Skip to main content
Log in

Petri net models for the semi-automatic construction of large scale biological networks

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. During the last 15 years, Petri nets have attracted more and more attention to help to solve this key problem. Regarding the published papers, it seems clear that hybrid functional Petri nets are the adequate method to model complex biological networks. Today, a Petri net model of biological networks is built manually by drawing places, transitions and arcs with mouse events. Therefore, based on relevant molecular database and information systems biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the application of Petri nets for modeling and simulation of biological networks. Furthermore, we will present a type of access to relevant metabolic databases such as KEGG, BRENDA, etc. Based on this integration process, the system supports semi-automatic generation of the correlated hybrid Petri net model. A case study of the cardio-disease related gene-regulated biological network is also presented. MoVisPP is available at http://agbi.techfak.uni-bielefeld.de/movispp/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alla H, David R (1998) Continuous and hybrid Petri nets. J Circuits Syst Comput 8(1):159–188

    Article  MathSciNet  Google Scholar 

  • Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28:304–305

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  Google Scholar 

  • Chaouiya C, Remy E, Ruet P et al (2004) Qualitative modeling of genetic networks: from logical regulatory graphs to standard Petri nets. Lect Notes Comput Sci 3099:137–156

    Article  MathSciNet  Google Scholar 

  • Chatr-aryamontri A, Ceol A, Montechi Palazzi L et al (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574

    Article  Google Scholar 

  • Chen M (2002) Modelling and simulation of metabolic networks: Petri nets approach and perspective. In: Proceeding of “ESM 2002, 16th European Simulation Multiconference”, June 3–5, Darmstadt, Germany, pp 441–444

  • Chen M, Hofestädt R (2003) Quantitative Petri net model of gene regulated metabolic networks in the cell. In Silico Biol 3(3):347–365

    Google Scholar 

  • Chen M, Freier A, Hofestädt R (2005) Bioinformatics approaches for metabolic pathways. In: Sensen CW (ed) Handbook of genome research. WILEY–VCH Verlag GmbH & Co., Weinheim, pp 461–490

    Chapter  Google Scholar 

  • Comet J, Klaudel H, Liauzu S (2005) Modeling multi-valued genetic regulatory networks using high-level Petri nets. Lect Notes Comput Sci 3536:208–227

    Article  MathSciNet  Google Scholar 

  • Costanza R, Voinov A (2001) Modelling ecological and economic systems with STELLA: part III. Ecol Model 143(1–2):1–7

    Article  Google Scholar 

  • David R, Alla H (1992) Petri nets and Grafcet–tools for modeling discrete event systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Doi A, Drath R, Nagasaki M et al (1999) Protein dynamics observations of lambda phage by hybrid Petri net. Genome Inform 10:217–218

    Google Scholar 

  • Doi A, Nagasaki M, Matsuno H et al (2006) Simulation-based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol 6:0001

    Google Scholar 

  • Drath R (1998) Hybrid object nets: an object oriented concept for modeling complex hybrid systems. In: Proc. Hybrid dynamical systems, 3rd international conference on automation of mixed processes, ADPM’98, pp 437–442

  • Funahashi A, Tanimura N, Morohashi M et al (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162

    Article  Google Scholar 

  • Garvey TD, Lincoln P, Pedersen CJ et al (2003) BioSPICE: access to the most current computational tools for biologists. OMICS 7:411–420

    Article  Google Scholar 

  • Gene Ontology Consortium (2006) The Gene Ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326

    Article  Google Scholar 

  • Genrich H, Kueffner R, Voss K (2001) Executable Petri net models for the analysis of metabolic pathways. Int J STTT 3(4):394–404

    MATH  Google Scholar 

  • Gilbert D, Heiner M, Rosser S, Fulton R, Gu X, Trybilo M (2008) A case study in model-driven synthetic biology. In: IFIP WCC 2008, 2nd IFIP conference on biologically inspired collaborative computing (BICC 2008), vol 268, Milano, September 2008. Springer, Boston, IFIP, pp 163–175

  • Goryanin I, Hodgman TC, Selkov E (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15:749–758

    Article  Google Scholar 

  • Goss PJE, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci USA 95:6750–6755

    Article  Google Scholar 

  • Goss PJE, Peccoud J (1999) Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1 plasmid replication. In: Pacific symposium on biocomputing’99, pp 65–76

  • Gronewold A, Sonnenschein M (1997) Asynchronous layered cellular automata for the structured modeling of ecological systems. In: 9th European simulation symposium (ESS’97), SCS, pp 286–290

  • Gronewold A, Sonnenschein M (1998) Event-based modeling of ecological systems with asynchronous cellular automata. Ecol Model 108:37–52

    Article  Google Scholar 

  • Hamosh A, Scott AF, Amberger JS et al (2005) Online Inheritance in Man (OMIM), a knowledgebase of human gene and genetic disorders. Nucleic Acid Res 33:D514–D517

    Article  Google Scholar 

  • Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets–demonstrated for apoptosis. Biosystems 75:15–28

    Article  Google Scholar 

  • Heiner M, Richter R, Schwarick M, Rohr C (2008a) Snoopy—a tool to design and execute graph-based formalisms. Petri Net Newsl 74:8–22

    Google Scholar 

  • Heiner M, Gilbert D, Donaldson R (2008b) Petri nets for systems and synthetic biology. In: Bernardo M, Degano P, Zavattaro G (eds) SFM 2008, LNCS, vol 5016. Springer, Heidelberg, pp 215–264

  • Hofestädt R (1994) A Petri net application to model metabolic processes. SAMS 16:113–122

    MATH  Google Scholar 

  • Hofestädt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico Biol 1:39–53

    Google Scholar 

  • Hoops S, Sahle S, Gauges R et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  Google Scholar 

  • Hu ZJ, Mellor J, Wu J et al (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinform 5:17

    Article  Google Scholar 

  • Huang H, Barker WC, Chen Y et al (2003) iProClass: an integrated database of protein family, function and structure information. Nucleic Acids Res 31(1):390–392

    Article  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res 28(1):27–30

    Article  Google Scholar 

  • Kauffman S (1969) Metabolic stability and epigenesis in randomly connected nets. J Theor Biol 11:326–356

    Google Scholar 

  • Kitano H, Funahashi A, Matsuoka Y et al (2005) Using process diagram for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966

    Article  Google Scholar 

  • Koh G, Teong H, Clément V et al (2006) A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathway and their crosstalk. Bioinformatics 2:271–280

    Article  Google Scholar 

  • Kueffner R, Zimmer R, Lengauer T (2000) Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16(9):825–836

    Article  Google Scholar 

  • Lee D, Zimmer R, Lee S et al (2006) Colored Petri net modeling and simulation of signal transduction pathways. Metab Eng 8:112–122

    Article  Google Scholar 

  • Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19:401–406

    Article  Google Scholar 

  • Matsuno H, Doi A, Nagasaki M et al (2000) Hybrid Petri net representation of gene regulatory network. Pac Symp Biocomput 5:338–349

    Google Scholar 

  • Matsuno H, Doi A, Drath R et al (2001) Genomic Object Net: basic architecture for representing and simulating biopathways. In: RECOMB’2001, April 20, Montréal, Canada

  • Matsuno H, Murakami R, Yamane R et al (2003) Boundary formation by notch signaling in Drosophila multicellular systems: experimental observations and a gene network modeling by Genomic Object Net. Pac Symp Biocomput :152–163

  • Mendes P (1993) GEPASI: a software package for modeling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci :563–571

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    Google Scholar 

  • Michal G (1982) Biochemical pathways wall chart. Boehringer Mannheim GmbH Biochemica, Mannheim

    Google Scholar 

  • Nagasaki M, Doi A, Matsuno H et al (2003) Genomic Object Net: a platform for modelling and simulating biopathways. Appl Bioinform 2(3):181–184

    Google Scholar 

  • Nagasaki M, Doi A, Matsuno H et al (2004) Integrating biopathway databases for large-scale modeling and simulation. In: The second Asia–Pacific bioinformatics conferences, volume 29 of conferences in research and practice in information technology, Australian Computer Society, pp 43–52

  • Petri CA (1962) Kommunikation mit Automaten. Dissertation, Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, Bonn

  • Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri Net representation in metabolic pathways. In: Proceedings first international conference on intelligent systems for molecular biology, AAAI Press, Menlo Park, pp 328–336

  • Reisig WA (1982) Primer in Petri Net design. Springer, Berlin

    Google Scholar 

  • Ruth M, Hannon B (1997) Modeling dynamic biological systems. Springer, New York

    MATH  Google Scholar 

  • Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform 7:482

    Article  Google Scholar 

  • Sauro HM (1993) SCAMP: a general-purpose simulator and metabolic control analysis program. Comput Appl Biosci 9:441–450

    Google Scholar 

  • Shaw O, Steggles J, Wipat A (2005) Automatic parameterisation of stochastic Petri net models of biological network. Electron Notes Theor Comput Sci (ENTCS) 153:111–129

    Google Scholar 

  • Siepel A, Farmer A, Tolopko A et al (2001) ISYS: a decentralized, component-based approach to the integration of heterogeneous bioinformatics resources. Bioinformatics 17:83–94

    Article  Google Scholar 

  • Simao E, Remy E, Thieffry D et al (2005) Qualitative Modeling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21:190–196

    Article  Google Scholar 

  • Steggles L, Banks R, Shaw O et al (2007) Qualitatively modeling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23:336–343

    Article  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K et al (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Article  Google Scholar 

  • Troncale S, Tahi F, Campard D et al (2006) Modeling and simulation with hybrid functional Petri nets of the role of Interleukin-6 in human early haematopoiesis. Pac Symp Biocomput 11:427–438

    Article  Google Scholar 

  • Valk R (1978) Self-modifying nets: a natural extension of Petri nets. LNCS 62:464–476

    MathSciNet  Google Scholar 

  • Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3:0031

    Google Scholar 

Download references

Acknowledgements

The work is supported in part by the EU project “CardioWorkBench” (http://www.cardioworkbench.eu/) and the BMBF Project (CHN 08/001). Ming Chen would like to thank DAAD fellowship and NSFC, MOST of China for related project financial support. Sridhar Hariharaputran would like to thank the DFG Graduate College Bioinformatics and Bioinformatics Department, Faculty of Technology at Bielefeld University for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hofestädt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Hariharaputran, S., Hofestädt, R. et al. Petri net models for the semi-automatic construction of large scale biological networks. Nat Comput 10, 1077–1097 (2011). https://doi.org/10.1007/s11047-009-9151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-009-9151-y

Keywords

Navigation