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Abstract. It is shown that there is no standard spiking neural P system that simulates
Turing machines with less than exponential time and space overheads. The spiking neu-
ral P systems considered here have a constant number of neurons that is independent
of the input length. Following this we construct a universal spiking neural P system
with exhaustive use of rules that simulates Turing machines in linear time and has only
10 neurons.

1 Introduction

Since their inception inside of the last decade P systems [16] have spawned a variety of hybrid
systems. One such hybrid, that of spiking neural P systems [3], results from a fusion with
spiking neural networks. It has been shown that these systems are computationally universal.
Here the time/space computational complexity of spiking neural P systems is examined.
We begin by showing that counter machines simulate standard spiking neural P systems with
linear time and space overheads. Fischer et al. [2] have previously shown that counter machines
require exponential time and space to simulate Turing machines. Thus it immediately follows
that there is no spiking neural P system that simulates Turing machines with less than
exponential time and space overheads. These results are for spiking neural P systems that
have a constant number of neurons independent of the input length.

Extended spiking neural P systems with exhaustive use of rules were proved computa-
tionally universal in [4]. Zhang et al. [18] gave a small universal spiking neural P system with
exhaustive use of rules (without delay) that has 125 neurons. The technique used to prove
universality in [4] and [18] involved simulation of counter machines and thus suffers from an
exponential time overhead when simulating Turing machines. In an earlier version [10] of the
work we present here, we gave an extended spiking neural P system with exhaustive use of
rules that simulates Turing machines in polynomial time and has 18 neurons. Here we improve
on this result to give an extended spiking neural P system with exhaustive use of rules that
simulates Turing machines in linear time and has only 10 neurons.

The brief history of small universal spiking neural P systems is given in Table 1. Note that,
to simulate an arbitrary Turing machine that computes in time t, all of the small universal
spiking neural P systems prior to our results require time that is exponential in t. An arbitrary
Turing machine that uses space of s is simulated by the universal systems given in [4,11,18]
in space that is doubly exponential in s, and by the universal systems given in [3,10,15,19] in
space that is exponential in s.

⋆ The author is funded by Science Foundation Ireland Research Frontiers Programme grant number
07/RFP/CSMFz1.
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number of simulation type exhaustive author

neurons time/space of rules use of rules

84 exponential standard no Păun and Păun [15]

67 exponential standard no Zhang et al. [19]

49 exponential extended† no Păun and Păun [15]

41 exponential extended† no Zhang et al. [19]

12 double-exponential extended† no Neary [11]

18 exponential extended no Neary [11,12]*

17 exponential standard† no [9]

14 double-exponential standard† no [9]

5 exponential extended† no [9]

4 double-exponential extended† no [9]

3 double-exponential extended‡ no [9]

125 exponential/ extended† yes Zhang et al. [18]

double-exponential

18 polynomial/exponential extended yes Neary [10]

10 linear/exponential extended yes Section 5

Table 1. Small universal SN P systems. The “simulation time” column gives the overheads
used by each system we simulating a standard single tape Turing machine. † indicates that
there is a restriction of the rules as delay is not used and ‡ indicates that a more generalised
output technique is used. *The 18 neuron system is not explicitly given in [11]; it is however
mentioned at the end of the paper and is easily derived from the other system presented
in [11]. Also, its operation and its graph were presented in [12].

Chen et al. [1] have shown that with exponential pre-computed resources sat is solvable
in constant time with spiking neural P systems. Leporati et al. [7] gave a semi-uniform family
of extended spiking neural P systems that solve the Subset Sum problem in constant time.
In later work, Leporati et al. [8] gave a uniform family of maximally parallel spiking neural
P systems with more general rules that solve the Subset Sum problem in polynomial time.
All the above solutions to NP-hard problems rely on families of spiking neural P systems.
Specifically, the size of the problem instance determines the number of neurons in the spiking
neural P system that solves that particular instance. This is similar to solving problems with
uniform circuits families where each input size has a specific circuit that solves it. Ionescu
and Dragoş [5] have shown that spiking neural P systems simulate circuits in linear time.

In the next two sections we give definitions for spiking neural P systems and counter
machines and explain the operation of both. Following this, in Section 4, we prove that counter
machines simulate spiking neural P systems in linear time. Thus proving that there exists no
universal spiking neural P system that simulates Turing machines in less than exponential
time. In Section 5 we present our universal spiking neural P system, with exhaustive use of
rules, that simulates Turing machine in linear time and has only 10 neurons. Finally, we end
the paper with some discussion and conclusions.
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2 Spiking neural P systems

Definition 1 (Spiking neural P systems). A spiking neural P system is a tuple Π =
(O, σ1, σ2, · · · , σm, syn, in, out), where:

1. O = {s} is the unary alphabet (s is known as a spike),
2. σ1, σ2, · · · , σm are neurons, of the form σi = (ni, Ri), 1 6 i 6 m, where:

(a) ni > 0 is the initial number of spikes contained in σi,
(b) Ri is a finite set of rules of the following two forms:

i. E/sb → s; d, where E is a regular expression over s, b > 1 and d > 1,
ii. se → λ; 0 where λ is the empty word, e > 1, and for all E/sb → s; d from Ri

se /∈ L(E) where L(E) is the language defined by E,

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} are the set of synapses between neurons, where i 6= j
for all (i, j) ∈ syn,

4. in, out ∈ {σ1, σ2, · · · , σm} are the input and output neurons respectively.

In the same manner as in [15], spikes are introduced into the system from the environment
by reading in a binary sequence (or word) w ∈ {0, 1}∗ via the input neuron σ1. The sequence
w is read from left to right one symbol at each timestep. If the read symbol is 1 then a spike
enters the input neuron on that timestep.

A firing rule r = E/sb → s; d is applicable in a neuron σi if there are j > b spikes in σi

and sj ∈ L(E) where L(E) is the set of words defined by the regular expression E. If, at time
t, rule r is executed then b spikes are removed from the neuron, and at time t + d − 1 the
neuron fires. When a neuron σi fires a spike is sent to each neuron σj for every synapse (i, j)
in Π . Also, the neuron σi remains closed and does not receive spikes until time t+ d− 1 and
no other rule may execute in σi until time t + d. We note here that in 2b(i) it is standard
to have a d > 0. However, we have d > 1 as it simplifies explanations throughout the paper.
This does not effect the operation as the neuron fires at time t + d − 1 instead of t + d. A
forgeting rule r′ = se → λ; 0 is applicable in a neuron σi if there are exactly e spikes in σi.
If r′ is executed then e spikes are removed from the neuron. At each timestep t a rule must
be applied in each neuron if there is one or more applicable rules at time t. Thus while the
application of rules in each individual neuron is sequential the neurons operate in parallel
with each other.

Note from 2b(i) of Definition 1 that there may be two rules of the form E/sb → s; d, that
are applicable in a single neuron at a given time. If this is the case then the next rule to
execute is chosen non-deterministically. The output is the time between the first and second
spike in the output neuron σm.

An extended spiking neural P system [15] has more general rules of the form E/sb → sp; d,
where b > p > 0. Note if p = 0 then E/sb → sp; d is a forgetting rule. An extended spiking
neural P system with exhaustive use of rules [4] applies its rules as follows. If a neuron σi

contains k spikes and the rule E/sb → sp; d is applicable, then the neuron σi sends out gp
spikes after d timesteps leaving u spikes in σi, where k = bg+ u, u < b and k, g, u ∈ N. Thus,
a synapse in a spiking neural P system with exhaustive use of rules may transmit an arbitrary
number of spikes in a single timestep. In the sequel we allow the input neuron of a system
with exhaustive use of rules to receive an arbitrary number of spikes in a single timestep.
This is a generalisation on the input allowed by Ionescu et al. [4]. We discuss why we think
this generalisation is natural for this model at the end of the paper.

In earlier work [15], Korec’s notion of strong universality was adopted for small SN P
systems. Analogously, some small SN P systems could be described as what Korec refers to
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as weak universality. However, as we noted in other work [9], it could be considered that
Korec’s notion of strong universality is somewhat arbitrary and we also pointed out some
inconsistency in his notion of weak universality. Hence, in this work we rely on time/space
complexity analysis to compare the encodings used by the small SN P system in Table 1.

In the sequel each spike in a spiking neural P system represents a single unit of space.
The maximum number of spikes in a spiking neural P system at any given timestep during a
computation is the space used by the system.

3 Counter machines

The definition we give for counter machine is similar to that of Fischer et al. [2].

Definition 2 (Counter machine).
A counter machine is a tuple C = (z, cm, Q, q0, qh, Σ, f), where z gives the number of counters,
cm is the output counter, Q = {q0, q1, · · · , qh} is the set of states, q0, qh ∈ Q are the initial
and halt states respectively, Σ is the input alphabet and f is the transition function

f : (Σ ×Q× g(i)) → ({Y,N} ×Q× {INC,DEC,NULL})

where g(i) is a binary valued function and 0 6 i 6 z, Y and N control the movement of
the input read head, and INC, DEC, and NULL indicate the operation to carry out on
counter ci.

Each counter ci stores a natural number value x. If x > 0 then g(i) is true and if x = 0 then
g(i) is false. The input to the counter machine is read in from an input tape with alphabet
Σ. The movement of the scanning head on the input tape is one-way so each input symbol is
read only once. When a computation begins the scanning head is over the leftmost symbol α
of the input word αw ∈ Σ∗ and the counter machine is in state q0. We give three examples
below to explain the operation of the transition function f .

– f(α, qj , g(i)) = (Y, qk, INC(h)) move the read head right on the input tape to read the
next input symbol, change to state qk and increment the value x stored in counter ci by
1.

– f(α, qj , g(i)) = (N, qk, DEC(h)) do not move the read head, change to state qk and
decrement the value x stored in counter ci by 1. Note that g(i) must evaluate to true for
this rule to execute.

– f(α, qj , g(i)) = (N, qk, NULL) do not move the read head and change to state qk.

A single application of f is a timestep. Thus in a single timestep only one counter may be
incremented or decremented by 1.

Our definition for counter machine, given above, is more restricted than the definition given
by Fischer [2]. In Fischer’s definition INC and DEC may be applied to every counter in the
machine in a single timestep. Clearly the more general counter machines of Fischer simulate
our machines with no extra space or time overheads. Fischer has shown that counter machines
are exponentially slow in terms of computation time as the following theorem illustrates.

Theorem 1 (Fischer [2]). There is a language L, real-time recognizable by a one-tape TM,
which is not recognizable by any k-CM in time less than T (n) = 2

n
2k .
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In Theorem 1 a one-tape TM is an offline Turing machine with a single read only input
tape and a single work tape, a k-CM is a counter machine with k counters, n is the input
length and real-time recognizable means recognizable in n timesteps. For his proof Fischer
noted that the language L = {wawr | w ∈ {0, 1}∗}, where wr is w reversed, is recognisable in
n timesteps on a one-tape offline Turing machine. He then noted, that time of 2

n
2k is required

to process input words of length n due to the unary data storage used by the counters of the
k-CM. Note that Theorem 1 also holds for non-deterministic counter machines as they use
the same unary storage method.

4 Non-deterministic counter machines simulate spiking neural P

systems in linear time

Theorem 2. Let Π be a spiking neural P system with m neurons that completes its com-
putation in time T and space S. Then there is a non-deterministic counter machine CΠ

that simulates the operation of Π in time O(T (xr)
2m+ Tm2) and space O(S) where xr is a

constant dependant on the rules of Π.

Proof idea Before we give the proof of Theorem 2 we give the main idea behind the proof.
Each neuron σi from the spiking neural P system Π is simulated by a counter ci from the
counter machine CΠ . If a neuron σi contains y spikes, then the counter will have value y. A
single synchronous update of all the neurons at a given timestep t is simulated as follows. If
the number of spikes in a neuron σi is deceasing by b spikes in-order to execute a rule, then
the value y stored in the simulated neuron ci is decremented b times using DEC(i) to give
y − b. This process is repeated for each neuron that executes a rule at time t. If neuron σi

fires at time t and has synapses to neurons {σi1 , . . . σiv} then for each open neuron σij in
{σi1 , . . . σiv} at time t we increment the simulated neuron cij using INC(ij). This process
is repeated until all firing neurons have been simulated. This simulation of the synchronous
update of Π at time t is completed by CΠ in constant time. Thus we get the linear time
bound given in Theorem 2.

Proof. Let Π = (O, σ1, σ2, · · · , σm, syn, in, out) be a spiking neural P system where in = σ1

and out = σ2. We explain the operation of a non-deterministic counter machine CΠ that
simulates the operation of Π in time O(T (xr)

2m+ Tm2) and space O(S).
There are m + 1 counters c1, c2, c3, · · · , cm, cm+1 in CΠ . Each counter ci emulates the

activity of a neuron σi. If σi contains y spikes then counter ci will store the value y. The
states of the counter machine are used to control which neural rules are simulated in each
counter and also to synchronise the operations of the simulated neurons (counters).

Input encoding It is sufficient for CΠ to have a binary input tape. The value of the binary
word w ∈ {1, 0}∗ that is placed on the terminal to be read into CΠ is identical to the binary
sequence read in from the environment by the input neuron σi. A single symbol is read
from the terminal at each simulated timestep. The counter c1 (the simulated input neuron)
is incremented only on timesteps when a 1 (a simulated spike) is read. As such at each
simulated timestep t, a simulated spike is received by c1 if and only if a spike is received by
the input neuron σ1. At the start of the computation, before the input is read in, each counter
simulating σi is incremented ni times to simulated the ni spikes in each neuron given by 2(a)
of Definition 1. This takes a constant amount of time.
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G
g1 s g2 s g3 · · · gx−1

s gx s gx+1 · · · gy

s

G′

g1
+s

−s
g2

+s

−s
g3 · · · gx−1

+s

−s
gx

+s

−s
gx+1 · · · gy

+s

−s

Fig. 1. Finite state machine G decides if a particular rule is applicable in a neuron given the
number of spikes in the neuron at a given time in the computation. Each s represents a spike
in the neuron. Machine G′ keeps track of the movement of spikes into and out of the neuron
and decides whither or not a particular rule is applicable at each timestep in the computation.
+s represents a single spike entering the neuron and −s represents a single spike exiting the
neuron.

Storing neural rules in the counter machine states Recall from Definition 1 that the
applicability of a rule in a neuron is dependant on a regular expression over a unary alphabet.
Let r = E/sb → s; d be a rule in neuron σi. Then there is a finite state machine G that accepts
language L(E) and thus decides if the number of spikes in σi permits the application of r
in σi at a given time in the computation. G is given in Figure 1. If gj is an accept state
in G then j > b. This ensures that there is enough spikes to execute r. We also place the
restriction on G that x > b. During a computation we may use G to decide if r is applicable
in σi by passing an s to G each time a spike enters σi. However, G may not give the correct
result if spikes leave the neuron as it does not record spikes leaving σi. Thus using G we may
construct a second machine G′ such that G′ records the movement of spikes going into and
out of the neuron. G′ is construct as follows; G′ has all the same states (including accept
states) and transitions as G along with an extra set of transitions that record spikes leaving
the neuron. This extra set of transitions are given as follows for each transition on s from a
state gi to a state gj in G there is a new transition on −s going from state gi to gj in G′ that
records the removal of a spike from G′. By recording the dynamic movement of spikes, G′ is
able to decide if the number of spikes in σi permits the application of r in σi at each timestep
during the computation. G′ is also given in Figure 1. Note that forgetting rules se → λ; 0 are
dependant on simpler regular expressions thus we will not give a machine G′ for forgetting
rules here.

Let neuron σi have the greatest number l of rules of any neuron inΠ . Thus the applicability
of rules r1, r2, · · · , rl in σi is decided by the automata G′

1, G
′
2, · · · , G

′
l. We record if a rule

may be simulated in a neuron at any given timestep during the computation by recording
the current state of its G′ automaton (Figure 1) in the states of the counter machine. There
are m neuron in Π . Thus each state in our counter machine remembers the current states of
at most ml different G′ automata in order to determine which rules are applicable in each
neuron at a given time.

Recall that in each rule of the form r = E/sb → s; d that d specifies the number of
timestep between the removal of b spikes from the neuron and the spiking of the neuron. The
number of timesteps < d remaining until a neuron will spike is recorded in the states of the
CΠ . Each state in our counter machine remembers at most m different values < d.
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Algorithm overview Next we explain the operation of CΠ by explaining how it simulates
the synchronous update of all neurons in Π at an arbitrary timestep t. The algorithm has 3
stages. A single iteration of Stage 1 identifies which applicable rule to simulate in a simulated
open neuron. Then the correct number y of simulated spikes are removed by decrementing the
counter y times (y = b or y = e in 2b of Definition 1). Stage 1 is iterated until all simulated
open neurons have had the correct number of simulated spikes removed. A single iteration of
Stage 2 identifies all the synapses leaving a firing neuron and increments every counter that
simulates an open neuron at the end of one of these synapses. Stage 2 is iterated until all firing
neurons have been simulated by incrementing the appropriate counters. Stage 3 synchronises
each neuron with the global clock and increments the output counter if necessary. If the entire
word w has not been read from the input tape the next symbol is read.

Stage 1. Identify rules to be simulated and remove spikes from neurons Recall that
d = 0 indicates a neuron is open and the value of d in each neuron is recorded in the states
of the counter machine. Thus our algorithm begins by determining which rule to simulate in
counter ci1 where i1 = min{i | d = 0 for σi} and the current state of the counter machine
encodes an accept state for one or more of the G′ automata for the rules in σi1 at time t.
If there is more than one rule applicable the counter machine non-deterministically chooses
which rule to simulate. Let r = E/sb → s; d be the rule that is to be simulated. Using the
DEC(i1) instruction, counter ci1 is decremented b times. With each decrement of ci1 the new
current state of each automaton G′

1, G
′
2, · · · , G

′
l is recorded in the counter machine’s current

state. After b decrements of ci the simulation of the removal of b spikes from neuron σi1 is
complete. Note that the value of d from rule r is recorded in the counter machine state.

There is a case not covered by the above paragraph. To see this note that in G′ in Figure 1
there is a single non-deterministic choice to be made. This choice is at state gx if a spike is
being removed (−s). Thus, if one of the automata is in such a state gx our counter machine
resolves this be decrementing the counter x times using the DEC instruction. If ci1 = 0 after
the counter has been decremented x times then the counter machine simulates state gx−1

otherwise state gy is simulated. Immediately after this the counter is incremented x− 1 times
to restore it to the correct value.

When the simulation of the removal of b spikes from neuron σi1 is complete, the above
process is repeated with counter ci2 where i2 = min{i | i2 > i1, d = 0 for σi} and the current
state of the counter machine encodes an accept state for one or more of the G′ automata for
the rules in σi2 at time t. This process is iterated until every simulated open neuron with an
applicable rule at time t has had the correct number of simulated spikes removed.

Stage 2. Simulate spikes This stage of the algorithm begins by simulating spikes traveling
along synapses of the form (i1, j) where i1 = min{i | d = 1 for σi} (if d = 1 the neuron is
firing). Let {(i1, j1), (i1, j2), · · · , (i1, jk)} be the set of synapses leaving σi where ju < ju+1 and
d 6 1 in σju at time t (if d 6 1 the neuron is open and may receive spikes). Then the following
sequence of instructions are executed INC(j1), INC(j2), · · · , INC(jk), thus incrementing any
counter (simulated neuron) that receives a simulated spike.

The above process is repeated for synapses of the form (i2, j) where i2 = min{i | i2 >
i1, d = 1 for σi}. This process is iterated until every simulated neuron ci that is open has
been incremented once for each spike σi receives at time t.

Stage 3. Reading input, decrementing d, updating output counter and halting If
the entire word w has not been read from the input tape then the next symbol is read. If this
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is the case and the symbol read is a 1 then counter c1 is incremented thus simulating a spike
being read in by the input neuron. In this stage the state of the counter machine changes
to record the fact that each k 6 d that records the number of timesteps until a currently
closed neuron will fire is decremented to k− 1. If the counter cm, which simulates the output
neuron, has spiked only once prior to the simulation of timestep t + 1 then this stage will
also increment output counter cm+1. If during the simulation of timestep t counter cm has
simulated a spike for the second time in the computation, then the counter machine enters
the halt state. When the halt state is entered the number stored in counter cm+1 is equal to
the unary output that is given by time between the first two spikes in σm.

Space analysis The input word on the binary tape of CΠ is identical to the length of the
binary sequence read in by the input neuron of Π . Counters c1 to cm uses the same space as
neurons σ1 to σm. Counter cm+1 uses the same amount of space as the unary output of the
computation of Π . Thus CΠ simulates Π in space of O(S).

Time analysis The simulation involves 3 stages. Recall that x > b. Let xr be the maximum
value for x of any G′ automaton thus xr is greater than the maximum number of spikes
deleted in a neuron.

Stage 1. In order to simulate the deletion of a single spike in the worst case the counter
will have to be decremented xr times and incremented xr − 1 times as in the special case.
This is repeated a maximum of b < xr times (where b is the number of spikes removed). Thus
a single iteration of Stage 1 take O(xr

2) time. Stage 1 is iterated a maximum of m times per
simulated timestep giving O(xr

2m) time.
Stage 2. The maximum number of synapses leaving a neuron i ism. A single spike traveling

along a neuron is simulated in one step. Stage 2 is iterated a maximum of m times per
simulated timestep giving O(m2) time.

Stage 3. Takes a small constant number of steps.
Thus a single timestep of Π is simulated by CΠ in O((xr)

2m+m2) time and T timesteps
of Π are simulated in linear time O(T (xr)

2m+ Tm2) by CΠ . ⊓⊔

The following is an immediate corollary of Theorems 1 and 2.

Corollary 1. There exist no universal spiking neural P system that simulates Turing ma-
chines with less than exponential time and space overheads.

5 A universal spiking neural P system that is both small and time

efficient

In this section we construct a universal spiking neural P system that applies exhaustive use
of rules, has only 10 neurons, and simulates any Turing machine in linear time.

Theorem 3. Let M be a single tape Turing machine with |A| symbols and |Q| states that runs
in time T . Then there is a universal spiking neural P system ΠM with exhaustive use of rules
that simulates the computation of M in time O(|A||Q|T ) and space O([2log2

⌈2|Q||A|+2|A|⌉]T )
and has only 10 neurons.

If the reader would like to get a quick idea of how our spiking neural P system with 10
neurons operates they should skip to the algorithm overview in Subsection 5.3 of the proof.
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Proof. We give a spiking neural P system ΠM that simulates an arbitrary Turing machine
M in linear time and exponential space. ΠM is given by Figure 3 and Tables 2 and 3. The
algorithm for ΠM is deterministic and is mainly concerned with the simulation of an arbitrary
transition rule. Without loss of generality we insist that M always finishes its computation
with the tape head at the leftmost end of the tape contents. Let M be any single tape Turing
machine with symbols α1, α2, . . . , α|A| and states q1, q2, . . . q|Q|, blank symbol α1, and halt
state q|Q|.

5.1 Encoding a configuration of Turing machine M

Each configuration of M is encoded as three natural numbers using a well known technique.
A configuration of M is given by the following equation

Ck = qr,qr,qr, · · ·α1α1α1 a−x · · ·a−3a−2a−1a0a1a2a3 · · ·ay α1α1α1 · · · (1)

where qr is the current state, each ai is a tape cell of M and the tape head of M , given by
an underline, is over a0. Also, tape cells a−x and ay both contain α1, and the cells between
a−x and ay include all of the cells on M ’s tape that have either been visited by the tape head
prior to configuration Ck or contain part of the input to M .

In the sequel the encoding of object p is given by 〈p〉. The tape symbols α1, α2, . . . , α|A|

of M are encoded as 〈α1〉 = 1, 〈α2〉 = 3, . . . , 〈α|A|〉 = 2|A| − 1, respectively, and the states
q1, q2, . . . , q|Q| are encoded as 〈q1〉 = 2A, 〈q2〉 = 4A, . . . , 〈q|Q|〉 = 2|Q|A, respectively. The
contents of each tape cell ai in configuration Ck is encoded as 〈ai〉 = 〈α〉 where α is a tape
symbol of M . The tape contents in Equation (1) to the left and right of the tape head are

respectively encoded as the numbers X =
x
∑

i=1

zi〈a−i〉 and Y =
y
∑

j=1

zj〈aj〉 where z = 2v and

v = ⌈log2(2|Q||A| + 2|A|)⌉. Thus the entire configuration Ck is encoded as three natural
numbers via the equation

〈Ck〉 = (X, Y, 〈qr〉+ 〈αi〉) (2)

where 〈Ck〉 is the encoding of Ck from Equation (1) and αi is the symbol being read by the
tape head in cell a0.

A transition rule qr, αi, αj , D, qu of M is executed on Ck as follows. If the current state is
qr and the tape head is reading the symbol αi in cell a0, αj the write symbol is printed to cell
a0, the tape head moves one cell to the left to a−1 if D = L or one cell to the right to a1 if
D = R, and qu becomes the new current state. A simulation of transition rule qr, αi, αj , D, qu
on the encoded configuration 〈Ck〉 from Equation (2) is given by the equation

〈Ck+1〉 =







(

X
z
− (X

z
mod z), zY + z〈αj〉, 〈qu〉+ (X

z
mod z)

)

(

zX + z〈αj〉,
Y
z
− (Y

z
mod z), 〈qu〉+ (Y

z
mod z)

)

(3)

where configuration Ck+1 results from executing a single transition rule on configuration Ck,
and (b mod c) = d where d < c, b = ec + d and b, c, d, e ∈ N. In Equation (3) the top
case is simulating a left move transition rule and the bottom case is simulating a right move
transition rule. In the top case, following the left move, the sequence to the right of the tape
head is longer by 1 tape cell, as cell a0 is added to the right sequence. Cell a0 is overwritten
with the write symbol αj and thus we compute zY + z〈αj〉 to simulate cell a0 becoming
part of the right sequence. Also, in the top case the sequence to the left of the tape head is
getting shorter by 1 tape cell thus we compute X

z
− (X

z
mod z). The rightmost cell of the

9



left sequence a−1 is the new tape head location and the tape symbol it contains is encoded as
(X
z

mod z). Thus the value (X
z

mod z) is added to the new encoded current state 〈qu〉. For
the bottom case, a right move, the sequence to the right gets shorter which is simulated by
Y
z
− (Y

z
mod z) and the sequence to the left gets longer which is simulated by zX + z〈αj〉.

The leftmost cell of the right sequence a1 is the new tape head location and the tape symbol
it contains is encoded as (Y

z
mod z).

5.2 Input to ΠM

Here we give an explanation of how the input is read into ΠM . We also give a rough outline
of how the input to ΠM is encoded in linear time.

A configuration Ck given by Equation (2) is read into ΠM as follows. All the neurons of
the system initially have no spikes with the exception of σ10 which has 31 spikes. The input
neuron σ5 receives X + 2 spikes at the first timestep t1, Y spikes at time t2, and 〈qr〉+ 〈αi〉
spikes at time t4. We explain how the system is initialised to encode an initial configuration
of M by giving the number of spikes in each neuron and the rule that is to be applied in each
neuron at time t. Thus at time t1 we have

t1 : σ5 = X + 2, s2(sz)∗/s → s; 1,

σ10 = 31, s31/s16 → λ; 0.

where on the left σj = k gives the number k of spikes in neuron σj at time ti and on the
right is the next rule that is to be applied at time ti if there is an applicable rule at that
time. Thus from Figure 3 when we apply the rule s2(sz)∗/s → s; 1 in neuron σ5 and the rule
s31/s16 → λ; 0 in neuron σ10 at time t1 we get

t2 : σ4 = X + 2, s2(sz)∗/sz → sz; 2,

σ5 = Y, s2z(sz)∗/s → s; 1,

σ6, σ7, σ8, σ9 = X + 2, s2(sz)∗/s → λ; 0,

σ10 = 15, s15/s8 → λ; 0.

t3 : σ4 = X + 2, s2(sz)∗/sz → sz; 1,

σ6 = Y, (sz)∗/s → s; 1,

σ7, σ8, σ9 = Y, (sz)∗/s → λ; 0,

σ10 = 7, s7/s4 → λ; 0.

t4 : σ1 = X,

σ2 = Y,

σ4 = 2, s2/s2 → λ; 0,

σ5 = 〈qr〉+ 〈αi〉, (sz)∗s〈qr〉+〈αi〉/s → s; 1,

σ10 = 3, s3/s2 → λ; 0.

10



t5 : σ1 = X,

σ2 = Y,

σ4, σ6 = 〈qr〉+ 〈αi〉,

σ7, σ8, σ9 = 〈qr〉+ 〈αi〉, s〈qr〉+〈αi〉/s → λ; 0,

σ10 = 1, s/s → s; log2(z) + 3.

Forgetting rules are applied to get rid of superfluous spikes (for example see neurons σ7, σ8,
and σ9 at time t2). Note that σ4 is closed at time t2 as there is a delay of 2 on the rule
(s2(sz)∗/sz → sz ; 2) to be executed in σ4. This prevents the Y spikes from entering neuron
σ4 when σ5 fires at time t2. At time t5 the spiking neural P system has X spikes in σ1, Y
spikes in σ2, and 〈qr〉+ 〈αi〉 spikes in σ4 and σ6. Thus at time t5 the spiking neural P system
encodes an initial configuration of M .

In this paragraph we will show that given an initial configuration of M it is encoded
as input to our spiking neural P system in Figure 3 in linear time. In order to do this
we must compute the three numbers that give 〈Ck〉 from Equation 2 in linear time. The
number X is computed as follows: given a sequence a−xa−x+1 . . . a−2a−1 the sequence w =
〈a−x〉0

log
2
(z)−1〈a−x+1〉0

log
2
(z)−1 . . . 〈a−2〉0

log
2
(z)−1〈a−1〉0

log
2
(z)−12 is easily computed in time

that is linear in x. The spiking neural P system Πinput in Figure 2 takes the sequence w and
converts it into the X spikes that form part of the input to our system in Figure 3. We give
a rough idea of how Πinput operates (if the reader wishes to pursue a more detailed view the
rules for Πinput are to be found in Table 4). The input neuron of Πinput receives the sequence
w as a sequence of spikes and no-spikes. On each timestep where 〈a〉 is read 〈a〉 spikes are
passed to the input neuron σ1, and on each timestep where 0 is read no spikes are passed to the
input neuron. Thus at timestep t1 neuron σ1 receives 〈a−x〉 spikes, and at timestep t2 neurons
σ2, σ3, and σ4 receive 〈a−x〉 spikes from σ1. Following timestep t2, the number of spikes in
neurons σ2, σ3, and σ4 double with each timestep. So at timestep tlog

2
(z)+1 the number of

spikes in each of the neurons σ2, σ3, and σ4 is z
2 〈a−x〉. At timestep tlog

2
(z)+1 neurons σ2,

σ3 and σ4 also receive 〈a−x+1〉 spikes from σ1 giving a total of z〈a−x〉 + 〈a−x+1〉 spikes in
each of these neurons at time tlog

2
(z)+2. Proceeding to time t2 log

2
(z)+2 neurons σ2, σ3 and

σ4 have z2〈a−x〉+ z〈a−x+1〉+ 〈a−x+2〉 spikes. This process continues until X =
x
∑

i=1

zi〈a−i〉 is

computed. The end of the process is signaled when the rightmost number in the sequence is
read. When this number (2) is read it allows the result to be passed to σ6 via σ5. Following
this σ6 sends X spikes out of the system. Note that prior to this 2 being read only forgetting
rules are executed in σ6 thus preventing any spikes from being sent out of the system. Πinput

computes X in time x log2(z) + 3. Recall from Section 5.1 that the value of z is dependant
on the number of states and symbols in M thus X is computed in time that is linear in x.
In a similar manner, the value Y is computed by Πinput in time linear in y. The number
〈qr〉+ 〈αi〉 is computed in constant time. Thus the input 〈Ck〉 for ΠM is computed in linear
time.

5.3 Algorithm overview

To help simplify the explanation, some of the rules given here differ slightly from those in
the more detailed simulation that follows this overview. The numbers from Equation (2),
encoding a Turing machine configuration, are stored in the neurons of our system as X , Y

11



σ1

input

σ2 σ3 σ4

σ5 σ6

output

Fig. 2. Spiking neural P system Πinput. Each circle is a neuron and each arrow represents
the direction spikes move along a synapse between a pair of neurons. The rules for Πinput are
to be found in Table 4.

and 〈qr〉 + 〈αi〉 spikes. Equation (3) is implemented in Figure 3 to give a spiking neural P
system ΠM that simulates the transition rules of M . The two values X and Y are stored
in neurons σ1 and σ2, respectively. If X or Y is to be multiplied the spikes that encode X
or Y are sent down through the network of neurons from either σ1 or σ2 respectively, until
they reach σ10. Note in Figure 3 that each neuron from σ7, σ8 and σ9 has incoming synapses
coming from the other two neurons in σ7, σ8 and σ9. Thus if σ7, σ8 and σ9 each contain N
spikes at time tk, and they each fire sending N spikes, then each of the neurons σ7, σ8 and
σ9 will contain 2N spikes at time tk+1. Given Y the value zY = 2vY is computed as follows:
First we calculate 2Y by firing σ7, σ8 and σ9, then 4Y by firing σ7, σ8, and σ9 again. After v
timesteps the value zY is computed. zX is computed using the same technique.

Now, we give the general idea of how the neurons compute X
z
− (X

z
mod z) and (X

z

mod z) from Equation (3) (a slightly different strategy is used in the simulation). We begin
withX spikes in σ1. The rule (s

z)∗/sz → s; 1 is applied in σ1 sending
X
z
spikes to σ4. Following

this (sz)∗s(
X
z

mod z)/sz → sz; 1 is applied in σ4 which sends X
z
− (X

z
mod z) to σ1 leaving

(X
z

mod z) spikes in σ4. The values Y
z
− (Y

z
mod z) and (Y

z
mod z) are computed in a

similar manner.

Finally, using the encoded current state 〈qr〉 and the encoded read symbol 〈αi〉 the values
z〈αj〉 and 〈qu〉 from Equation (3) are computed. Using the technique outlined in the first
paragraph of the algorithm overview the value z(〈qr〉+〈αi〉) is computed by sending 〈qr〉+〈αi〉
spikes from σ5 to σ10 in Figure 3. Then the rule sz(〈qr〉+〈αi〉)/sz(〈qr〉+〈αi〉)−〈qu〉 → sz〈αj〉; 1 is
applied in σ10 which sends z〈αj〉 spikes out to neurons σ4 and σ6. This rule uses z(〈qr〉 +
〈αi〉)−〈qu〉 spikes thus leaving 〈qu〉 spikes remaining in σ10. This completes our sketch of how
ΠM in Figure 3 computes the values in Equation (3) to simulate a transition rule. A more
detailed simulation of a transition rule follows.

12



σ1

σ4 σ5

input

σ6

σ2 σ3

output

σ8σ7 σ9

σ10

Fig. 3. Universal spiking neural P system ΠM . Each circle is a neuron and each arrow repre-
sents the direction spikes move along a synapse between a pair of neurons. The rules for ΠM

are to be found in Tables 2 and 3.

5.4 Simulation of qr, αi, αj, L, qu (top case of Equation (3))

The simulation of the transition rule begins at time tk with X spikes in σ1, Y spikes in σ2,
〈qr〉 + 〈αi〉 spikes in σ4 and σ6, and 1 spike in σ10. As before we explain the simulation by
giving the number of spikes in each neuron and the rule that is to be applied in each neuron
at time t. So at time tk we have

tk : σ1 = X,

σ2 = Y,

σ4, σ6 = 〈qr〉+ 〈αi〉, s〈qr〉+〈αi〉/s → s; 1,

σ10 = 1, s/s → s; log2(z) + 3.

Thus from Figure 3 when we apply the rule s〈qr〉+〈αi〉/s → s; 1 in neurons σ4 and σ6 at time
tk we get

tk+1 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 6,

σ2 = Y + 〈qr〉+ 〈αi〉, (sz)∗s〈qr〉+〈αi〉/s → s; 1,

σ10 = 1, s/s → s; log2(z) + 2.
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tk+2 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 5,

σ3 = Y + 〈qr〉+ 〈αi〉,

if 〈qr〉 = 〈q|Q|〉 (sz)∗s〈qr〉+〈αi〉/sz → sz; 1,

if 〈qr〉 6= 〈q|Q|〉 (sz)∗s〈qr〉+〈αi〉/s → λ; 0,

σ5 = Y + 〈qr〉+ 〈αi〉, (sz)∗s〈qr〉+〈αi〉/s → s; 1,

σ6 = Y + 〈qr〉+ 〈αi〉, sz(sz)∗s〈qr〉+〈αi〉/s → λ; 0,

σ10 = 1, s/s → s; log2(z) + 1.

tk+3 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 4,

σ4, σ6 = Y + 〈qr〉+ 〈αi〉, sz(sz)∗s〈qr〉+〈αi〉/s → λ; 0,

σ7, σ8, σ9 = Y + 〈qr〉+ 〈αi〉, sz(sz)∗s〈qr〉+〈αi〉/s → s; 1,

σ10 = 1, s/s → s; log2(z).

In timestep tk+2 above σ3 the output neuron fires if and only if the encoded current state
encodes the halt state q|Q|. Recall that when M halts the entire tape contents are to the right
of the tape head, thus only Y the encoding of the right sequence is sent out of the system.
Thus the unary output is a number of spikes that encodes the tape contents of M .

Note that at timestep tk+3 the neuron σ7 receives Y + 〈qr〉+ 〈αi〉 spikes from each of the
two neurons σ8 and σ9. Thus at time tk+4 neuron σ7 contains 2(Y + 〈qr〉+ 〈αi〉) spikes. In a
similar manner σ8 and σ9 also receive 2(Y + 〈qr〉+ 〈αi〉) spikes at timestep tk+3. The number
of spikes in each of the neurons σ7, σ8 and σ9 doubles at each timestep between tk+3 and
tk+log

2
(z)+2.

tk+4 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 3,

σ7, σ8, σ9 = 2(Y + 〈qr〉+ 〈αi〉), sz(sz)∗s2(〈qr〉+〈αi〉)/s → s; 1,

σ10 = 1, s/s → s; log2(z)− 1.

tk+5 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 2,

σ7, σ8, σ9 = 4(Y + 〈qr〉+ 〈αi〉), sz(sz)∗s4(〈qr〉+〈αi〉)/s → s; 1,

σ10 = 1, s/s → s; log2(z)− 2.

tk+6 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 1,

σ7, σ8, σ9 = 8(Y + 〈qr〉+ 〈αi〉), sz(sz)∗s8(〈qr〉+〈αi〉)/s → s; 1,

σ10 = 1, s/s → s; log2(z)− 3.

The number of spikes in neurons σ7, σ8, and σ9 continues to double until timestep tk+log
2
(z)+2.

When neurons σ7 and σ9 fire at timestep tk+log
2
(z)+2 they send z

2 (Y + 〈qr〉+ 〈αi〉) spikes each
to neuron σ10 which has opened at time tk+log

2
(z)+2 (for the first time in the transition rule
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simulation). Thus at time tk+log
2
(z)+3 neuron σ10 contains z(Y + 〈qr〉+ 〈αi〉) spikes.

tk+log
2
(z)+2 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 5,

σ7, σ8, σ9 =
z

2
(Y + 〈qr〉+ 〈αi〉), sz(sz)∗s

z
2
(〈qr〉+〈αi〉)/s → s; 1,

σ10 = 1, s/s → s; 1.

tk+log
2
(z)+3 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 4,

σ4, σ6 = 1, s/s → λ; 0,

σ7, σ8, σ9 = z(Y + 〈qr〉+ 〈αi〉), (sz)∗/s → λ; 0,

σ10 = z(Y + 〈qr〉+ 〈αi〉), (sz
2

)∗sz(〈qr〉+〈αi〉)/sz
2

→ sz
2

; 1.

Note that (zY mod z2) = 0 and also that z(〈qr〉 + 〈αi〉) < z2. Thus in neuron σ10 at time

tk+log
2
(z)+3 the rule (sz

2

)∗sz(〈qr〉+〈αi〉)/sz
2

→ sz
2

; 1 separates the encoding of the right side

of the tape szY and the encoding of the current state and read symbol sz(〈qr〉+〈αi〉). To see
this note the number of spikes in neurons σ6 and σ10 at time tk+log

2
(z)+4.

The rule sz(〈qr〉+〈αi〉)/sz(〈qr〉+〈αi〉)−〈qu〉−1 → sz〈αj〉; 1, applied in σ10 at timestep tk+log
2
(z)+4,

computes the new encoded current state 〈qu〉 and the encoded write symbol z〈αj〉. To see
this note the number of spikes in neurons σ6 and σ10 at time tk+log

2
(z)+5. Note that neuron

σ1 is preparing to execute the rule s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 1 at timestep tk+log
2
(z)+6, and

so at timesteps tk+log
2
(z)+4 and tk+log

2
(z)+5 neuron σ1 remains closed. Thus the spikes sent

out from σ4 at these times do not enter σ1.

tk+log
2
(z)+4 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 3,

σ4, σ6 = zY, (sz)∗/s → s; 1,

σ10 = z(〈qr〉+ 〈αi〉), sz(〈qr〉+〈αi〉)/sz(〈qr〉+〈αi〉)−〈qu〉−1 → sz〈αj〉; 1.

tk+log
2
(z)+5 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 2,

σ2 = zY,

σ4, σ6 = z〈αj〉, (sz)∗/s → s; 1,

σ10 = 〈qu〉+ 1, s〈qu〉+1/s〈qu〉 → s〈qu〉; 4.

tk+log
2
(z)+6 : σ1 = X + 〈qr〉+ 〈αi〉, s2z(sz)∗s〈qr〉+〈αi〉/sz → s; 1,

σ2 = zY + z〈αj〉,

σ10 = 〈qu〉+ 1, s〈qu〉+1/s〈qu〉 → s〈qu〉; 3.

At time tk+log
2
(z)+7 in neuron σ4 the rule sz(sz)∗s(

X
z

mod z)/sz → sz; 1 is applied sending
X
z
−(X

z
mod z) spikes to σ1 and leaving (X

z
mod z) spikes in σ4. At the same time in neuron
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σ5 the rule sz(sz)∗s(
X
z

mod z)/sz → λ; 0 is applied leaving only (X
z

mod z) spikes in σ5.

tk+log
2
(z)+7 : σ1 = 〈qr〉+ 〈αi〉, s〈qr〉+〈αi〉/s → λ; 0,

σ2 = zY + z〈αj〉,

σ4 =
X

z
, sz(sz)∗s(

X
z

mod z)/sz → sz; 1,

σ5 =
X

z
, sz(sz)∗s(

X
z

mod z)/sz → λ; 0,

σ10 = 〈qu〉+ 1, s〈qu〉+1/s〈qu〉 → s〈qu〉; 2.

tk+log
2
(z)+8 : σ1 =

X

z
− (

X

z
mod z),

σ2 = zY + z〈αj〉,

σ4 =
X

z
mod z, s(

X
z

mod z)/s → λ; 0,

σ5 =
X

z
mod z, s(

X
z

mod z)/s → s; 1,

σ10 = 〈qu〉+ 1, s〈qu〉+1/s〈qu〉 → s〈qu〉; 1.

tk+log
2
(z)+9 : σ1 =

X

z
− (

X

z
mod z),

σ2 = zY + z〈αj〉,

σ4 = 〈qu〉+ (
X

z
mod z), s〈qu〉+(X

z
mod z)/s → s; 1,

σ6 = 〈qu〉+ (
X

z
mod z), s〈qu〉+(X

z
mod z)/s → s; 1,

σ7, σ8, σ9 =
X

z
mod z, s(

X
z

mod z)/s(
X
z

mod z) → λ; 0,

σ10 = 1, s/s → s; log2(z) + 3.

The simulation of the left moving transition rule is now complete. Note that the number of
spikes in σ1, σ2, σ4, and σ6 at timestep tk+log

2
(z)+9 are the values given by the top case of

Equation (3) and encode the configuration after the left move transition rule.
The case of when the tape head moves onto a part of the tape that is to the left of a−x+1

in Equation (1) is not covered by the simulation. For example when the tape head is over cell
a−x+1, then X = z (recall a−x contains α1). If the tape head moves to the left then from the
top case of Equation (3) the new value for the left sequence is X = 0. Therefore we increase
the length of X to simulate the infinite blank symbols (α1 symbols) to the left as follows. The
rule sz+〈qr〉+〈αi〉/sz → sz ; 1 is applied in σ1 at time tk+log

2
(z)+6. Then at time tk+log

2
(z)+7

the rule (sz)∗/s → s; 1 is applied in σ4 and the rule sz/sz−1 → λ; 0 is applied in σ5. Thus at
time tk+log

2
(z)+8 there are z spikes in σ1 which simulates another α1 symbol to the left, and

there is 1 spike in σ5 to simulate the current read symbol α1.
We have shown how to simulate an arbitrary left moving transition rule of M . Right

moving transition rules are also simulated in log2(z)+9 timesteps in a manner similar to that of
left moving transition rules. Thus a single transition rule ofM is simulated byΠM in log2(z)+
9 timesteps. Recall from Section 5.1 z = 2log2

⌈2|Q||A|+2|A|⌉ thus the entire computation of M

16



is simulated in O(|A||Q|T ) time. From Section 5.1 M is simulated in O([2log2
⌈2|Q||A|+2|A|⌉]T )

space. ⊓⊔

While the small universal spiking neural P system in Figure 3 simulates Turing machines with
a linear time overhead it requires an exponential space overhead. This requirement may be
shown by proving it is simulated by a counter machine using the same space. However, it is
not unreasonable to expect efficiency from simple universal systems as many of the simplest
computationally universal models have polynomial time and space overheads [13,14,17].

It was mentioned in Section 2 that we generalised the previous definition of spiking neural
P systems with exhaustive use of rules to allow the input neuron to receive an arbitrary
number of spikes in a single timestep. If the synapses of the system can transmit an arbitrary
number of spikes in a single timestep, then it does not seem unreasonable to allow an arbitrary
number of spikes to enter the input neuron in a single timestep. If the input is restricted to
a constant number of spikes, as is the case with earlier spiking neural P systems, then the
system will remain exponentially slow due to the time required to read the unary input into
the system.

References

1. H. Chen, M. Ionescu, and T. Ishdorj. On the efficiency of spiking neural P systems. In M.A.
Gutiérrez-Naranjo et al., editor, Proceedings of Fourth Brainstorming Week on Membrane Com-
puting, pages 195–206, Sevilla, Feb. 2006.

2. P. C. Fischer, A. Meyer, and A. Rosenberg. Counter machines and counter languages. Mathe-
matical Systems Theory, 2(3):265–283, 1968.
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neuron rules

σ1 (sz)∗s〈qr〉+〈αi〉/s → s; 1 if D=R

s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 6 if D=L

sz+〈qr〉+〈αi〉/sz → sz; log2(z) + 6 if D=L

s〈qr〉+〈αi〉/s → λ; 0 if D=L

σ2 (sz)∗s〈qr〉+〈αi〉/s → s; 1 if D=L or 〈qr〉 = 〈q|Q|〉

s2z(sz)∗s〈qr〉+〈αi〉/sz → s; log2(z) + 6 if D=R

sz+〈qr〉+〈αi〉/sz → sz; log2(z) + 6 if D=R

s〈qr〉+〈αi〉/s → λ; 0 if D=R

σ3 (sz)∗s〈qr〉+〈αi〉/sz → sz; 1, if 〈qr〉 = 〈q|Q|〉

(sz)∗s〈qr〉+〈αi〉/s → λ; 0, if 〈qr〉 6= 〈q|Q|〉

(sz)∗s(
X
z

mod z)/s → λ; 0

sz/s → λ; 0

σ4 s2(sz)∗/sz → sz; 2

(sz)∗/s → s; 1

s2/s2 → λ; 0

s〈qr〉+〈αi〉/s → s; 1

sz(sz)∗s〈qr〉+〈αi〉/s → λ; 0

s/s → λ; 0

sz(sz)∗s(
X
z

mod z)/sz → sz; 1

s(
X
z

mod z)/s → λ; 0

σ5 s2(sz)∗/s → s; 1

s2z(sz)∗/s → s; 1

(sz)∗s〈qr〉+〈αi〉/s → s; 1

sz(sz)∗s(
X
z

mod z)/sz → λ; 0

sz/sz−1 → λ; 0

s(
X
z

mod z)/s → s; 1

σ6 s2(sz)∗/s → λ; 0

(sz)∗/s → s; 1

s〈qr〉+〈αi〉/s → s; 1

sz(sz)∗s〈qr〉+〈αi〉/s → λ; 0

s/s → λ; 0

sz(sz)∗s(
Y
z

mod z)/sz → sz; 1

s(
Y
z

mod z)/s → λ; 0

Table 2. This table gives the rules in each of the neurons σ1 to σ6 of ΠM . In the rules
above qr is the current state, αi is the read symbol, αj is the write symbol, D is the move
direction, and qu is the next state of some transition rule qr, αi, αj , D, qu of M . Note that (X

z

mod z)), (Y
z

mod z)) ∈ 〈A〉 the set of encodings for the symbols of M (see Section 5.1).
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neuron rules

σ7, σ8, σ9 s2(sz)∗/s → λ; 0

(sz)∗/s → λ; 0

s〈qr〉+〈αi〉/s → λ; 0

sz(sz)∗s
z
m

(〈qr〉+〈αi〉)/s → s; 1 for all m = 2k, 2 6 m 6 z and k ∈ N

s(
X
z

mod z)/s(
X
z

mod z) → λ; 0

σ10 s31/s16 → λ; 0

s15/s8 → λ; 0

s7/s4 → λ; 0

s3/s2 → λ; 0

s/s → s; log2(z) + 3

(sz
2

)∗sz(〈qr〉+〈αi〉)/sz
2

→ sz
2

; 1

sz(〈qr〉+〈αi〉)/sz(〈qr〉+〈αi〉)−〈qu〉−1 → sz〈αj〉; 1

s〈qu〉+1/s〈qu〉 → s〈qu〉; 4

Table 3. This table gives the rules in each of the neurons σ7 to σ10 of ΠM . See Table 2 for
some further explanation.

neuron rules

σ1 s∗/s → s; 1

σ2, σ3, σ4 s∗/s → s; 1

σ5 (sz)∗s〈α〉/s → s; log2(z)

(sz)∗s2/s → s; 1

σ6 (sz)∗s〈a〉/s → λ; 0

(sz)∗s2/sz → sz; 1

Table 4. This table gives the rules in each of the neurons of Πinput.
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