Skip to main content
Log in

From reaction-diffusion to Physarum computing

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We experimentally demonstrate that computation of spanning trees and implementation of general purpose storage-modification machines can be executed by a vegetative state of the slime mold Physarum polycephalum. We advance theory and practice of reaction-diffusion computing by studying a biological model of reaction-diffusion encapsulated in a membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Thanks to Dr. Soichiro Tsuda for providing me with P. polycephalum culture.

  2. http://www.supercook.co.uk.

  3. Recently we have demonstrated in chemical and biological laboratory experiments that plasmodoium of Physarun polycephalum behaves almost exactly the same, apart of leaving a ‘trace’, as excitation patterns in sub-excitable Belousov–Zhabotinsky medium, see details in Adamatzky et al. (2009). Thus plasmodium is also proved to be capable for collision-based universal computation (Adamatzky 2003).

References

  • Adamatzky A (1991) Neural algorithm for constructing minimal spanning tree. Neural Netw World 6:335–339

    Google Scholar 

  • Adamatzky A (2001) Computing in non-linear media and automata collectives. IoP Publishing, Bristol, 401 pp

  • Adamatzky A (ed) (2003) Collision-based computing. Springer, London

    Google Scholar 

  • Adamatzky A (2007a) Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwisseschaften 94:975–980

    Article  Google Scholar 

  • Adamatzky A (2007b) Physarum machine: implementation of a Kolmogorov–Uspensky machine on a biological substrate. Parallel Process Lett 17:455-467

    Article  MathSciNet  Google Scholar 

  • Adamatzky A (2008a) Growing spanning trees in plasmodium machines. Kybern Int J Syst Cybern 37:258–264

    Article  MathSciNet  MATH  Google Scholar 

  • Adamatzky A (2008b) Developing proximity graphs by Physarum polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett 19:105–127

    Article  MathSciNet  Google Scholar 

  • Adamatzky A (2008c) Towards Physarum robots: computing and manipulating on water surface. arXiv:0804.2036v1 [cs.RO]

  • Adamatzky A (2009) Physarum boats: if plasmodium sailed it would never leave a port (submitted)

  • Adamatzky A, De Lacy Costello BPJ (2002) Collision-free path planning in the Belousov–Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89:474–478

    Article  Google Scholar 

  • Adamatzky A, Holland O (2002) Reaction-diffusion and ant-based load balancing of communication networks. Kybernetes 31:667–681

    Article  Google Scholar 

  • Adamatzky A, Jones J (2009) Programmable reconfiguration of Physarum machines (submitted)

  • Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-Diffusion Computers. Elsevier, Amsterdam

    Google Scholar 

  • Adamatzky A, De Lacy Costello B, Shirakawa T (2009) Universal computation with limited resources: Belousov–Zhabotinsky and Physarum computers. Int J Bifurcat Chaos (in press)

  • Agladze K, Magome N, Aliev R, Yamaguchi T, Yoshikawa K (1997) Finding the optimal path with the aid of chemical wave. Physica D 106:247–254

    Article  Google Scholar 

  • Ahuja M, Zhu Y (1989) A distributed algorithm for minimum weight spanning tree based on echo algorithms. In: Proceedings of the international conference on distributed computing system, pp 2–8

  • Alber J, Dorn F, Niedermeier R (2001) Experiments on optimally solving NP-complete problems on planar graphs, manuscript. http://www.ii.uib.no/~frederic/ADN01.ps

  • Aono M, Gunji Y-P (2001) Resolution of infinite-loop in hyperincursive and nonlocal cellular automata: introduction to slime mold computing. in: Computing anticiaptory systems, AIP conference proceedings, vol 718, pp 177–187

  • Aono M, Gunji Y-P (2004) Material implementation of hyper-incursive field on slime mold computer. In: Computing anticipatory systems, AIP conference proceedings, vol 718, pp 188–203

  • Blass A, Gurevich Y (2003) Algorithms: a quest for absolute definitions. Bull Eur Assoc Theor Comput Sci 81:195–225

    MathSciNet  MATH  Google Scholar 

  • Cartigny J, Ingelrest F, Simplot-Ryl D, Stojmenovic I (2005) Localized LMST and RNG based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc Netw 3:1–16

    Article  Google Scholar 

  • Chong F (1993) Analog techniques for adaptive routing on interconnection networks. MIT transit note no. 14

  • Dexter S, Doyle P, Gurevich Yu (1997) Gurevich abstract state machines and Schönhage storage modification machines. J Univers Comput Sci 3:279–303

    MATH  MathSciNet  Google Scholar 

  • Dijkstra EA (1959) A note on two problems in connection with graphs. Numer Math 1:269–271

    Article  MATH  MathSciNet  Google Scholar 

  • Gallager RG, Humblet PA, Spira PM (1983) A distributed algorithm for minimum-weight spanning tree. ACM Trans Program Lang Syst 5:66–77

    Article  MATH  Google Scholar 

  • Górecki J, Yoshikawa K, Igarashi Y (2003) On chemical reactors that can count. J Phys Chem A 107:1664–1669

    Article  Google Scholar 

  • Grigoriev D (1976) Kolmogorov algorithms are stronger than turing machines. Notes Sci Semin LOMI 60:29–37 (in Russian). English translation: J Sov Math 14:1445–1450 (1980)

  • Gurevich Y (1988) On Kolmogorov machines and related issues. Bull Eue Assoc Theor Comput Sci 35:71–82

    Google Scholar 

  • Huang ST (1990) A fully pipelined minimum spanning tree constructor. J Parallel Distrib Comput 9: 55–62

    Article  Google Scholar 

  • Jaromczyk JW, Kowaluk M (1987) A note on relative neighborhood graphs. In: Proceedings of the 3rd annual symposium on computational geometry, pp 233–241

  • Kamiya N (1950) The protoplasmic flow in the myxomycete plasmodium as revealed by a volumetric analysis. Protoplasma 39:3

    Article  Google Scholar 

  • Knuth DE (1968) The art of computer programming, vol 1: fundamental algorithms. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Kolmogorov AN (1953) On the concept of algorithm. Usp Mat Nauk 8:175–176

    MATH  Google Scholar 

  • Kolmogorov AN, Uspensky VA (1958) On the definition of an algorithm. Uspekhi Mat Nauk 13:3–28 (in Russian). English translation: ASM Transl 21:217–245 (1963)

    Google Scholar 

  • Kruskal JB (1956) On the shortest subtree of a graph and the traveling problem. Proc Am Math Soc 7:48–50

    Article  MathSciNet  Google Scholar 

  • Kuhnert L (1986) A new photochemical memory device in a light sensitive active medium. Nature 319:393

    Article  Google Scholar 

  • Kuhnert L, Agladze KL, Krinsky VI (1989) Image processing using light-sensitive chemical waves. Nature 337:244–247

    Article  Google Scholar 

  • Kusumi T, Yamaguchi T, Aliev R, Amemiya T, Ohmori T, Hashimoto H, Yoshikawa K (1997) Numerical study on time delay for chemical wave transmission via an inactive gap. Chem Phys Lett 271:355–360

    Article  Google Scholar 

  • Lyons R, Peres Y (1997) Probability on trees and networks. http://www.mypage.iu.edu/~rdlyons/prbtree/prbtree.html

  • Matsumoto K, Ueda T, Kobatake Y (1986) Propagation of phase wave in relation to tactic responses by the plasmodium of Physarum polycephalum. J Theor Biol 122:339–345

    Article  Google Scholar 

  • Matsumoto K, Ueda T, Kobatake Y (1988) Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. J Theor Biol 131:175–182

    Article  Google Scholar 

  • Motoike I, Adamatzky A (2005) Three-valued logic gates in reaction-diffusion excitable media. Chaos Solitons Fractals 24:107–114

    MATH  MathSciNet  Google Scholar 

  • Nakagaki T (2001) Smart behavior of true slime mold in a labyrinth. Res Microbiol 152:767–770

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Ito M (1999) reaction-diffusion advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum plasmodium. J Theor Biol 197:497–506

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Ueda T (2000a) Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys Chem 84:195–204

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000b) Maze-solving by an amoeboid organism. Nature 407:470

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92:47–52

    Article  Google Scholar 

  • Nakamura S, Kamiya N (1985) Regional difference in oscillatory characteristics of Physarum plasmodium as revealed by surface pH. Cell Struct Funct 10:173–176

    Article  Google Scholar 

  • Nakamura S, Yoshimoto Y, Kamiya N (1982) Oscillation in surface pH of the Physarum plasmodium. Proc Jpn Acad 58:270–273

    Article  Google Scholar 

  • Ogihara S (1982) Calcium and ATP regulation of the oscillatory torsional movement in a triton model of Physarum plasmodial strands. Exp Cell Res 138:377–384

    Article  Google Scholar 

  • Oster GF, Odel GM (1984) Mechanics of cytogels I: oscillations in Physarum. Cell Motil 4:469–503

    Article  Google Scholar 

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401

    Google Scholar 

  • Rambidi NG (1998) Neural network devices based on reaction-duffusion media: an approach to artificial retina. Supramol Sci 5:765–767

    Article  Google Scholar 

  • Rambidi NG, Shamayaev KR, Peshkov GYu (2002) Image processing using light-sensitive chemical waves. Phys Lett A 298:375–382

    Article  Google Scholar 

  • Ridgway EB, Durham ACH (1976) Oscillations of calcium ion concentration in Physarum plasmodia. Protoplasma 100:167–177

    Google Scholar 

  • Schönhage A (1973) Real-time simulation of multi-dimensional Turing machines by storage modification machines. Project MAC technical memorandum 37, MIT

  • Schönhage A (1980) Storage modification machines. SIAM J Comput 9:490–508

    Article  MATH  MathSciNet  Google Scholar 

  • Sedina-Nadal I, Mihaliuk E, Wang J, Perez-Munuzuri V, Showalter K (2001) Wave propagation in subexcitable media with periodically modulated excitability. Phys Rev Lett 86:1646–1649

    Article  Google Scholar 

  • Shirakawa T (2007) Private communication, Feb 2007

  • Shirakawa T, Gunji Y-P (2009) Computation of Voronoi diagram and collision-free path using the Plasmodium of Physarum polycephalum. Int J Unconv Comput (in press)

  • Shirakawa T, Adamatzky A, Gunji Y-P, Miyake Y (2009) On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurcat Chaos (in press)

  • Shvachko KV (1991) Different modifications of pointer machines and their computational power. In: Proceedings of symposium of the mathematical foundations of computer science MFCS. Lect Notes Comput Sci, vol 520, pp 426–435

  • Sielewiesiuk J, Górecki J (2001) Logical functions of a cross junction of excitable chemical media. J Phys Chem A105:8189

    Google Scholar 

  • Steinbock O, Toth A, Showalter K (1995) Navigating complex labyrinths: optimal paths from chemical waves. Science 267:868–871

    Article  Google Scholar 

  • Supowit KJ (1988) The relative neighbourhood graph, with application to minimum spanning tree. J ACM 3:428–448

    Google Scholar 

  • Tarjan RE (1977) Reference machines require non-linear time to maintain disjoint sets, STAN-CS-77-603, March

  • Tero A, Kobayashi R, Nakagaki T (2005) A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds. Physica D 205:125–135

    Article  MATH  Google Scholar 

  • Tóth A, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103:2058–2066

    Article  Google Scholar 

  • Tsuda S, Aono M, Gunji Y-P (2004) Robust and emergent Physarum-computing. BioSystems 73:45–55

    Article  Google Scholar 

  • Tsuda S, Zauner KP, Gunji YP (2006) Robot control: from silicon circuitry to cells. In: Ijspeert AJ, Masuzawa T, Kusumoto S (eds) Biologically inspired approaches to advanced information technology. Springer, New York, pp 20–32

    Chapter  Google Scholar 

  • Turing A (1936) On computable numbers, with an application to the Entscheidungs-problem. Proc Lond Math Soc 42:230–265

    Article  MATH  Google Scholar 

  • Uspensky VA (1992) Kolmogorov and mathematical logic. J Symb Log 57:385–412

    Article  MATH  MathSciNet  Google Scholar 

  • Yamada H, Nakagaki T, Baker RE, Maini PK (2007) Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold. J Math Biol 54:745–760

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Many thanks to Dr. Christof Teuscher (Los Alamos Labs, US) for editing the manuscript. I am grateful to Dr. Soichiro Tsuda (Southmapton Univ, UK) for providing me with the culture of Physarum polycephalum and subsequent fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamatzky, A. From reaction-diffusion to Physarum computing. Nat Comput 8, 431–447 (2009). https://doi.org/10.1007/s11047-009-9120-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9120-5

Keywords

Navigation