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Abstract

The field of algorithmic self-assembly is concerned with the design
and analysis of self-assembly systems from a computational perspective,
that is, from the perspective of mathematical problems whose study may
give insight into the natural processes through which elementary objects
self-assemble into more complex ones. One of the main problems of algo-
rithmic self-assembly is the minimum tile set problem (MTSP), which asks
for a collection of types of elementary objects (called tiles) to be found
for the self-assembly of an object having a pre-established shape. Such a
collection is to be as concise as possible, thus minimizing supply diversity,
while satisfying a set of stringent constraints having to do with the termi-
nation and other properties of the self-assembly process from its tile types.
We present a study of what we think is the first practical approach to
MTSP. Our study starts with the introduction of an evolutionary heuris-
tic to tackle MTSP and includes results from extensive experimentation
with the heuristic on the self-assembly of simple objects in two and three
dimensions. The heuristic we introduce combines classic elements from
the field of evolutionary computation with a problem-specific variant of
Pareto dominance into a multi-objective approach to MTSP.

Keywords: Algorithmic self-assembly, Minimum tile set problem, Multi-
objective evolutionary algorithms.
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1 Introduction

Self-assembly is the process whereby simple building blocks self-organize into
more complex structures. Its occurrence in nature is ubiquitous and can be
observed at various scales, ranging from the growth of crystals, through the pro-
duction of complex molecules inside the living cell, to the formation of galaxies
and even their clustering into larger structures. In recent years, a considerable
amount of research has been directed toward attempting to understand and re-
produce the essential mechanisms that drive self-assembly, aiming at amassing
its power of distributed control for goal-directed building tasks of strategic im-
portance [12, 9]. The premise has been that, if successful, such efforts may even-
tually lead to autonomous systems that, for example, will replace the current
process of photolithography in VLSI fabrication [11], or the current electronic
media for information storage [15], or yet will give rise to cooperating teams
of robots for nano- and large-scale construction through rules of self-assembly
[20, 22] or to solvers of hard mathematical problems through DNA computing
[23, 4, 5]. At the current stage, a lot of research is being directed toward the bio-
chemical production of nanoscale building blocks [26, 27, 15, 14, 10] or devices
[11, 15, 17], or the elaboration of logical rules for the programming of robots
[18, 22].

The mathematical study of self-assembly can be said to have begun as far
back as [21] on the formation of carbon crystals from the nanoscale structures
that the author called tiles. However, it seems to have been only much more
recently, after algorithm- and complexity-related notions were sufficiently ma-
ture from their development within computer science, that momentum began
to accumulate. The resulting discipline is currently known as algorithmic self-
assembly. It is based on the two-dimensional model laid down in [24, 16], itself
an extension of the earlier, one-dimensional model of [1]. The model is built on
an unbounded two-dimensional grid at whose nodes square tiles can be placed
so that tiles that occupy neighboring nodes are themselves juxtaposed with a
side in common. Each tile is labeled on at least one of its four sides and to each
label there corresponds a unique positive integer indicating the intensity that
the bond formed by juxtaposing two tiles on sides of equal labels will have. Tiles
may occur in a finite number of types, each capable of supplying an unbounded
number of identical tiles.

In this model, the process of self-assembly begins with the placement of a
special tile, called the seed, at an arbitrary node. It then proceeds in discrete
time steps by accreting one tile of one of the available types per time step.
It is important to note that growth can only take place by accretion, that is,
by aggregation to the exterior of the current object, which expressly prevents
hollows that are left from being filled later on. The model also includes a positive
integer parameter, called a temperature, intended to regulate the addition of
new tiles. Specifically, a new tile may only be added if bonds are formed only
on sides of the same label, and furthermore the net intensity of the resulting (at
most three) bonds surpasses the temperature. A sequence of two-dimensional
objects is then established of which the first comprises the seed tile only and
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each of the others is the augmentation of its precursor by the accretion of exactly
one tile.

A considerable body of knowledge has been developed on this model, target-
ing primarily the establishment of theoretical properties of the objects produced
from both a structural and a functional perspective [6, 2, 13, 3, 25]. Along
with these properties, optimization problems have been defined that embody
the essential difficulties associated with translating all the theoretical discover-
ies into the practical context that motivated the whole field in the first place.
One of these problems is that of finding out how diverse the supply of tiles for
self-assembly has to be in order for an object of pre-established shape to be
produced. In other words, the problem asks for the minimum number of tile
types for assembling an object of the desired shape.

This problem is known as the minimum tile set problem (henceforth, MTSP)
[1]. Given a temperature and a two-dimensional shape, MTSP asks for a seed
tile and the least diverse set of tile types out of which an object of the desired
shape may be assembled. MTSP is constrained by the requirements that all
object sequences obtained from the seed terminate, that they all terminate in
an object of the desired shape, and furthermore that the objects obtained at
termination have the property of being full (in the sense of containing as many
bonds as there can be juxtaposed square sides). Formally, MTSP is an NP-hard
problem [1]. While to the practitioner this is generally an indication of inherent
computational difficulty and a clear sign that heuristics are to be sought to
solve the problem, in the case of MTSP even choosing an adequate heuristic has
the feel of something arduous, owing in essence to the fact that the problem’s
constraints (termination, unicity, and fullness) seem to loom too large upon the
computational resources one can usually count on.

Our subject in this paper is the development of a heuristic to tackle MTSP.
The heuristic we describe is an evolutionary algorithm for multi-objective opti-
mization: it uses a convenient variation of Pareto dominance along with suitable
crossover and mutation operators to drive the search in the direction of con-
cise tile sets that do nonetheless satisfy the problem’s constraints. We report
on experiments for the two-dimensional model discussed above, for a variation
thereof that allows tiles to be rotated on the plane before being accreted onto
the growing object, and likewise for the three-dimensional extension of the two-
dimensional model with rotation. These two additional models appear, to our
knowledge, nowhere else in the literature on algorithmic self-assembly. They
seem, however, to enable more realistic representations of real-world processes
of self-assembly, as argued in [8] in the case of three dimensions, and have for
this reason been included.

We are aware of no other study targeting a practical approach to MTSP.1

While this is surprising per se, in the context of the present paper it has also
hindered the possibilities for a comparative assessment of our heuristic vis-à-

1The work reported in [19] is the only one to come somewhat close to being an exception,
but its relation to our work remains very tenuous, since the problem that is handled there does
not share the objective or constraints of MTSP, even though it too targets the determination
of tile types.

3



vis others severely. On the computational side, then, we have concentrated on
squares and cubes as the desired final shapes. For the original two-dimensional
model, at least, this has given us a solid basis for comparison, since upper bounds
on the number of necessary tile types are available from [16]. For the other two
models no such knowledge is available, but we expect relatively smaller tile sets
to suffice when the possibility of rotation is added to the two-dimensional model,
which then gives us an indirect basis on which to judge what we find in this
case. As for the three-dimensional case, all we can achieve at this point is a
qualitative evaluation with respect to the two-dimensional cases.

We proceed in the following manner. We first detail MTSP and also the three
models we use in Section 2. Then we present our heuristic with all its elements
in Section 3 and computational results in Section 4. Further comments and
concluding remarks are given in Section 5.

2 The Minimum Tile Set Problem

2.1 Problem Formulation

The formulation of MTSP we give in this section is good for the two-dimensional
models and for the three-dimensional model. We use the word tile to refer both
to a square and to a cube, and likewise the word side to refer both to a side
of a square and a face of a cube. We do this for conciseness and no confusion
should arise.

Let T denote a set of tile types and let S be the seed tile. The process of
self-assembly from S and T assumes the existence of an unbounded supply of
tiles of all types in T and is represented by a sequence O = 〈ω1, ω2, . . .〉, where
ω1 is the object constituted by the single tile S. For u > 1, ωu is the object
obtained from ωu−1 by the accretion of exactly one tile of one of the types in T
for which model-dependent binding conditions are satisfied. Such conditions will
be specified shortly for each model, but they all have in common the property
that, as the new tile is accreted onto ωu−1, a number of bonds is created that is
at least one and at most the number of sides in the tile through which binding
can occur (provided at least one of the tile’s sides is left unbound, given that
growth is effected by accretion). If t is a tile in the resulting ωu, we let bu(t)
denote the number of bonds involving t in ωu. Similarly, we let Bu be the total
number of bonds holding ωu together. Clearly, Bu =

∑

t bu(t)/2, where the
summation ranges over all tiles in ωu.

Now let ΩS be the set of all sequences that represent a self-assembly process
from S. Also, let ω∗ be any object having the desired, pre-specified shape
and let B∗ be the maximum number of bonds that may exist in an object of
that shape. If τ > 0 is the temperature, then MTSP requires that S and T
be determined such that |T | is minimum over all seeds and tile-type sets that
satisfy the following constraints:

C1. (Termination) For all O ∈ ΩS , O is finite; let |O| be the number of objects
in O.
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C2. (Unicity) For all O ∈ ΩS , ω|O| has the same shape as ω∗.

C3. (Fullness) For all O ∈ ΩS , B|O| = B∗.

Notice, in this formulation, that the temperature τ is never mentioned explic-
itly. This is because the role it plays is in helping specify the binding conditions
that allow a new tile to be accreted onto an object. These conditions are given
below as part of each model’s characteristics, but the way they relate to τ is
common to all three models. We handle this before discussing the models.

Each tile type T ∈ T is characterized by a number σ(T ) of sides (either 4 or 6,
respectively in two and three dimensions) and by a number λ(T ) of sides through
which binding is possible. These numbers are such that 1 ≤ λ(T ) ≤ σ(T ).
Each of the λ(T ) sides is labeled to indicate how binding through that side does
actually take place. If ℓ is one such label, then whenever binding occurs through
a side that is thus labeled the resulting bond has intensity given by the integer
I(ℓ) > 0. The τ -dependent condition for a tile t of type T to be accreted onto
an object at a certain place is that I(ℓ1) + · · ·+ I(ℓλ(t)) ≥ τ , where ℓ1, . . . , ℓλ(t)
are the labels on the sides through which binding does take place (and therefore
λ(t) ≤ λ(T )). What is left to specify of each model’s binding conditions is
precisely the λ(t) sides.

2.2 Two-Dimensional Model (2D)

This is the original model of [16] and is characterized by a fixed orientation
of all tile types with respect to the underlying two-dimensional lattice. That
is, if we identify “north,” “east,” “south,” and “west” directions on the lattice
and proceed likewise on all tile types, then a tile may only be accreted onto a
growing object if its directions are aligned with those of the lattice. This given,
the binding conditions for this model require identical labels on the sides that
face each other for a bond to be created between them. Thus, accreting a tile t
onto an object requires λ(t) ≤ 3 pairs of matched labels. This is illustrated in
Figure 1.2

The 2D model may seem too restrictive or even implausible, but from [16] we
know what seems to be tight upper bounds on the value of the optimal |T | when
the desired shape is that of an n× n square with n ≥ 3. The 2D model is then
invaluable in our present context, as it provides the only available benchmark
with which the results we obtain can be compared. What is demonstrated in
[16] is that, for τ = 1, and letting T ∗ be an optimal tile set, |T ∗| ≤ n2. For
τ = 2,

|T ∗| ≤







n+ 4, if 3 ≤ n ≤ 23;
22 + ⌈log2 n⌉, if 23 ≤ n < 22 + 223;
22 log∗2 n, if 22 + 223 ≤ n

(1)

2In this figure, and in others to follow for the two-dimensional cases, juxtaposed tiles are
represented with a gap between them so that the matching labels can be shown explicitly
whenever possible.
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Figure 1: In the 2D model, using the tile types in (a) allows the object in
(c) to be obtained from the object in (b) by accreting a tile of type 2 onto it.
Temperature is τ = 2. Label intensities are I(a) = I(b) = 2 and I(c) = 1.

(log∗2 indicates the number of times one must apply the log2 operator in succes-
sion until the result is no greater than 1). As for τ ≥ 3, it is unknown whether
the bounds in (1) can be improved.

2.3 Two-Dimensional Model with Rotation (2DR)

Our main motivation to introduce the 2DR model has been the possibility of
increased plausibility that comes with allowing clockwise or counterclockwise
rotation of a tile by multiples of 90◦ before accreting it onto an object.3 Ro-
tations are intrinsically problematic, though: as shown in Figure 2, there exist
tile-type sets that, by virtue of the added possibility of rotation, make it impos-
sible for constraint C1 to be satisfied. We circumvent this problem by adopting
the binding conditions of the 2D model and making them more stringent. The
idea is to let each label have a polarity (either + or −) and to require different
polarities, in addition to equal labels, for the bond to be created. Similarly
to the 2D model, accreting a tile t onto an object requires λ(t) ≤ 3 pairs of
matched labels, each pair with different polarities. This is also illustrated in
Figure 2.

Unlike the 2D model, there are now no known upper bounds on |T ∗|. But the
2DR model is more flexible than the 2D model, in the sense that, in principle,
the same tile type may be used in different situations, depending on how tiles
are rotated. In fact, each tile type in 2DR stands for up to 4 distinct tile types
in 2D, so we expect solutions to be no worse than in the 2D case, possibly even
better.

3Notice that this is the only kind of rotation that makes sense in two dimensions. Pos-
sibilities like flipping a tile around its north-south or east-west axis, for example, implicitly
require incursions into the third dimension and must not be considered.
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Figure 2: In the 2DR model, using the tile types in (a) may lead to the un-
bounded growth shown in (b). Using the tile types in (c), where polarities are
also used, allows the object in (e) to be obtained from the object in (d) by
accreting a tile of type 1 onto it. Temperature is τ = 2. Label intensities are
I(a) = I(b) = 2 in (a) and (b), I(a) = 2 and I(b) = 1 in (c)–(e).
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Figure 3: A tile’s possible rotations in the 3DR model.

2.4 Three-Dimensional Model with Rotation (3DR)

As we move into three dimensions, motivation is derived directly from the field of
molecular dynamics [7] and, in the absence of any upper bounds like those given
in (1) for the 2D model, it is very hard to justify the impossibility of rotation.
We have then skipped what would be a 3D model and moved directly to 3DR,
three-dimensional with the possibility of rotation. The underlying lattice is now
three-dimensional and the possible rotations are by multiples of 90◦ around one
of the three possible axes, as shown in Figure 3. As a consequence, each tile
type in 3DR stands for up to 24 distinct tile types in the (hypothetical) 3D
model.

Rotations are just as problematic in 3DR as they are in 2DR, and for the
same reason. We then continue to use label polarity, so that accreting a tile t
onto an object now requires λ(t) ≤ 5 matching label pairs, each with different
polarities, as illustrated in Figure 4. The 3DR model also shares with the 2DR
model the absence of benchmarks against which to experiment, but as we move
from square shapes in two dimensions to cubic shapes in three dimensions an
interesting trade-off turns up. On the one hand, the added third dimension
allows for more complex shapes to be considered; on the other hand, rotating
tiles have more degrees of freedom in three dimensions than in two. Just which
trend may eventually have the upper hand is unclear now, but we are given
some basis for evaluation in three dimensions, at least in qualitative terms.

3 An Evolutionary Heuristic

3.1 Overview

Our heuristic is evolutionary and follows one of the customary layouts of a
generational genetic algorithm running on a population of tile-type sets, each
possibly of a different size. It runs for a fixed number of generations, each cor-
responding to a population of fixed size, the first population created randomly.
Each of the subsequent populations is obtained from its precursor by first an
elitist step that seeks to preserve some of the fittest individuals, then a diversity-
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Figure 4: In the 3DR model, using the tile types in (a) allows the object in (e) to
be obtained from the object in (b) through the following sequence of accretions:
first three tiles of type 0 are accreted, one at a time, onto the growing object
that results in the one in (c); then three tiles of type 1 are used to lead to the
object in (d); then a fourth object of type 1 is used. Temperature is τ = 2.
Label intensities are I(a) = 2 and I(b) = 1.
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preserving step that samples the previous population uniformly at random and
moves the resulting individuals to the new one, and then a step that makes use
of crossover and mutation and is repeated until the new population is full. The
diversity-preserving step never chooses from those individuals already picked by
the elitist step.

At each repetition of the crossover- and mutation-based step, a choice is
made as to whether the crossover or the mutation operator will be applied. In
the former case, two individuals are selected and combined, and the resulting
two individuals are added to the new population. In the latter case, one single
individual is selected and mutated before being added to the new population.
The choice is probabilistic and we have found that increasing the probability of
choosing crossover from generation to generation sometimes provides the best
results. If G is the number of generations and pg is the probability of choosing
crossover in the gth generation, 1 ≤ g ≤ G, then we use

pg = p1 + (g − 1)

(

pG − p1
G− 1

)

, (2)

that is, we let the crossover probability increase linearly from the initial value
p1 through the final value pG.

We do fitness-based selection, both in the elitist step and in each of the
steps that choose between crossover and mutation, based on a multi-objective
approach. While selecting from the population of generation g, we first group
the individuals into layers of Pareto-like dominance, then we choose one of the
layers probabilistically in a linearly normalized fashion, and then we select an
individual from the chosen layer uniformly at random. If Lg denotes the number
of layers at this generation and Wg the factor by which the top layer (the most
dominant, assumed to be layer 1) is more likely than the bottom layer (the least
dominant, assumed to be layer Lg) to be chosen, then the probability that the lth
layer is chosen, 1 ≤ l ≤ Lg, is proportional to Wg−(l−1)(Wg−1)/(Lg−1). We
have also found that the best results often come from letting Wg increase from
generation to generation, since in the earliest generations the fitness components
vary little from one individual to another and the layering process is practically
devoid of meaning. As in the case of the crossover probability, we let it increase
linearly from the initial value W1 through the final value WG, that is,

Wg = W1 + (g − 1)

(

WG −W1

G− 1

)

. (3)

3.2 The Individual and its Simulation

Each individual represents a set of tile types whose size lies somewhere between
a minimum and a maximum value, these bounds being the same for all indi-
viduals. Each tile type is characterized by a set of labels and, for each label,
an intensity. During the evolutionary process there are two occasions in which
labels must be selected randomly from some universe of possibilities: the first of
these is the formation of the initial population; the second is when individuals
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are to be mutated. For use in these occasions, a fixed table of labels and associ-
ated intensities is used. Given the temperature τ , this table includes a certain
variety of labels for each of the possible intensities 1, . . . , τ . It also includes the
special label ǫ, used to denote the absence of a label. Just how much variety
is included depends on the size of the table, which is fixed beforehand. Given
this size, the actual table is obtained by truncating the sequence of distinct
labels ǫ, ℓ1, . . . , ℓτ , ℓτ+1, . . . , ℓ2τ , . . . to as many labels as that desired size. As
for the intensities of the non-ǫ labels, we let I(ℓkτ+1) = 1, . . . , I(ℓ(k+1)τ ) = τ
for k = 0, 1, . . .. Labels in this table have no polarities: if in the 2DR or 3DR
model, polarities are chosen at random after each label has itself been chosen.

In order for an individual to be evaluated, we need to find out how close
it comes to allowing an object of the desired shape to be assembled, and also
how close it comes to satisfying the remainder of constraints C1 through C3.
The first step toward these goals is to simulate the process of self-assembly for
the individual in question, sometimes more than once, since it is unavoidable
that each simulation be essentially of a stochastic nature. The results of the
simulations can then be fed into appropriate fitness components, which in turn
can be used to perform the desired evaluation.

Each simulation is carried out on a lattice with periodic boundaries having
the same size along each dimension.4 The use of such boundaries allows the
seed S to be placed arbitrarily on the lattice, which is necessarily finite for the
purposes of simulation. With S in place, the simulation proceeds by maintaining
two lists and managing the interactions between them. At all times, the first
list contains all the lattice positions at which it is currently possible to add a
new tile to the growing object without making it collide with itself along one
of the dimensions. This list includes positions inside hollows, but this is not
detrimental to the notion of growth by accretion, as we discuss shortly. The
second list, in turn, contains all tiles that can currently be added to at least
one of the available lattice positions. Each tile type of the individual under
consideration may be represented in this list by several tiles, one for each of the
possible lattice positions at which it can be placed and for each possible rotation
(if 2DR or 3DR is the model in use). All that is required of each such tile is
that it satisfy the binding conditions for the model under which the simulation
is being conducted and also that all pertinent intensities add up to at least τ .
Also, if the lattice position to which the tile corresponds is inside a hollow, all
these requirements must not involve a necessary bond with the tile that was the
one to close the hollow.

The simulation repeatedly selects a matching pair of elements from the two
lists, places the corresponding tile at the corresponding lattice position, and
updates the lists. The selection is probabilistic and is done proportionally to
the added intensities of the bonds to be created by each pair. This is done until
the tile list becomes empty or a pre-specified maximum number of tiles has been
used. If exit occurs on the former condition and the possibility of a collision

4Periodic boundaries are such that traversing the lattice along any dimension necessarily
leads to an already visited node.
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never occurred, then the simulation is said to have reached a terminal object
(this is not to say that the simulation would not terminate if it were allowed to
continue past the maximum number of tiles, or if the lattice were infinite and
collisions impossible, but merely reflects an arbitrary decision aimed at keeping
the simulation bounded in both time and space).

It is important to note that, when a tile is placed inside a hollow during
the simulation, this by no means indicates that the requirement of growth by
accretion only has been given up. Because the bond, if any, created between such
a tile and the one that closed the hollow earlier in the simulation is inessential
(i.e., the tile could be placed in the hollow and satisfy all requirements even
without such a bond), it is possible to accrete both tiles onto the object at the
same positions but in reversed order and still obtain the same final result. The
possibility of placing tiles inside hollows during simulation is then only a device
to help reorder accretive additions to the growing object when they happen to
be selected in an unfavorable order.

The simulation is repeated until a terminal object is reached or else a pre-
specified number of simulations has been performed. In the former case, the
results to be fed into the fitness components are obtained from the terminal
object that was reached. In the latter case, they are obtained from the object
with fewest tiles reached as the simulations ended. In either case, then, a single
object is output by the simulations.

Before discussing what the results of interest are for the individual at hand,
it is important to recall from the definition of MTSP that S, the seed, is part of
what has to be determined. It would then seem like some strange dependency
exists as far as the simulation is concerned, since it starts precisely with placing
S on the lattice while, to comply with the definition of MTSP, S should be part
of the simulation’s output. What we do to avoid this is to assume, initially, that
S is some sort of universal seed, that is, a tile with wildcard labels on some of
its sides (and ǫ on the others), each of which “becomes” the appropriate label of
whatever other tile is accreted onto S through it. At the end of the simulation,
S is the tile obtained from the original, universal S by substituting the label ǫ
for all wildcard labels that remain.

Let i denote the individual under consideration and ω(i) the object output
by the simulations on i. The simulations’ results can be summarized as follows:

• The number of tile types actually used in assembling ω(i), denoted by
θ(i). We have θ(i) ≥ 0, with θ(i) = 0 corresponding to the case in which
ω(i) comprises S only.

• The number of tiles that constitute ω(i), denoted by |ω(i)|. We have
ω(i) ≥ 1.

• The maximum number of tiles that ω(i) and ω∗ (the object having the
desired shape) may have in common under all possible superpositions of
the two, including object rotations. The resulting number is denoted by
κ(i). We have κ(i) ≥ 1, with κ(i) = 1 corresponding to the case in which
ω(i) comprises S only or ω∗ is one single tile.
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• The number of alternative tile types that could have been used at each
step of the construction of ω(i) from the S that resulted at the end of the
simulation, all else unchanged up to that step, provided θ(i) > 0. In order
to be an alternative tile type at step u, a tile type must be one of the θ(i)
that were actually used along the simulation, must be different than the
one that was actually used at step u, and finally must not be equivalent to
the tile type that was used at step u under rotation (if rotation is allowed
by the model in use). This number is denoted by α(i). We have α(i) ≥ 0,
with α(i) = 0 indicating the existence of one single accretive sequence
leading from S to ω(i) and using solely tiles of the θ(i) types used in the
simulation. However, α(i) > 0 does not indicate that the other possible
sequences lead to objects that have shapes other than that of ω(i). If ω(i)
is a terminal object and has the same shape as ω∗, then we are left with a
sufficient condition—i.e., α(i) = 0—for the termination and unicity that
constraints C1 and C2 require, respectively, to hold for the tile-type set
comprising the type of S and the other θ(i) used in the simulation.

These are the results that get combined into fitness components for the
evaluation of i. In addition to them, the following further result is used in
ensuring well-formed offspring after crossover (henceforth, the set of tile types
for which an individual stands is viewed as arranged in a sequence):

• The active region of i, given by the sub-sequence delimited on the left by
the leftmost tile type actually used in assembling ω(i) and on the right
by the rightmost tile type actually used. There may be unused tile types
between the two delimiters.

3.3 Fitness Components and Layering

We use three fitness components in the evaluation of individual i, all three real
functions mapping into the interval [0, 1] in such a way that closer to 1 is better.
The first one is denoted by f(i) and seeks to reflect the objective of MTSP, which
is to require as small a tile-type set as possible. This fitness component is given
by

f(i) = 1−
1 + θ(i)

|ω(i)|
, (4)

where the extra 1 in the fraction’s numerator is meant to stand for the tile type
of the seed S. Clearly, the worst that can happen to f(i) is for each of the
|ω(i)| tiles to be of a distinct type, in which case 1 + θ(i) = |ω(i)| and f(i) = 0.
Otherwise, we always have 1 + θ(i) < |ω(i)| and then 0 < f(i) < 1.

The remaining two fitness components, denoted by g(i) and h(i), are related
to constraints C1 and C2, and therefore to ensuring that the process of self-
assembly always terminates and does so at an object of the same shape as ω∗.
The fitness component g(i) is given by

g(i) =
2κ(i)

|ω(i)|+ |ω∗|
, (5)
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where |ω∗| is the number of tiles that constitute ω∗. The first thing to notice is
that, if ω(i) and ω∗ have the same shape (including coinciding hollows, if any),
then g(i) = 1, since in this case κ(i) = |ω(i)| = |ω∗|. All other alternatives yield
0 < g(i) < 1, as in such cases we have κ(i) < |ω(i)| or κ(i) < |ω∗|. Additionally,
if the simulations ended upon reaching objects of the maximum allowed number
of tiles, then κ(i) ≤ |ω∗| < |ω(i)| (assuming the simulations are allowed to create
objects with strictly more tiles than ω∗, which is certainly the case in all our
experiments). In this case g(i) < 1, thus keeping the g(i) = 1 goal out of reach
whenever ω(i) is not a terminal object. It then follows that g(i) = 1 implies
that ω(i) is a terminal object having the same shape as ω∗.

The third fitness component, h(i), depends on the maximum number of
equivalent tiles that exist, under rotation, for the model in use. We let this be
given by the number ρ, which is equal to 1 in the 2D model, to 4 in the 2DR
model, and to 24 in the 3DR model. This fitness component is given by

h(i) =







0, if θ(i) = 0;

1−
α(i)

ρ|ω(i)|(1 + θ(i))
, if θ(i) > 0.

(6)

Notice first that, if θ(i) = 0, then no tile has been accreted onto S and we ascribe
to h(i) the lowest possible value. If θ(i) > 0, on the other hand, then α(i) is
defined and we use its value in obtaining h(i). Clearly, in this case h(i) = 1
if and only if α(i) = 0, which in turn is a sufficient (although not necessary)
condition for the set comprising the tile type of S and the additional θ(i) tile
types to satisfy constraints C1 and C2, provided ω(i) is terminal and has the
same shape as ω∗. Furthermore, it also holds that 0 < h(i) < 1 if α(i) > 0,
since α(i) < ρ|ω(i)|(1 + θ(i)). Note finally that, as in the case of f(i), the 1
added to θ(i) is meant to account for S.5

Our three fitness components are then seen to provide some measure of
coverage of MTSP’s objective and also of its constraints C1 and C2: f(i) is
concerned with minimizing supply diversity while g(i) and h(i), when g(i) =
h(i) = 1, ensure that constraints C1 and C2 are satisfied by the set of 1 + θ(i)
tile types revealed by the simulations of individual i. It would seem, then,
that constraint C3, the one that requires full objects to be constructed, is so
far unattended. While it is true that none of the fitness components refers to
this constraint, our reason for proceeding in this way has been both pragmatic
and a consequence of our design up to now. It has been pragmatic because we
have found a further fitness component to account for C3 to be unnecessary in
our experiments. Furthermore, and more importantly, constraint C3 is already
taken into account, albeit indirectly, in our procedure for the simulation of an
individual. This can be seen by recalling that attempts are made at filling
hollows during simulation, and that selecting the matching pair for addition to
the object at each step of the simulation privileges those pairs that will establish

5However, it is not in this case necessary, since the definition of α(i) does not consider
substitutions for S. Keeping the 1 is harmless, however, and moreover lets both f(i) and h(i)
be expressed as functions of the total number of tile types.
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the greater number of bonds, which is in accordance with what is required by
constraint C3.

It will also become apparent from the computational experiments we describe
that f(i), g(i), and h(i) do not always vary in consonance with one another.
This has been the central motivation for us to pursue a multi-objective approach
rather than try and combine the three fitness components into one single fitness
function. What is left to specify, then, is how we use them in organizing indi-
viduals into layers of dominance. As we mentioned earlier, we use a Pareto-like
criterion: it differs from traditional Pareto dominance in the sense that it dis-
tinguishes f(i) from both g(i) and h(i), since f(i) is the only one of the three
that is unrelated to one of the problem’s constraints, therefore unrelated to the
feasibility of individual i.

Our layering criteria are then the following. If i1 and i2 are distinct individ-
uals of the same population, then i1 is said to dominate i2 if i1 is strictly better
than i2 according to g and no worse according to h, or if i1 is strictly better
than i2 according to h and no worse according to g, or yet if they are indistin-
guishable from each other by g or h but i1 is strictly better than i2 according
to f . More formally, i1 dominates i2 if and only if one of the following three
conditions holds:

g(i1) > g(i2) and h(i1) ≥ h(i2); (7)

g(i1) ≥ g(i2) and h(i1) > h(i2); (8)

g(i1) = g(i2) and h(i1) = h(i2) and f(i1) > f(i2). (9)

We then place strictly more weight on feasibility than on optimality.

3.4 Crossover and Mutation

The method we use for doing the crossover of two individuals i1 and i2 aims
both at handling the size variability of the individuals and at ensuring that each
of the two offspring inherits material from inside the active regions of both i1
and i2. The way this is achieved is by combining two well-known techniques.
First the two individuals are aligned to each other at some randomly chosen
position in such a way that the smallest one is contained inside the other. Then
two crossover points are selected randomly, provided one intersects the active
region of i1 and the other that of i2. Two-point crossover is then performed as
illustrated in Figure 5. It is simple to see that the two resulting offspring have
sizes that necessarily fall between the allowed minimum and maximum.

Whenever it has been decided that individuals will be selected to undergo
crossover, we allow a fixed number of trials to be attempted so that the two
individuals are not closer, by Euclidean distance in the three-dimensional space
of the fitness components, than a given distance. This gives us a handle on trying
to make sure that crossover is performed on sufficiently different individuals even
when they both come from the same layer. In the event that no pair is found
with the desired characteristic, crossover is performed on the last pair to have
been selected.
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(b)

(d)

(a)

(c)

Figure 5: The crossover operator, applied to the individuals in (a) to produce
those in (b), and to the ones in (c) to produce those in (d). Arrows indicate
the crossover points. Thick-line borders are used to indicate the tile types in a
parent’s active region.
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Table 1: Common parameter values
Parameter Value
Number of generations (G) 1 000
Population size 1 000
Elitist fraction 0.1
Diversity-preserving fraction 0.05
Initial crossover probability (p1) 0.3
Final crossover probability (pG) 0.7
Maximum number of simulations per individual 10
Max. number of crossover attempts per decision to do crossover 1 000

Mutation is straightforward. One of the individual’s tile types is selected at
random, then one of its sides also at random. The chosen side’s label is then
replaced by another one from the τ -dependent label table. The replacing label
is also chosen at random, the only requirement being that it differ from the one
it is replacing. If in the 2DR or 3DR model, then as mentioned earlier a polarity
is randomly chosen for the label.

4 Computational Results

We have conducted extensive experimentation with the evolutionary heuristic of
Section 3, allowing for several combinations of its parameters. Here we report on
some of the most successful and, occasionally, also on some of the experiments
that, though not completely successful, have shed some light on parameter choice
in a significant way. In all experiments in two dimensions ω∗ has been an n×n
square with different choices for the value of n. In three dimensions, we have
concentrated on the 5× 5× 5 cube. Most parameter values have been the same
in all experiments and appear in Table 1.

Most experiments have also used temperature τ = 2, a notable exception
being one of the three-dimensional experiments. The seed S used in all two-
dimensional experiments has two wildcard labels placed so that S is one of the
corners of the square. In three dimensions S has three wildcard labels, again
intended to allow the seed to occupy one of the cube’s corners.

Our results for the 2D model refer to n = 5 or n = 15 (but see also Sec-
tion 5, where we discuss the n = 25 case as well) with the following additional
parameter values. For n = 5, a 30 × 30 lattice, simulated objects of no more
than 100 tiles, the size of an individual between 25 and 50, and a label table
with 10 non-ǫ labels. For n = 15, these become 45 × 45, 900, 50–100, and 20,
respectively.

For n = 5 we had several successful runs, a success being characterized by the
occurrence of at least one individual i for which g(i) = h(i) = 1 (so the 1+ θ(i)
tile types satisfy constraints C1 and C2), and for which constraint C3 is also
satisfied, and furthermore 1+θ(i), the number of tile types (including that of S),
is as indicated in (1). These runs correspond to the various combinations of 0 or
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0.01 as the minimum distance between individuals for crossover to be performed
withW1 = WG = 15 orW1 = 1, WG = 30 (recall the latter regulate the selection
of layers through (3)). For the particular choice of 0 as minimum distance,
success was achieved in all runs of a series of five with each of W1 = WG = 15
or W1 = 1, WG = 30. On average, this happened after about 502 and 433
generations, respectively. One unexpected (and, in fact, unsought for) outcome
related to one of the W1 = WG = 15 runs is that the resulting number of distinct
labels is n+2 = 7, better therefore than the best known estimate, which is n+3
[16].6

The solution achieved by this latter run is shown in Figure 6. The cor-
responding evolution plots for the three fitness components are shown in Fig-
ure 7. These plots were obtained according to the following (somewhat arbi-
trary) method, which holds also for all other similar plots in the sequel. For
each generation, the fitness component g is plotted for the best individual found
so far in terms of its g value (h and f are used, in this order, for tie breaking).
For this best individual, h and f are then plotted. Notice, then, that the g plot
is necessarily nondecreasing, while the plots for h and f may oscillate.

The n = 15 case also yielded plenty of successes under the same parameter
choices described above for n = 5 with regard to the minimum distance for
crossover and the values of W1 and WG. Now, however, choosing the distance
to be 0.01 yielded success in all runs in a series of five for W1 = WG = 15 and
another five for W1 = 1, WG = 30. The solution achieved by one of the runs
with W1 = 1, WG = 30 is shown in Figure 8, with fitness-component plots in
Figure 9. When compared to the plots of Figure 7, the ones in Figure 9 reflect
the increased difficulty that comes from moving from n = 5 to n = 15, since the
solution is approached much more slowly for the larger square.

As we remarked earlier, as we move from the 2D model to 2DR we expect
to be afforded greater flexibility and therefore greater ease in obtaining success
with our evolutionary heuristic for MTSP. Here we illustrate this for the n = 5
case, using the same parameters as for the case singled out above at the end of
our discussion of the 2D model. Success was obtained in all of five runs. One of
them is illustrated in Figures 10 and 11, containing respectively the solution that
was achieved and the fitness-component plots. From the latter, in particular,
the expected increased ease in finding the solution emerges very clearly, since
convergence to 1 of both g and h occurs relatively early in the evolution.

It is curious to observe, in Figure 10, that the number of tile types is n+1 = 6,
therefore significantly smaller than the known upper bound given in (1) for the
2D model, which for n = 5 is n + 4 = 9. Of course, such an upper bound may
turn out to be strictly looser for the 2DR model than it is for the 2D model
once similar properties become known for the 2DR model. Until then, we are
left with this one source of assessment of the solution shown in the figure, that
is, by comparison with the 2D model.

6Minimizing the number of distinct labels is not part of MTSP and we are therefore gener-
ally unconcerned with it in this paper. However, this is an additional goal for which plausible
arguments exist [7], so our find, although serendipitous, amounts to an interesting by-product.
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As we switch to three dimensions and adopt the 3DR model, solutions are
still obtained for parameter combinations similar to the ones considered so far
under two dimensions, but they no longer constitute successes in the sense we
have established. The reason for this is that, even though a full 5×5×5 cube is
obtained, its fullness depends on the order of assembly and therefore constraint
C3 is not satisfied. Our suspicions as to why this occurs fell, naturally, on the
value of τ , so far kept constant at 2. In fact, adopting τ = 3 has yielded the
desired solution, obtained in one single run and shown in Figure 12. Once again,
it is curious to note the n + 2 = 7 tile types used and to compare this figure
to both the prediction of (1) and the results discussed heretofore. Parameter
values were the following: a 30 × 30× 30 lattice, simulated objects of no more
than 900 tiles, individuals sized between 25 and 35, 20 non-ǫ labels available for
selection, minimum distance for crossover of 0.01, and finally W1 = 1, WG = 30.
The corresponding plots of the evolution of the fitness components are given in
Figure 13.
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Figure 6: A solution obtained in the 2D model for n = 5. Tile types appear
in (a), the final object in (b). Temperature is τ = 2. Label intensities are
I(a) = · · · = I(e) = 2 and I(f) = I(g) = 1.
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Figure 7: Evolution of the fitness components for the solution shown in Figure 6.
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Figure 8: A solution obtained in the 2D model for n = 15. Tile types appear
in (a), the final object in (b). Temperature is τ = 2. Label intensities are
I(a) = · · · = I(o) = 2 and I(p) = I(q) = 1.
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Figure 9: Evolution of the fitness components for the solution shown in Figure 8.
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Figure 10: A solution obtained in the 2DR model for n = 5. Tile types appear
in (a), the final object in (b). Temperature is τ = 2. Label intensities are
I(a) = · · · = I(d) = 2 and I(e) = 1.
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Figure 11: Evolution of the fitness components for the solution shown in Fig-
ure 10.
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Figure 12: A solution obtained in the 3DR model for n = 5. Tile types appear
in (a), three intermediate objects on the sequence leading to the final 5× 5× 5
cube appear in (b)–(d). Temperature is τ = 3. Label intensities are I(a) =
· · · = I(d) = 3, I(e) = 2, and I(f) = 1. In (b), the seed S occupies the hidden
corner of the cube and three tiles of type 0 (also hidden) are accreted onto
it. Then follow tiles of types 1, 2, and 3 along each dimension. The cube is
completed by filling with tiles of type 4 the three faces on which such tiles are
already present, and finally placing type-5 tiles in all remaining positions.

26



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

g
f

h

Fi
tn

es
s 

co
m

po
ne

nt

Generation

Figure 13: Evolution of the fitness components for the solution shown in Fig-
ure 12.
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Table 2: Average running times
Experiment Number of cores Time (hours)
2D model, n = 5 8 4.0
2D model, n = 15 10 7.7
2DR model, n = 5 12 1.5
3DR model, n = 5 12 12.0

5 Discussion and Concluding Remarks

One practical measure of the computational hardness of solving MTSP is the
time it has taken our heuristic to complete for each of the runs described in
Section 4. Like most evolutionary algorithms, our heuristic has a tremendous
potential for parallel execution, not only because individuals may be evaluated
independently of one another, but especially because it is precisely in computing
the fitness components that lies most of the difficulty. We ran our experiments
on a small local grid with exclusive access to all hosts, each running a Linux
operating system on an Intel Pentium D (a two-core processor) at 2.8GHz with
2GB of RAM. Average running times are given in Table 2.

In view of the times given in the table, it comes as no surprise that our search
for appropriate parameter-value combinations has of necessity been severely
limited. This is often the case with evolutionary approaches, and no doubt the
availability of larger grids would instantly provide many fresh opportunities for
tune-up and performance studies. However, we believe to have already provided
a sort of proof of principle regarding the possibility of using an evolutionary
approach to tackle MTSP and perhaps other hard problems related to self-
assembly systems.

We find, then, that further effort will be more profitably spent if directed
toward understanding other aspects of MTSP with the use of heuristics like the
one we have introduced. We finalize by briefly reporting on one step we have
already taken in such a direction, having to do with the study of the so-called
complex seeds, i.e., seeds that, unlike the S we have used throughout, comprise
more than one tile [16]. The initial motivation came from our heuristic’s ap-
parent inability to complete any successful runs in the 2D model for n = 25
using various combinations of parameter values. Interestingly, though, once the
possibility of a complex seed was brought into the scene it became possible for
our heuristic to conclude successful runs with parameter values very similar to
those used in Section 4.

The result for one of the successful runs is shown in Figure 14, where the
solution is given along with the complex seed that was used,7 and in Figure 15,
which contains the fitness-component plots. Even with the use of the complex
seed, though, comparing these plots with those of Figure 9, relative to the

7This seed is based on the solution to MTSP for n = 4, for which (1) predicts as an upper
bound exactly the n+4 = 8 tile types that it contains. It has wildcard labels on all tile sides
that face inward with respect to the final square.
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n = 15 case in the 2D model, reveals the increased hardness due to the greater
value of n, as convergence to 1 of the g and h fitness components occurs more
slowly. For this run with n = 25 we used the same basic set of parameters
as in Section 4 for the 2D cases, with the following differences/enlargements:
fixed crossover probability of p1 = pG = 0.3, a 100 × 100 lattice, simulated
objects of no more than 2 500 tiles, individuals sized between 100 and 150, 20
non-ǫ labels available for selection, minimum distance for crossover of 0.01, and
finally W1 = 1, WG = 30. The average running time was of 10 hours on 10
cores.
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Figure 14: A solution obtained in the 2D model for n = 25. Tile types appear
in (a), the final object in (b). The complex seed used is shown in part (b)
comprising all sixteen tiles with thick-line borders. Temperature is τ = 2.
Label intensities are I(a) = · · · = I(h) = I(p) = 2 and I(i) = · · · = I(o) =
I(q) = I(r) = 1.
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Figure 15: Evolution of the fitness components for the solution shown in Fig-
ure 14.
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