematical modeling of the immune response. CRC press, Boca Raton, FL

  • Roitt I (1994) Essential immunology. Blackwell, Oxford

  • Sichman JS, Bousquet F, Davidsson P (eds) (2003) Multi-agent-based simulation, Third International Workshop, MABS 2002, Bologna, Italy, July 15–16, 2002, Revised Papers, vol. 2581 of Lecture Notes in Computer Science. Springer-Verlag

  • Sichman JS, Conte R, Gilbert N (eds) (1998) Multi-agent systems and agent-based simulation, First International Workshop, MABS ‘98, Paris, France, July 4–6, 1998, Proceedings, vol. 1534 of Lecture Notes in Computer Science. Springer–Verlag

  • Simone C, Bandini S (2002) Integrating awareness in cooperative applications through the reaction-diffusion metaphor. Comp Supported Coop Work 11(3-4):495–530

    Article  Google Scholar 

  • Smith DJ, Forrest S, Ackley DH, Perelson AS (1997) Modeling the effects of prior infection on vaccine efficacy. In: International Conference on Systems, Man, and Cybernetics, vol. 1, IEEE Computer Society, pp 363–368

  • Stepney S, Smith RE, Timmis J, Tyrrell AM, Neal MJ, Hone ANW (2005) Conceptual frameworks for artificial immune systems. Int J Unconventional Comput 1(3):315–338

    Google Scholar 

  • Wolfram S (1986) Theory and applications of cellular automata. World Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Vizzari.

Additional information

The work presented in this paper has been partially funded by the Italian Ministry of University and Research within the project ‘Cofinanziamento Programmi di Ricerca di Interesse Nazionale’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandini, S., Celada, F., Manzoni, S. et al. Modelling the immune system: the case of situated cellular agents. Nat Comput 6, 19–32 (2007). https://doi.org/10.1007/s11047-006-9028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-006-9028-2

Keywords

Navigation