
Design of a Biomolecular Device that Executes Process

Algebra

Urmi Majumder and John H. Reif

Department of Computer Science,

Duke University, Durham, NC, USA.

Tel: 1-919-660-6568, Fax: 1-919-660-6519

{urmim, reif}@cs.duke.edu

Abstract: Process algebras are widely used for defining the formal semantics of con-

current communicating processes. This paper considers stochastic π-calculus which is

a particularly expressive kind of process algebra providing a specification of probabil-

ities of process behavior such as stochastic delays, communication and branching, as

well as rates of execution. In this paper, we implement stochastic π-calculus at the

molecular scale, providing a design for a DNA-based biomolecular device that executes

the stochastic π-calculus. Designing this device is challenging due to the requirement

that a specific pair of processes must be able to communicate repeatedly; this appears

to rule out the use of many of the usual classes of DNA computation (e.g., tiling self-

assembly or hybridization chain reactions) that allow computational rule molecules

to float freely in solution within a test tube. Our design of the molecular stochastic

π-calculus system makes use of a modified form of Whiplash-PCR (WPCR) machines.

In our machine which we call π-WPCR machine, we connect (via a tethering DNA

nanostructure) a number of DNA strands, each of which corresponds to a π-WPCR

Urmi Majumder and John H. Reif

machines. This collection of π-WPCR machines is used to execute distinct concurrent

processes, each with its own distinct program. To implement process communication

protocols, our modifications to the original design of WPCR machines include the

incorporation of additional secondary structure in the single strand (stem-loop) as

well as multiple-temperature thermal cycling. The enforced locality of the collection

of π-WPCR machines insures that the same pair (or any subset of the entire collec-

tion) of processes be able to repeatedly communicate with each other. Additionally,

our design of the devices include implementation of sequential execution of multiple

process and limited process branching through use of restriction enzymes.

Keywords: autonomous molecular computation, finite state automata, DNA self-

assembly, strand displacement, DNA polymerization, programmable molecular ma-

chines, polymerase chain reaction, autocatalytic biomolecular computers, state tran-

sition, π calculus, stochastic π calculus, process algebra, Concurrency, Distributed

system

Abbreviations: PCR: Polymerase Chain Reaction; DNA: DeoxyriboNucleic Acid,

ds-DNA: double stranded DeoxyriboNucleic Acid; WPCR: Whiplash Polymerase

Chain Reaction; π-WPCR: π-Whiplash Polymerase Chain Reaction

1 Motivation

1.1 Process Algebra

Process algebra has been popularly used to design concurrent, distributed and mo-

bile systems (Milner, 1999). Process algebra has also traditionally been seen as a

paradigm for practical concurrent languages and as a specification language for soft-

ware and hardware systems that are encoded in more pragmatic ways. The main

2

A Biomolecular Device that Executes Process Algebra

idea in process algebra is to model processes as communicating systems with decen-

tralized control. In other words, in this model of computation, concurrent processes

can be specified to execute distinct programs as well as communicate repeatedly with

another process or set of processes. Process communication can be enforced to be

synchronous via handshake communication protocols that require acknowledgment

of message reception. Also, processes can replicate and generate new processes. This

paper considers stochastic π-calculus, a particularly expressive form of process algebra

developed by Cardelli (Cardelli, 2008) that provides a clear specification of proba-

bilities of process behavior such as stochastic delays, branching, sequentialization of

processes, communication as well as rates of execution.

Stochastic π-calculus has been shown to be particularly useful for modeling bio-

logical systems. Here, biological components are modeled as concurrent processes and

their interaction is treated as process communication. A precise connection between

process algebra and chemical reactions was established by Cardelli (Cardelli, 2008).

These modeling techniques provide researchers with better models and simulations

of living matter. Consequently, they provide a better understanding of how nature

works and, sometimes, a tool to predict unknown behavior of living systems.

Biology already has several sophisticated example of inter-cellular communica-

tion. For instance, bacteria use such communication for gene regulation (Bassler,

1999). Yet another fascinating example is the interaction that takes place during the

developmental transition of fertilization which initiates a rapid series of changes that

restructures the egg into the zygote. There are several signaling agents that mediate

several of these rapid modifications in cell structure. Studies indicate that elements

from several of the key signaling pathways, co-localize on molecular scaffolds in the

egg and provide a means for these pathways to interact (Koeneman and Capco, 2005).

3

Urmi Majumder and John H. Reif

1.2 The Need for a Molecular Process Algebraic System

The central question considered in this paper is how to implement process algebraic

systems with biomolecules. This direction of research would allow us to use biological

matter as flexible information and material processing devices. The most important

feature of process algebra is that this model allows computation to proceed via in-

terprocess communication. At the molecular scale, adding the capability to interact

with each other will allow us to build far more complex and powerful molecular com-

puting devices than those that have been proposed to date. In fact, communicating

nano machines can spur the creation of entirely new applications such as nano-scale

distributed computing systems or nano-scale sensing systems.

1.3 The Challenges of a Molecular Implementation of Process Al-

gebra

One of the primary challenges of molecular process algebra is local execution of distinct

programs meaning parallel execution of such programs in several machines without in-

terference. For this, we need to design a biomolecular device, where multiple copies of

the same or distinct devices can simultaneously compute without interfering with each

other. These needs can be satisfied by a number of known biomolecular computing

device designs including tiling assemblies (Winfree, 1998a), Whiplash PCR machines

(Sakamoto et al., 1999) and hybridization chain reactions (Dirks and Pierce, 2004).

One considerably more challenging design requirement is the requirement for

handshaking communication between two (or more) processes, where one of the in-

teracting processes might send data to the other and wait to resume its own program

execution until it receives acknowledgment from the other process. To implement

synchronous process communication at the molecular scale, carrier molecules going

from process A to process B are insufficient; rather process B must be able to send

4

A Biomolecular Device that Executes Process Algebra

an acknowledgment back to A that allows A to resume its execution.

1.4 Need for Locality in a Molecular Process Algebraic System

Designing a biomolecular device to execute process algebra is made particularly chal-

lenging due to the requirement that communication among the same processes might

be repeated any number of times (for example, a pair of processes repeatedly commu-

nicate). This requirement appears to rule out the use of many of the usual classes of

DNA computation (e.g., tiling self-assembly (Winfree, 1998a) or hybridization chain

reactions (Dirks and Pierce, 2004)) that allow computational rule molecules to float

freely in solution within a test tube, making it difficult to insure, for example, that the

exactly same two processes communicate repeatedly. In other words, in these mod-

els, computation proceeds globally by the assembly of pre-programmed components.

These components need to first locate each other before computation can proceed.

Furthermore, communication in these computational models can only be implement-

ing by the emission and capture of carrier molecules. Synchronous communication,

on the other hand, requires that the processes be co-located in some way (we use

DNA nanostructure tethering for this).

1.5 Implementation of a Molecular Process Algebraic System via

Modified Whiplash PCR Machines

Whiplash PCR (WPCR) machines (Sakamoto et al., 1999) appear to be an ideal

candidate for a molecular implementation of process algebra. Recall that WPCR

machines are DNA devices composed of a single strand of DNA containing a distinct

program (via segments of the DNA that encode computational rewrite rules) and a

current state (via a short segment at the 3
′

end of the strand). Its computational

steps are executed by repeated rounds of thermal-cycling that comprises of cooling

(that facilitates hybridization of the 3
′

end with an interior segment that encodes

5

Urmi Majumder and John H. Reif

a computational rule), polymerase extension (to copy the new current state of the

machine from the rewrite rule) and heating (to release the extended the 3
′

end en-

coding the new current state). Hence, these machines can hold both programs and

their inputs in close proximity, allowing parallel computation. WPCR machines can

also be connected (via a tethering DNA nanostructure) as shown in Figure 3(Left).

This particular set up would allow the same two copies of process P1 and process P2

to communicate not only the first time but as many times needed thereafter. Conse-

quently, a collection of WPCR machines can be used to execute distinct concurrent

processes, each with their own distinct program that can communicate when required.

1.6 Engineering DNA for biomolecular computation

Before we discuss how DNA can be the building block of a process algebraic machine,

we must introduce some of the primary methods by which DNA can be engineered

and used in the correct execution of a WPCR machine. The three primary techniques

are hybridization, strand displacement and polymerization.

DNA Hybridization is the process of combining two complementary, single-stranded

DNA molecules into double-stranded molecule. DNA (and RNA) can bind to their

complements under normal conditions or by when the strand mixture is cooled. Sim-

ple hybridization has been used to make a large variety of complex structures such as

tiles and lattices (Mathieu et al., 2005; Shih et al., 2004; Goodman et al., 2004). The

opposite of hybridization is dehybridization. The latter can be achieved by heating

the solution mixture.

Polymerized Chain Reaction (PCR) is a common method for amplifying a target

DNA molecule, which can be a single gene or merely part of it [Figure 1(Right)].

Through PCR, a small amount of DNA can be amplified several times and the rich-

ness and the fidelity of the product facilitates many applications, such as detecting

hereditary diseases, identifying bacterial species, cloning genes, DNA computing and

6

A Biomolecular Device that Executes Process Algebra

A A C A A A T T G G A

T T G T T

T T G T T T A A C C T

A A C A A A T T G G A

T T G T T

T T G T T
T

A
A

C C T

A A C A A A T T G G A

T T G T
T

T

T

G

T

T

T

A A C C T

T T G T T T A A C C T

A A C A A A T T G G A

T T G T T

strand displacement

DNA Polymerization

A C C T

A A C A A A T T G G A
5’ 3’

5’3’

Polymerase

A Nucleotide

A C C T

A A C A A A T T G G A
5’ 3’

5’3’

Template

Primer

A C C T

A A C A A A T T G G A

A

5’ 3’

5’3’

A C C T

A A C A A A T T G G A

A

5’ 3’

5’3’

A C C T

A A C A A A T T G G A

T

5’ 3’

5’3’ T

TT

T T G T T T A A C C T

A A C A A A T T G G A

A C GT

5’ 3’

5’3’

A C C T

A A C A A A T T G G A

TT

5’ 3’

5’3’

Figure 1: (Left) Branch Migration, (Right)Extension of primer strand bound to the
template by DNA polymerase.

many others. A recent paper used DNA polymerase φ29 to power a nano-transport

device (Sahu et al., 2008).

Branch migration or strand displacement is the process by which a single, invading

DNA strand extends its partial pairing with its complementary strand as it displaces

a resident strand from a DNA duplex [Figure 1(Left)].

Restriction is the process of recognizing specific bases in DNA sequences and cut-

ting the DNA at that site by a specific type of enzyme from bacteria called restriction

enzyme. In other words, such an enzyme acts as a pair of biochemical scissors.

7

Urmi Majumder and John H. Reif

1.7 Previous Work on Molecular Computers Capable of Executing

Programs Locally

The concept of WPCR machines was introduced by Hagiya et al. (Sakamoto et al.,

1999) in 1997. Winfree was the first to coin the name of Whiplash PCR machines

for these biomolecular state transitioning systems and adopt it to a wider range

of problems (Winfree, 1998b). Most of the work in the field of WPCR machines is

devoted to addressing the problem of back-hybridization and, consequently, improving

its success rate (Rose et al., 2001, 2006). Another shortcoming of the machine is that

it is not isothermal and auto-catalytic which limits its range of applications. We

addressed that issue in an earlier paper (Reif and Majumder, 2008) that provided

an isothermal design, but this involved a rather complicated construction. Hence, in

this paper, for simplicity, we adapt the design methodology of the original WPCR

machines (Sakamoto et al., 1999) for the molecular implementation of process algebra.

Moreover, we introduce additional capabilities in the original WPCR machine so that

we can implement the basic primitives of process algebra at the nano-scale.

1.8 Biochemical Techniques used in the Molecular Implementation

of Process Algebra

The various biochemical techniques that allow us to implement the various primitives

of process algebra are hybridization, polymerization and restriction (Berg et al.,

2002). Additionally, we modify the original WPCR machine to support the process

communication construct. These modifications include incorporation of additional

secondary structure such as a stem-loop in each computational rewrite rule as well as

in the current state of the machine and use of a multi-temperature thermal cycle that

starts in a very high temperature T0 where all the DNA strands (each representing a

process) are denatured, followed by a lower temperature T1 (T0 > T1) that facilitates

hybridization, polymerization and restriction and back to the higher temperature T0.

8

A Biomolecular Device that Executes Process Algebra

Intermittently, the temperature is cooled to T2 (T1 > T2) so that secondary structure

such as stem-loop formation is facilitated. The stem loops allow for successful process

communication (discussed in Section 6). The selective hybridization at T1 and T2 can

be controlled through careful design of the secondary structure (e.g. hybridization

length and sequence composition). In our design, polymerization uses a non-strand-

displacing polymerase (such as Taq). The use of a non-strand-displacing enzyme is

the key to a successful process communication. Restriction used for implementing

replication and sequential composition utilizes two types of enzymes: nicking enzymes

that creates only one nick in a double-stranded DNA (used to create an output strand

from the first process and this in turn, can initiate the second process in sequential

composition) and restriction enzymes that creates nicks in both the strands in a

double stranded region (used to create child processes from a parent process).

1.9 Contributions

In this paper we present a molecular design of process algebra using design techniques

similar to that of the original WPCR machines. We implement the basic primitives of

process algebra in this new biomolecular device (which we call π-Whiplash PCR (π-

WPCR)) machine including stochastic delay operation, parallel and sequential com-

position, replication and process interaction. We call the new machine π-WPCR

machine since we implement the stochastic π-calculus version of process algebra at

the molecular scale.

2 Process Algebra Overview

Till date several variants of process algebra have been proposed. The variant of

process algebra that we use in this paper is called stochastic π calculus (Phillips and

Cardelli, 2004; Milner, 1999; Phillips et al., 2004). π calculus can describe concurrent

9

Urmi Majumder and John H. Reif

processes whose configuration may change during interaction. Stochastic π-calculus

is a type of π calculus where stochastic rates are imposed on the processes.

2.1 The Basic Operators in Process Algebra

The main constructs of stochastic π-calculus that are used are in this paper are: (1)

Parallel Composition, (also known as concurrency), defined as two processes P and

Q executing concurrently and denoted as P |Q, (2) Process interactions (also known

as communication), defined as two processes interacting through channels, shared by

the interacting processes. The possible process interactions π are (i) delays at a rate

r, (ii) input on channel a at a rate r (denoted as ?a(r)) and (iii) output on channel a

at a rate r (denoted as !a(r)). Stochastic delay operation is the event of reordering a

process at a rate r (denoted as τ(r)) while in complementary synchronous interactions

processes can interact by performing complementary input and output on a common

channel at a rate r (denoted by a(r)), (3) Sequential composition, defined as ordering

of processes and denoted by a(x).P . This means that P will wait for an input on

channel a and P is only activated when data is received through a and substituted for

identifier x, (4) Summation, defined as a choice between zero or more output a < y >

or input a(x) actions that a process can perform and denoted as Σ, (5) Nil process,

defined as a process whose execution is complete and has stopped and denoted as 0

and finally (6) Replication, defined as a process which can always create a new copy

of P and denoted as !P . In other words, replication is a compact representation of

the parallel composition of a countably infinite number of processes i.e. !P = P |!P .

Algebraic laws for the basic operators (such as parallel composition of processes,

specifying which channel to use for sending and receiving data, sequentialization of

interactions and process replication) allow process expressions to be manipulated.

The most important rule, however, is the reduction rule: x〈y〉.P |x(v).Q → P |Qy/v.

This rule contains the computational essence of process algebra and can be expressed

10

A Biomolecular Device that Executes Process Algebra

solely in terms of parallel composition, sequential composition, input and output.

The equation can be interpreted in the following manner: the process x < y > .P

sends a message y along channel x and then behaves like process P . Conversely,

x(v).Q is a process that waits for a value to be received through channel x, binding

the variable v to the received value (in this case y), and then behaves like Q{y/v},

where Q{y/v} indicates the substitution of the variable v by the value y in the body

of Q. In other words, the process x(v).Q receives this message on the same channel

as x〈y〉.P sends its out. Once the message has been sent, x < y > .P becomes P

while x(v).Q becomes Qy/v.

We explain the operators discussed above through an example. Suppose we want

to model a remote procedure call (RPC) between a server and a client using pro-

cess algebra. Consider the following function, Cube, running on the server. Cube

returns the integer which is cube of its argument, x: int Cube(intx){return x3; }.

To represent the interaction using process algebra, we first model the Cube function

in the server as follows: !Cube(a, x).a〈x3〉. This expression can be interpreted in the

following manner: Channel Cube accepts two inputs: the name of the channel a and

the argument x for the Cube function. This argument is instantiated with an integer

on a client call. After the call, the process will send back the result of calculating

the cube of its argument, x, on the channel a. The ! operator at the beginning of the

expression means that the server function can make multiple copies of itself on each

client interaction.

We can model a client call to the Cube server (for instance, say we call Cube

with an input of 3 as y := Cube(3) in this manner: (va)(Cube〈a, 3〉|a(y)). This

expression essentially means that the client sends on the Cube both the channel a

and the argument for the function 3 and simultaneously receives on the channel a the

result y. Note that v represents the bind variable which guarantees that a private

channel of communication is set up for each client interaction with the Cube server.

11

Urmi Majumder and John H. Reif

Putting the client and server processes together we have

!Cube(a, x).a〈x3〉|(va)(Cube〈a, 3〉|a(y))

.

2.2 Process Algebra as Interacting Automata

In this paper, we use the interacting stochastic automata version of stochastic π

calculus. In other words, in this model of computation, each automata represents a

process. These processes do not split up dynamically into more processes.1 These

automata can be either executing a stochastic delay transition or multiple automata

can be interacting. For instance, an automaton in state A can move to state A
′

at a

specified rate r by a spontaneous delay transition τ@r. There can also be two other

kinds of automata: the ones in state A can perform an input ?a on a channel a,

and move to state A
′
, provided that each can coordinate its transition with another

automaton in state B that at the same time performs an output !a on the same

channel a, to move to state B
′
. Each channel a has an associated rate r represented

as a@r. We could even restrict our operations to only one kind of automata. For

instance, it could be the case that an automaton in state A can choose to either

perform an input ?a and move to A
′

or an output !a and move to A
′′
. With two such

automata, interaction is possible since one automaton can move to state A
′

while the

other can move to state A
′′

after the interaction.

1In this paper, we present a molecular design of “restricted” replication meaning a process cannot
create new processes that are identical copies of the original one.

12

A Biomolecular Device that Executes Process Algebra

3 A Whiplash PCR Machine Representation of Process

Algebra

3.1 Original Whiplash PCR machine

Before describing how to encode a process algebraic machine using WPCR, for com-

pleteness purposes, we will first describe how the original machine works. In the

original WPCR machine, the transition table is encoded on a single stranded DNA,

W as S − a1 − b1 − S − a2 − b2 − . . .− S − an − bn where each pair ai − bi represents

the transition from state ai to state bi. Here and in the rest of the paper, any symbol

s encodes for a DNA sequence and s∗ encodes for its complementary sequence. The

stopper sequence S isolates one state transition rule from another. The 3
′

end of

the same strand encodes the current state. For the description of the rest of the

protocol, refer to Figure 4. We represent the stopper sequence S as a black square in

the figure. Without loss of generality (w.l.o.g.), let us assume that the current state

of the machine is a∗i . Following the transition table, ai can transition to bi. Once a∗i

hybridizes with ai (Figure 4: State S1) in W , polymerase extends the 3
′

end of W

to copy bi (Figure 4: State S3). The polymerase halts after transcribing the bases

complementary to bi because of S which is generally implemented by emitting one of

the bases in the solution. Using appropriate thermal cycling, W is then denatured.

Consequently, it loses the hairpin structure (Figure 4: State S4). Once the mixture

is cooled, the 3
′

end of newly extended W (now bearing b∗i as the current state) hy-

bridizes with another section of itself which encodes the appropriate transition rule

(in this rule aj = bi is the current state and bj is the next state) (Figure 4: State

S5). Although input is not part of the description of the WPCR machine, it has been

suggested that input be provided as part of the initial state and the encoding of the

transition table updated to include inputs in the manner S − ai − Ii − bi for the ith

13

Urmi Majumder and John H. Reif
ai bi ai+1bi+1ai-1bi-1 anbna1b1

akbk

ai
*

S1

ai
*

S2
aibi ai+1bi+1ai-1bi-1 anbna1b1

akbk

ai
*bi

*
S3

ai bi ai+1bi+1ai-1bi-1 anbna1b1
akbk

a
i *b

i *

S4
ai bi ai+1bi+1ai-1bi-1 anbna1b1

akbk

aj
*=bi

* S5
ai bi ai+1bi+1ai-1bi-1 anbna1b1

akbk

S2

COOL

HEAT

Figure 2: Schematic of the protocol for the original Whiplash PCR machine: (S1)
Initial state of the WPCR strand W with current state being a∗i . (S2) Polymerase
binds to the 3

′
end of W (bearing the current state). (S3) Next state b∗i is copied at

the head of W by primer extension. (S4) The mixture is heated so that W loses its
hairpin structure. (S5) The solution is cooled so that the head of W can bind to the
new current state b∗i = a∗j encoded at the 3

′
end of the strand and the whole state

transition repeats again beginning with State S2.

transition rule.

3.2 Process Representation

The π-WPCR machine is encoded as a11a12xa
∗
12a13b1S . . . an1an2xa

∗
n2an3bnS (in a

single strand) where each rule Ri is encoded as ai1ai2xa
∗
i2ai3bi (with ai1ai2xa

∗
i2ai3

as the current state and bi as the next state) and the current state of the machine

encoded at the 3
′

end of the strand as a∗i1a
∗
i2x

∗ai2a
∗
i3 (let us assume that the current

state of the machine corresponds to the current state of rule Ri). In the current state

encoded as ai1ai2xa
∗
i2ai3 in each rule Ri, the most important segment is the encoding

of a stem-loop ai2xa
∗
i2 (reason is explained in detail in Section 3.3). The encoding

ai3 is used for information exchange in case of process interaction. Furthermore,

the next state bi is also the current state of a different rule Rj and is represented as

bi = aj1aj2xa
∗
j2aj3. We use a shorthand notation for clarity in the figures. A compact

14

A Biomolecular Device that Executes Process Algebra
ai1 ai2 x ai2* ai3 bi

ai1* ai3*
ai2* ai2 x*

Current State of rule Ri Next State
of rule Ri

Other Rules
in Transition

Table

O
ther R

ules

in Transition

Table

Current State of Machine

Supporting Nanostructure

P1
P2

Supporting Nanostructure

P1
P2

Interaction

ai1 ai2 x ai2* ai3 bi

ai1* ai3*
ai2* ai2 x*

Current State of rule Ri Next State
of rule Ri

Other Rules
in Transition

Table

O
ther R

ules

in Transition

Table

Current State of Machine

Supporting Nanostructure

P1
P2

Supporting Nanostructure

P1
P2

Interaction

Figure 3: (Left)Supporting nanostructure holding two processes, represented by sin-
gle stranded DNA, in close proximity (via hybridization) that facilitates interprocess
communication, (Right) Shorthand representation of the modified WPCR strand sim-
ply showing its current state and the rule with which it is going to bind with next. The
current state of the machine and rule Ri is indicated (with current state ai1ai2xa

∗
i2ai3

and next state bi). The ai2xa
∗
i2 encoding in the current state of each Ri can form a

stem-loop. A similar stem-loop encoding is hidden in bi as well. It is not shown for
clarity of representation. It is this loop that contributes to the loop at the 3

′
end of

the machine after a state transition. The stem-loop near the 3
′

end of the machine
is essential for process communication. The other rules are not shown for clarity and
their presence is indicated by the dotted portion of the strand. Every adjacent pair
of rules on the transition table are separated by a stopper sequence indicated by a
dark square.

representation of a rule is shown in Figure 3.

3.3 π-WPCR Machine vs Original WPCR Machine

Unlike the original WPCR machine (Section 3.1), the π-WPCR machine encodes for

stem loops (ai2x(ai2)∗ in each Ri) both in the rules as well as in the 3
′

end of the

machine. Stem loops are crucial in the correct simulation of the process commu-

nication operator in process algebra. Hence to facilitate their formation, we use a

multi-temperature thermal cycling in π-WPCR machine instead of the dual tempera-

ture thermal cycling protocol used in the original WPCR machine. In the former, the

system is periodically cooled to a temperature T2 below the melting temperature of

the stem loops to facilitate process communication. However, this is done at a much

lower frequency than the cooling to T1 that facilitates all other operator simulations.

With only a dual-temperature thermal cycle, stem-loop formation in the bi (encoded

15

Urmi Majumder and John H. Reif

as aj1aj2xa
∗
j2aj3) region of each Ri, would prevent copying of the complete next

state bi from Ri (supposing Ri corresponds to the current transition of the machine).

Moreover, recall that our protocol does not use a strand-displacing polymerase. Con-

sequently, only the encoding just before the stem-loop would be copied. In other

words, the stem loops are necessary for preventing the polymerase from going too

far and copy undesired symbols at the 3
′

end during process interaction (Section 6),

thus affecting correct program execution in each machine thereafter. Hence, use of a

multi-temperature thermal cycle is critical to the success of the protocol.2

4 Biochemical Simulation of Stochastic Delay Operation

A stochastic delay operation in π-WPCR machine is the same as the state transition

event in the original WPCR machine and is simulated in exactly the same manner.

However, its success rate is crucially dependent on the multi-temperature thermal

cycle (Section 3.3). Refer to Figure 4 for pictorial reference on the complete process.

In spite of the stem-loop encodings ai2xa
∗
i2 in each rule Ri and a∗i2x

∗ai2 at the 3
′

end

of the strand, the loops are not preferentially formed when the system is cooled to

T1 above their melting temperature. Instead, the 3
′

end (encoded as a∗i1a
∗
i2x

∗ai2a
∗
i3)

of the machine binds with the current state of Ri (ai1ai2x(ai2)∗ai3). As usual, the

polymerase can attach to the 3
′

end of the machine and copy the next state from

Ri. Next the strand is denatured by applying heat (meaning that the temperature

of the solution is raised to T0). The 3
′

end of the π-WPCR strand has b∗i encoded

2We cannot completely eliminate the formation of local stem loops at T1 since it is a probabilistic
event. Nevertheless, we can argue that polymerization (with non-strand-displacing polymerases, such
as Taq, that can replicate a 1000 base pair strand of DNA in less than 10 seconds at 72◦C (Lawyer
et al., 1993)) is a faster activity than hybridization (whose rate is proportional to the square root
of the length of the segment to be hybridized (Hames and Higgins, 1995)) at high temperatures.

Consequently, if a∗i3 at the 3
′

end of the machine binds to ai3 in Ri, polymerase can copy the bases
from bi, before aj2xa∗j2 can form a loop in bi. Furthermore, careful choice of length and sequence
composition of the various segments of the rewrite rules can decrease the error rate in the multi-
temperature thermal cycle.

16

A Biomolecular Device that Executes Process Algebra

in it. b∗i is equivalent to a∗j1a
∗
j2x

∗aj2a
∗
j3 which can now bind to the current state of

rule Rj which is encoded as aj1aj2x(aj2)∗aj3 and the chain of events described above

repeats to execute another state transition. Such a state transition is referred to as

a stochastic delay operation in interacting stochastic automata.

5 Biochemical Simulation of Parallel Composition of Pro-

cesses

Parallel composition is the simplest of all operators to implement with π-WPCR ma-

chines. π-WPCR machines run in isolation by virtue of its design. Hence, simulation

of parallel composition with π-WPCR machines, do not need any biochemical tech-

niques other than the ones already being used. We have already mentioned that in

WPCR machines both program and its input are internal to the machine, thus al-

lowing parallel execution of distinct programs. Hence, it is possible for two processes

P1 and P2 to have the same transition table but different current states and yet run

in parallel without interfering with the smooth execution of the other process.

6 Biochemical Simulation of Process Communication

6.1 Overall Strategy

In this paper, the type of process interaction or communication we implement is

complementary synchronous interaction. Suppose we have two π-WPCR machines

that are executing state transitions independent of one another, until at one point

one machine, say M1 (corresponding to process P1) cannot bind to any of the current

state of the rules in its transition table. It can, however, resume its normal stochastic

delay operation after it copies at the 3
′

end an encoding that matches the current

state of one of its rewrite rules from another machine (corresponding to process P2)

17

Urmi Majumder and John H. Reif

ai1 ai2 x ai2* ai3 bi

ai1*
ai3*

ai2*
ai2

x*

STATE 1

ai1 ai2 x ai2* ai3 bi

ai1* ai2* ai2 x* ai3* STATE 2

ai1 ai2 x ai2* ai3 bi

ai1* ai2* ai2 x* ai3* bi*

STATE 4

ai1 biai3

ai2*x
ai2

ai1* ai2* ai2 x* ai3* bi*

aj1*aj2*x*aj2yaj3*

ai2*ai3

ai1*

a
i3*

ai2* ai2 x*

ai1 ai2 x bi aj2* aj3 aj1 aj2 x bj

x* aj2* aj2 aj1*

STATE 5

STATE 6

COOL (to T1)

HEAT (to T0)

COOL (to T1)

ai1 ai2 x ai2* ai3 bi

ai1* ai2* ai2 x* ai3* STATE 3

POLYMERIZE

STATE 3

aj3*

POLYMERASE BINDS

Figure 4: Stochastic Delay Operation with π-WPCR machines: (State 1) Original π-
WPCR strand just after completion of the last state transition (system temperature
T0), (State 2) When cooled to T1 below the melting temperature of the 3

′
end of

the machine but above the melting temperature of all the local stem loops in the
rules and the stem-loop at the 3

′
end, the former binds to the current state of rule

Ri , (State 3) Polymerase binds to the 3
′

end of the machine, (State 4) Polymerase
extends the 3

′
end of the machine to copy the next state in Ri (bi), (State 5) Strand

is denatured by the application of heat (system temperature raised to T0), (State 9)
The 3

′
end of the machine now encodes b∗i = a∗j1a

∗
j2x

∗aj2a
∗
j3 and it can bind to the

current state of Rj which is encoded as aj1aj2xa
∗
j2aj3.

18

A Biomolecular Device that Executes Process Algebra

M2’s 3
′

end. Additionally, for complementary synchronous interaction, we have to

implement M2 as a machine where it has to provide the information that M1 needed

before it can proceed with its own state transitions.3 Consequently, M2 needs to wait

for M1 to finish receiving the desired information. As mentioned earlier, by the rules

of communication in process algebra, M2 not only modifies M1 but is modified in the

process as well. Hence, we implement M2 waiting for M1, by encoding in M1’s 3
′

end, an encoding that matches the current state of a rule in M2 and that is missing

from the next state of all the rules in M2. Thus, after a certain number of state

transitions (need not be the same number as M1’s), M2’s encoding in its 3
′

end does

not correspond to any of the current states in its rules. On the contrary, it is the same

encoding that M1 has at its 3
′

end when it needs to copy the current state encoding

from M2’s 3
′

end. Consequently, the machines cannot proceed without interacting

6.2 Complete Protocol

Suppose after several state transitions, the 3
′
end ofM1 encodes d1c1c2 (just before the

last stem-loop from the 3
′

end)(Figure 5(P1, P2: State 1)). The stem-loop is formed

when the system is cooled to T2 which is below the melting temperature of all the

stem loops in the strand. Observe that this is lower than the temperature the system

was being cooled for stochastic delay operations and simulations of other constructs.

Though we cannot monitor each process individually, the frequency of cooling to the

lower temperature T2 is much lower than that to the higher temperature T1 where

all operations other than interprocess communication are favored. The reason for

doing so is that one of the basic underlying assumption in this design is that process

communication is a rarer event that stochastic delay operation. d1 encodes for part of

the current state in R
′
m in P2 since it is represented as xa

′∗
m2a

′
m3. Similarly d2 region

3In case of asynchronous interaction M2 could have proceeded on its own or choose to wait until
its current state encoded at its 3

′
end is modified while communicating with M1.

19

Urmi Majumder and John H. Reif

ai1 bi
ai3

ai2
*x

ai2

ai1* ai2* ai2 x* ai3*

P1: STATE 1

a’i1 b’ia’i3

a’i2
*x’a’i2

P2: STATE 1
P2

a’i1*
a’i3*

a’i2x’*a’i2*

am1 bm
am3

am
2*

x
am2

ak1* ak2* ak2

x*

P1: STATE N a’m1 b’m
a’m3

a’m
2*

x’a’m2

P2: STATE M

P2
a’

k
1
* a’k2

x’*
a’k2*d1 c1 c2

d2 c1*
c2*

am
2
*

am3

ak1* d1 c1

a
k
2
*

a
k
2

am1 a
m

2
 x

bm

c2

a’m
2 *

a’m3

a’k1*

c*2 d2

a
’k

2 *

a
’k

2

a’m1

a
’m

2

x’

b’m

c*1
P2P1

(P1, P2) : STATE 1
x* x’*

COOL (to T2)

am
2
*

am3

ak1* d1 c1

a
k
2
*

a
k
2

am1 a
m

2
 x

bm

c2
a’m

2 *

a’m3

a’k1*

c*2 d2

a
’k

2 *

a
’k

2
a’m1

a
’m

2

x’

b’m

c*1
P2P1

x* x’*

am
2
*

am3

ak1* d1 c1

a
k
2
*

a
k
2

am1 a
m

2
 x

bm

c2

a’m
2 *

a’m3

a’k1*

c*2 d2

a
’k

2 *

a
’k

2

a’m1

a
’m

2

x’

b’m

c*1
P2P1

x’* x* (P1, P2) : STATE 3

(P1, P2) : STATE 2

POLYMERIZE

(P1, P2) : STATE 3

MULTIPLE STATE TRANSITIONS

am1 bm
am3

am
2*

x

ak1* ak2* ak2

x*

P1: STATE N+1

a’m1 b’m
a’m3

a’m
2*

x’a’m2

P2: STATE M+1
P2

a’
k
1
* a’k2x’*a’k2*d1 c1c2

d2 c1*c2* d1*d2*

HEAT (to T0)

x‘ a’m2* a’m3 b’m

a’
k
2
* a’k2

x’*

P2: STATE M+2

COOL (to T1)

P2

x am2* am3 bm

ak2
* a

k2
x*

P1: STATE N+2

P1

COOL (to T1)

am2

a’m2a’m1

d
2

c
1*

c
2*

d1*

d
1

c
2

c
1 d2*

Stochastic Delay OperationStochastic Delay Operation

MULTIPLE STATE TRANSITIONS

 x’*a’m
2 a’m

3*

 x*a
m

2 a
m

3*

am1
am2

Figure 5: π-WPCR simulation of interprocess communication: (P1: State 1) Initial
state of process P1, (P2: State 1) Initial state of process P2, (P1:State N) State of
P1 after N transitions. The 3

′
end of P1 encodes d1c1c2. d1 encodes for part of the

current state in (Rm)
′

in P2 since it is represented as xa
′∗
m2a

′
m3. The dashed arrow

between States P1:State 1 and P1:State N is used to denote multiple state transitions,
(P2:State M) State of P2 after M transitions. Its 3

′
end encoded as d2c

∗
2c

∗
1 Now d2

encodes for part of the current state in Rm in P1 represented as xa∗m2am3, (P1,P2:
State 1) The 3

′
ends of P1 and P2 hybridize when cooled to T2 below the melting

temperature of not only c1c2 but also the local stem loops. Consequently, stem
loops are formed near the 3

′
ends of the machines as well as the rules. The lower

temperature is indicated by representing this particular “COOL” operation in blue,
(P1,P2: State 2) A polymerase attaches to the 3

′
end in each of the machines, (P1,P2:

State 3) In presence of the polymerase, the 3
′

end of P1 copies d2 from P2 and the
3
′

end of P2 copies d1 from P1, (P1: State N+1) Once heated to T0, the interacting
processes can separate and P1’s 3

′
end d∗2 now partly encodes for the current state of

Rm, (P2: State M+1) Similar to P1, after dehybridizing from the P1P2 complex, P2’s
3
′

end encoded as d∗1 can partly bind to the current state of R
′
m, (P1:State N+2) P1’s

3
′

end binds to Rm as a first step to a stochastic delay operation, (P2:State M+2)
P2’s 3

′
end binds to R

′
m as a first step to a stochastic delay operation.

20

A Biomolecular Device that Executes Process Algebra

in machine M2’s 3
′
end (encoded as d2c

∗
2c

∗
1) corresponds to part of the current state in

Rm in P1 since it is represented as xa∗m2am3. Thus each machine cannot proceed with

its own state transition. The only way normal execution can be restored if the two

machines interact and copy the required current state from the others 3
′

end. This is

possible since c1c2 portion at the 3
′

end of M1 is complementary to c∗1c
∗
2 portion at

the 3
′

end of M2 and the melting temperature of the c1c2 duplex is higher than T2.

Once hybridized (Figure 5(P1,P2: State 1)), a polymerase attaches to the 3
′

end for

both the machines and it extends to copy the encoding until the first stem-loop on

the strand (Figure 5(P1,P2: State 2)). Hence, the 3
′

end of M1 copies d2 from M2

and the 3
′

end of M2 copies d1 from M1 (Figure 5(P1,P2: State 3)). The solution can

now be heated to T0 to dehybridize the two machines and each being equipped with

a 3
′

end that corresponds to the current state in one of its rules (Figure 5(P1: State

N+1) and Figure 5(P2: State M+1)), the machines can proceed with their respective

stochastic delay operations, until a need for interprocess communication arises again

(Figure 5(P1: State N+2) and Figure 5(P2: State M+2)).

The hybridization of P1’s and P2’s 3
′

ends can be viewed as a channel and its

rate of hybridization and subsequent copying of the next state as its stochastic rate.

Our design of process communication simulates the reduction rule as well. Recall

the reduction rule: x〈y〉.P |x(v).Q → P |Qy/v. The expression essentially means the

following: the process x〈y〉.P sends a message y along channel x. The process x(v).Q

receives this message on the same channel. Once the message has been sent, x〈y〉.P

becomes P while x(v).Q becomesQy/v. Note that v is the variable that is bound to the

received value y over channel x. In our biochemical design of process communication,

we implement reduction rule in the following manner: P1 sends the message d1 across

the channel c1c2; the process P2 receives this message on the same channel. Once the

message has been sent, P1’s state changes (from copying d2) so that it can bind to

one of its own rules and P2’s state changes (from copying d1) such that it can proceed

21

Urmi Majumder and John H. Reif

with its own program execution as well.

6.3 Observations

One may wonder why we used two separate symbols c1 and c2 at the 3
′

end of P1

for describing interprocess communication when only one symbol may have sufficed.

It is used merely for consistency reasons and is only used in the description of the

summation protocol (Section 9) where we need to represent two distinct reaction

pathways possible with the same 3
′

end encoding.

A major issue with this simulation of process communication is that after the

next states are copied from the 3
′

end of the other process, in the next cooling cycle

when the system is cooled to T1 above the melting temperature of the local hairpins

and the complementary segment at the 3
′

ends of both the machines, the current

states of the machines can still bind with each other. If that happens, in absence

of any stem-loop at the 3
′

ends of the machines, polymerase can copy the symbols

encoded in those segments of the machine until the first stopper sequence and may

completely jeopardize correct program execution in the subsequent thermal cycles.

However, it is possible to engineer proximity of processes (in other words tie them

to the same nanostructure) in a manner such that processes can still interact but

internal interaction (interaction with itself) is preferred to external interaction (in-

teraction with other processes). Now it is possible that one can control the relative

concentration of processes such that some processes are more likely to interact than

others. In fact, physical proximity can be induced by concentration. However, teth-

ering processes which we intend to interact to a common nanostructure increases the

likelihood of their interaction because the physical proximity of the processes induced

by the shared nanostructure causes the concentration of the processes relative to each

other to be much higher than would have been possible if they were free-floating in

the solution, separate from each other.

22

A Biomolecular Device that Executes Process Algebra

Another important point to note here is that although any two processes should

be capable of interacting (if they have matching channel names) , our biochemical

design is currently limited to allowing only two processes on the same nanostructure

to interact at a time meaning although multiple processes can be on the tethering

nanostructure at any stage only a pair of processes have the same channel name, thus

eliminating ambiguity.

7 Nil Process

One can implement a nil process by encoding a next state bn encoded as ak1ak2xa
∗
k2ak3

in one of the rules Rk in a π-WPCR machine such that it does not have a correspond-

ing current state in another rule from R1 to Rn for the same machine (k > n). Thus

the program execution halts once bn is copied at the 3
′

end of machine.

8 Sequential Composition of Processes

8.1 Overall Strategy

Sequential composition of processes in process algebra can be implemented by cascad-

ing WPCR machines (Matsuda and Yamamura, 2002), each corresponding to one of

the participating processes. Cascading WPCR machines were first proposed by Mat-

suda et. al. It is a scheme to cascade results of WPCR from molecules to molecules

by using a nicking enzyme.

The basic idea is as follows: Suppose we are composing only two processes P1 and

P2 in sequence, then the π-WPCR machine M1, corresponding to the first process

P1 executes as usual. However, the second machine M2, corresponding to process

P2, cannot start until M1 is finished. Essentially, M2 does not have a 3
′

end whose

encoding matches with that of the current state in any of the rules in its transition

23

Urmi Majumder and John H. Reif

table. Now M1 does not run forever. Eventually, after polymerase copies the next

state bj in a particular rule Rj , nicking enzyme EN that recognizes a particular

sequence aj3 in Rj nicks M1 at the 3
′
end to release the strand B (B = za

′
i1a
′
i2xa

′∗
i2a
′
i3).

Now B can bind partially with the 3
′

end of M2 using only z in the next cooling cycle

(to T1). The polymerase can then use B to copy a
′
i1a
′
i2x
′
a
′∗
i2a
′
i3 at the 3

′
end of M .

This corresponds to the current state of rule (Ri)
′

in M2 and hence M2 can start

transitioning from one state to another. Refer to Figure 6 on details of the design.

8.2 Observations

It is important to note that since P2 does not undergo any state transitions until

receiving the current state encoding from P1, its 3
′

end encoding remains the same

as the one at the beginning of computation for the whole test tube. In other words,

at the time when P2 is waiting for information from P1, its 3
′

end does not change

dynamically from copying new symbols during stochastic delay operations. Conse-

quently, it is possible to encode any appropriate symbol at its 3
′

end and we encode

z∗ that allows it to receive data from P1. This is essentially input prefixing where

the input a
′
i1a
′
i2xa

′∗
i2a
′
i3 is received over the channel z before P2 can start operating.4

Another observation is that after the nick is created, in the next cooling cycle, B

may prefer to bind to Rj in P1 instead, because of stronger hybridization. However,

it is free floating (not tied to any nanostructure). Consequently, there is a non-zero

likelihood that it would collide with the correct region of P2 since a copy of P1 and a

copy of P2 share a supporting nanostructure. It may also happen that B hybridizes

with the 3
′

end of P2 after the current state is copied at this end. This would prevent

stochastic delay operations in P2. However, as mentioned in Section 6.3 it is possible

to engineer π-WPCR machines such that internal hybridization in a process is more

4Input prefixing (denoted as a(x).P) is a process waiting for a message that was sent on a com-
munication channel named a before proceeding as P , binding the name received to the name x.

24

A Biomolecular Device that Executes Process Algebra

a’ i
3*

ai1 ai2 x ai2* ai3 bi

ai1* ai2* ai2 x* ai3*
P1: STATE 1

MULTIPLE STATE TRANSITIONS

ai2*ai3

ai1* ai3* ai2* ai2 x*

ai1 ai2 x bi aj2* aj3 aj1 aj2 x bj

x* aj2* aj2 aj1* P1: STATE N

NICK DNA BACKBONE

aj3*

Recognition Sequence of EN

ai2*ai3

ai1* ai3* ai2* ai2 x*

ai1 ai2 x bi aj2* aj3 aj1 aj2 x bj

x* aj2* aj2 aj1* P1: STATE N+1

COOL (to T1)

aj3* bj*

a’i1 b’ia’i3

a’i2
*x’a’i2

P2: STATE 1

za’i1a’i2xa*’i2*a’i3

z*

a’i1 b’ia’i3

a’i2
*x’a’i2

P2: STATE 2

P1

P1

P1

P2

a’ i
1

a’
i2
*

a’
i2
 x
’

z

a’
i3

z*

MULTIPLE STATE TRANSITIONS

NIL PROCESS

OUTPUT
STRAND

a’i1 b’ia’i3

a’i2
*x’a’i2

P2: STATE 3

a’ i
1

a’
i2
*

a’
i2

z

a’
i3

z*

x’
 POLYMERIZE

a’i1a’i2x’a’i2*a’i3 b’i

a’i1* a’i2* a’i2 x’* a’i3*
P2: STATE 4

a’ i
1*

 a’ i
2*

a’ i

2

x’
*

COOL (to T1)

P2

P2

P2

MULTIPLE
STATE

TRANSITIONSSTOCHASTIC
DELAY

OPERATION

B

Figure 6: π-WPCR simulation of composing two processes in sequence: (P1: State
1) Initial state of process P1. Current state of the machine is bound to rule Ri, (P1:
State N) State of P1 after N steps, where the current state of the machine is bound
to Rj , (P1: State N+1) Nicking enzyme EN uses the recognition sequence aj3 to
create a nick between a∗j3 and b∗j in the 3

′
end of P1. P1 ultimately becomes a nil

process when EN nicks between aj3 and bj in Rj , (P2: State 1) Initial state of process
P2. The encoding of its 3

′
end is such that it cannot bind to the current state of any

of the rules in its transition table until it receives the missing encoding from P1, (P2:
State 2) The small nicked strand B (encoded as b∗j) floats from P1 to P2 and binds
with the 3

′
end of P2 since B is encoded as za

′
i1a
′
i2xa

′∗
i3a
′
i3, (P2: State 3) Polymerase

binds at the 3
′

end of P2 and copies a
′
i1a
′
i2xa

′∗
i3a
′
i3 from B, (P2: State 4) P2’s 3

′
end

binds with the current state of R
′
i.

25

Urmi Majumder and John H. Reif

ai1 bi
ai3

ai2
*x

ai2

ai1* ai2* ai2 x* ai3*

P1: STATE 1

a’i1 b’ia’i3

a’i2
*x’a’i2

P2: STATE 1
P2

a’i1*
a’i3*

a’i2x’*a’i2*

am1 bm
am3

am
2*

x
am2

ak1* ak2* ak2

x*

P1: STATE N
a’m1 b’m

a’m3

a’m
2*

x’a’m2

P2: STATE M

P2

a’
k
1
* a’k2

x’*
a’k2*d1 c1 c2

d2 c1*
c2*

am
2
*

am3

ak1* d1 c1

a
k
2
*

a
k
2

am1 a
m

2
 x

bm

c2
a’m

2 *

a’m3

a’k1*

c*2 d2

a
’k

2 *

a
’k

2
a’m1

a
’m

2

x’

b’m

c*1
P2P1

(P1, P2) : STATE 1
x* x’*

COOL (to T2)

MULTIPLE STATE TRANSITIONS

 x’*a’m
2 a’m

3*

 x* a
m

2 a
m

3*

COOL (to T1)

Interprocess Communication

MULTIPLE STATE TRANSITIONS

x‘ a’n2* a’n3 b’n

a’
k
2
* a’k2

x’*

P2: STATE M+1

P2

an2 x an2* an3 bn

ak2
*

a
k2

x*

P1: STATE N+1

P1

a’n2a’n1

d
2

c1*

c
2*

d
1

c2

c
1

an1

am2
a’m2

COOL (to T1)

Figure 7: π-WPCR simulation of summation: (P1: State 1) Initial state of process P1,
(P2: State 1) Initial state of process P2, (P1:State N) State of P1 after N transitions.
The 3

′
end of P1 encodes d1c1c2. c2 is complementary to an2 part of the current state

of rule Rn in P1. However, it is only complementary to an2 and cannot open the
an2xa

∗
n2 loop by strand displacement at the lower cooling temperature T2. At higher

system temperature T1, in absence of the stem loops, the 3
′

end of P1 can partially
bind to Rn and copy its next state and hence perform a stochastic delay operation.
d1 as in Section 6 encodes for the xa

′∗
m2a

′
m3 of R

′
m in P2. This encoding allows P1

to interact with P2 as previously described (Section 6). (P2:State M) State of P2

after M transitions. Its 3
′

end is encoded as d2c
∗
2c

∗
1 of which c∗1 is complementary to

a
′
n2 in R

′
n encoded as a

′
n1a

′
n2xa

′∗
n2a

′
n3b
′
n. However, the binding is not strong enough

to facilitate strand displacement at lower cooling temperature T2. Nevertheless at
higher temperature T1, this encoding allows the 3

′
end of P2 to partially bind to R

′
n

and copy its next state and hence perform a stochastic delay operation. On the other
hand, similar to P1, d2 encodes for xa∗m2am3 of Rm in P1 and this encoding allows P2

to communicate with P1. (P1,P2: State 1) The 3
′

ends of P1 and P2 hybridize when
the system is cooled to T2 below the melting temperature of the local stem loops.
Next in presence of the polymerase, the 3

′
end of P1 copies d2 from P2 and the 3

′
end

of P2 copies d1 from P1, thus performing a process communication operation, (P1:
State N+1) P1 can also choose to perform a stochastic delay operation by copying the
next state of Rn. This path is favored at a higher system temperature T1 above the
melting temperature of the local stem loops because otherwise the matching encoding
an2 remains hidden in the loop, (P2:State M+1) P2’s 3

′
end can similarly bind to R

′
n

as a first step to stochastic delay operation as opposed to choosing the interprocess
communication path at a higher temperature T1.

26

A Biomolecular Device that Executes Process Algebra

ai1ai2xai2* ai3bi
ai1ai2xai2* ai3 bi

ak1ak2xak2* ak3bk
by

P

P: STATE 1ai1*
ai3*

ai2*
ai2

x*

Identical Transition Table

MULTIPLE STATE TRANSITIONS

ai1ai2xai2* ai3bi
ai1ai2xai2* ai3 bi

ak1ak2xak2* ak3bk
by

P

P: STATE Nak1*
ak3*

ak2*
ak2

x*

ai1ai2xai2* ai3bi
ai1ai2xai2* ai3 bi

ak1ak2xak2* ak3bk by

P ak1* ak3* ak2* ak2 x* bk*

POLYMERIZE

NICK DNA BACKBONE

ai1ai2xai2* ai3bi
ai1ai2xai2* ai3 bi

ak1ak2xak2* ak3bk by

P ak1* ak3* ak2* ak2 x* bk*

P: STATE (N+1)

P: STATE (N+2)

Recognition Sequence of EM

aj1*aj2*x*aj2yaj3*
P2: STATE 1

P1: STATE 1 P1: STATE 2

ak1 ak2 x ak2*ak3 bk

ak1* ak2* ak2 x* ak3*
P1: STATE 1

P1

ak1 ak2 x ak2*ax bx

ak1* ak2* ak2 x* ak3*
P1: STATE 2

P1

ai1 ai2 x ai2* ai3 bi

ai1* ai2* ai2 x* ai3*
P2: STATE 1

P2

Stochastic Delay Operation

MULTIPLE
STATE

TRANSITIONS

Stochastic Delay Operation

MULTIPLE
STATE

TRANSITIONS

Nil Process

MULTIPLE
STATE

TRANSITIONS

Figure 8: π-WPCR simulation of replicating a process in a restricted manner: (P:
State 1) Initial state of process P that redundantly encodes two copies of the tran-
sition table and an additional rule Rk and a current state encoding by, encoded as
a∗i1a

∗
i2x

∗ai2a
∗
i3 between them, (P: State N) After N stochastic delay operations, P

reaches a state where the 3
′

end encoding matches the current state of rule Rk,
(P:State N+1) Polymerase binds to the 3

′
end of the machine bound to rule Rk and

copies the next state bk, (P:State N+2) Based on the recognition sequence ak3 in rule
Rk, EM creates a nick between a∗k3 and b∗k in the machine’s 3

′
end as well as a nick

after the stopper sequence in rule Rk. (P2:State 1) The new strand P2 created by
introduction of the nick after the stopper sequence in rule Rk contains not only the
full transition table but also the current state by at the 3

′
end, which can bind to

rule Rj in its transition table, (P1:State 1) The remainder of P (now P1), can bind
to Rk that cannot be nicked since there are no DNA segments left after the stopper
sequence. Consequently, for every thermal cycle neither any new process is generated
nor the state of the machine changes. Hence P1 becomes a nil process, (P1:State 2)
Instead of binding to Rk, P1 hybridizes with Rx where ax (not a recognition sequence
for EM) is partially matched with a∗k3. This allows P1 to resume its normal stochastic
delay operations.

27

Urmi Majumder and John H. Reif

favored that external hybridization. In other words, because of the locality of the rules

and the current state in P2, they are much more likely to bind than B hybridizing

with the 3
′

end of P2.

If B does not bind with Rj , in the next cooling cycle P1 binds to the current

state of Rj and polymerase extends the 3
′

end to copy bj . As a result, the nicking

enzyme EN using the recognition sequence aj3 releases b∗j . This is quite a favorable

situation since B being a free floating strand, increase in its concentration implies

that this strand is more likely to collide with the right complementary region of P2.

However, recall that the nicking enzyme cuts the top strand preferentially in a duplex

region. Since the transition rules are bound to the supporting nanostructure, the 3
′

end of the machine automatically plays the role of a top strand. Consequently, at

some point of time, a nick is created in the rule Rj instead of P1’s 3
′

end and with

none of the rules matching the 3
′

end of P1, it turns into a nil process. Until that

happens, P1 continues to copy only bj in every cooling cycle. Hence for all intended

purposes, we assume that P1’s program execution has come to a halt.

9 Biochemical Simulation of Summation

If we combine interprocess communication with stochastic delay operations then it is

an instance of summation operation. For instance, in the interprocess communication

(Section 6), it may be possible that the encoding of the 3
′

end of M1 (say d1c1c2 as

in interprocess communication encoding), corresponding to process P1 is such that it

can continue to execute state transitions in an isolated fashion (meaning that it can

bind to the current state of Rn in case of P1 since c2 encodes for an2). Similarly, P2’s

3
′

end encoded as d2c
∗
2c

∗
1 can bind to R

′
n (since c∗1 encodes for a

′
n2). As before, P1

and P2 can also communicate via c1c2 hybridization of their respective 3
′

ends and,

consequently, modify themselves to encode part of their respective current states at

28

A Biomolecular Device that Executes Process Algebra

their respective 3
′

ends (d∗2 = x∗am2a
∗
m3 in Rm in P1 and d∗1 = x

′∗a
′
m2a

′∗
m3 in R

′
m

in P2) to continue program execution (bind to current state of Rm (for P1) and R
′
m

(for P2). These two possible pathways is an instance of summation operation. One

observation that should be made here is that one pathway would be favored over the

other depending on the system temperature. For instance, when the system is cooled

above the melting temperature of the stem loops, the stochastic delay operation

is favored while when it is cooled below the same, interprocess communication is

favored. At the lower temperature T2, part of the current state encoding of the

desired rule tile is hidden in a stem-loop and the 3
′

end fails to bind with it, hence

favoring interprocess communication. Refer to Figure 7 for details on the simulation

of summation with π-WPCR machines.

10 Restricted Replication

10.1 Overall Strategy

We implement a restricted version of replication: an operation that leads to not

quite identical child processes. Although the replication construct may be hard to

simulate with π-WPCR machine following the exact definition of the construct, one

may imagine a situation where two copies of the transition table are encoded in

the π-WPCR machine intercepted by a rule that has a recognition sequence for a

restriction enzyme EM and a current state, by for one of the child processes. The

intermediate region has an additional lag region that would allow the child process,

once created, to perform stochastic delay operations. When the π-WPCR machine

copies the next state in the rule, the restriction enzyme EM nicks the machine using

this recognition sequence and when heated two machines are generated each with a

copy of the transition table. Refer to Figure 8 on the details of the simulation of

replication.

29

Urmi Majumder and John H. Reif

10.2 Issues

The molecular design described above is a restricted version of replication since the

original process P is lost in generating processes P1 and P2. We can argue that P

redundantly encoded two copies of the same transition table. Nevertheless, it should

be remembered that after the restricted replication operation P1 has an additional

rule Rk. Hence neither P1 or P2 are identical to P nor they are identical to each

other. Simulating the unrestricted version of replication with π-WPCR machines is

still an open problem.

11 Summary

The design of π-WPCR machine described in this paper are based on the original

WPCR machine and hence, particularly suffers from all its drawbacks. Furthermore,

some of the constructs have their own limitations as well (as discussed in Sections 6,

8 and 10). Nevertheless, the design is quite powerful in the sense that it is easy to

extend the design for two processes to that for multiple processes. For instance, ex-

tending parallel composition to multiple processes does not involve any modification

in the encoding of the π-WPCR machines. Sequential composition can also extend

to multiple processes if each currently executing process has a rule with a recognition

sequence for the nicking enzyme to generate an output strand that initiates the next

process. Extension of replication similarly involves having a rule in each replicating

process possess a recognition sequence for the restriction enzyme. However, all in-

teracting processes have to be physically close in order to communicate and hence

should share a supporting nanostructure.

An implicit assumption in the simulations of all the constructs is that simulation

of each operator is irreversible. This is because we assume that all the enzymatic

reactions are irreversible. Consequently, even though each design involves reversible

30

A Biomolecular Device that Executes Process Algebra

hybridization/dehybridization reactions, each one involves enzymatic reactions as well

and hence the overall simulation is an irreversible one. Another important observa-

tion that should be made here is that we do not monitor each individual process. We

can only control the external factors such as thermal cycling. In terms of interacting

processes, this implies that a process P1 that needs input from another process P2

before it can proceed with its own program needs to wait for P2 to attain an ap-

propriate state in which it can provide P1 with its desired input. The delay in such

process interaction is given by the maximum of the time taken by each process to

attain the appropriate state in which they can communicate.

Another limitation of the current system is the necessity of physical proximity

of communicating processes on a fixed substrate, which in turn, limits the scalabil-

ity of the system as well as the switching between communication channels useful

for modeling larger networks. Nevertheless, the probability of a single bio-operation

such as communication or replication can be computed very easily by modeling it

as a Markov Chain and using the known probabilities of primitives used in the pro-

cess such as hybridization, branch migration and polymerization. The probability

of iterated bio-operations can be computed from the single-step operation assuming

each operation to be independent and identically distributed. However, it should

be acknowledged that as each process goes through increasing rounds of stochastic

delay operation, process communication and others, the strand extends by adding

new bases to its end, thus increasing the thermodynamic stability of undesirable sec-

ondary structures which, in turn, may prevent further operations on the process. In

other words, with each bio-operation the reliability of the process algebraic system

decreases. It has already been noted that the current system is very temperature

sensitive. For instance, the temperatures T0, T1 and T2 used for thermal cycling have

to be carefully chosen based on strand design of the processes such that only the

intended processes can interact successfully. We admit that an isothermal system

31

Urmi Majumder and John H. Reif

would be more robust; however, the current biochemical design uses stem loops to

determine how much information is exchanged in a communication step, for example,

and the most essential component of an isothermal process algebraic system would

be a strand displacing polymerase except that would polymerize the stem loops thus

preventing repeated communication. Hence, with our current design we cannot use

an isothermal process.

In summary, in this paper we presented a design for biochemical simulations of

the key primitives in process algebra using modified WPCR machines. The main

constructs in this model of computation are sending data along a channel, receiving

data along a channel, creating channels and running processes in parallel. Since in-

put and program are local to a WPCR machine, multiple processes can be executed

concurrently in the original WPCR machines. Our simulation of interprocess com-

munication using π-WPCR machines simulates rest of the constructs mentioned in

Section 2.1. One challenging open question is whether we can use isothermal protocols

since the former has evidently more flexibility of operations. The biggest hindrance

to using an isothermal WPCR machine for implementing process algebra is that the

isothermal protocol uses a strand displacing polymerase and this is not suitable for

our simulation of process communication.

Acknowledgment

This work is supported by NSF EMT NANO grant CCF-0829798 and CCF-0523555.

References

Bassler, B. (1999). How bacteria talk to each other: regulation of gene expression by

quorum sensing. Curr Opin Microbiol 2 (582-587).

32

A Biomolecular Device that Executes Process Algebra

Berg, J., J. Tymoczko, and L. Stryer (2002). Molecular Cell Biology. W.H. Freeman.

Cardelli, L. (2008). On process rate semantics. Theo. Comp. Sci. 391 (3), 190–215.

Dirks, R. M. and N. A. Pierce (2004, October). Triggered Amplification of Hybridiza-

tion Chain Reaction. PNAS 101 (43), 15275–15278.

Goodman, R., R. Berry, and A. Turberfield (2004). The single-step synthesis of a

DNA tetrahedron. Chemical Communications 12, 1372–1373.

Hames, B. D. and S. J. Higgins (1995). Gene Probes 2. Oxford University Press.

Koeneman, A. and D. G. Capco (2005). A Kaleidoscope of Modern Life Sciences and

Modern Medicine Encyclopedia of Molecular Cell Biology and Molecular Medicine,

Volume 2. Larkspur, CA, USA: Ramtech Ltd.

Lawyer, F. C., S. Stoffel, R. K. Saiki, S. Y. Chang, P. A. Landre, R. D. A. RD,

and D. H. Gelfand (1993, May). High-level expression, purification, and enzymatic

characterization of full-length thermus aquaticus DNA polymerase and a truncated

form deficient in 5’ to 3’ exonuclease activity. PCR Methods Appl. 2 (4), 275–278.

Mathieu, F., S. Liao, J. Kopatscht, T. Wang, C. Mao, and N. Seeman (2005). Six-

helix bundles designed from DNA. Nano Lett. 5, 661–665.

Matsuda, D. and M. Yamamura (2002). Cascading Whiplash PCR with a nicking

enzyme. DNA 8, LNCS 2568, 38–46.

Milner, R. (1999). Communicating and mobile systems: the pi calculus. Cambridge

Univ. Press.

Phillips, A. and L. Cardelli (2004). A correct abstract machine for the stochastic

pi-calculus. In Bioconcur.

33

Urmi Majumder and John H. Reif

Phillips, A., N. Yoshida, and S. Eisenbach (2004). A distributed abstract machine

for boxed ambient calculi. In ESOP04, LNCS, Springer-Verlag.

Reif, J. H. and U. Majumder (2008). Computing with Isothermal Autocatalytic

Whiplash PCR. DNA 14, LNCS .

Rose, J., K. Komiya, S. Yaegashi, and M. Hagiya (2006). Displacement whiplash

PCR: Optimized architecture and experimental validation. DNA 12, LNCS 4287,

393–403.

Rose, J. A., R. J. Deaton, M. Hagiya, and A. Suyama (2001). Pna-mediated Whiplash

PCR. Lecture Notes In Computer Science 2340, 104 – 116.

Sahu, S., T. LaBean, and J. H. Reif (2008, October). A DNA Nanotransport Device

Powered by Polymerase phi 29. Nano Letters 8 (11), 3870–3878.

Sakamoto, K., D. Kiga, K. Komiya, H. Gouzu, S. Yokoyama, S. Ikeda, H. Sugiyama,

and M. Hagiya (1999). State transitions by molecules. Biosystems 52 (1), 81–

91(11).

Shih, W., J. Quispe, and G. Joyce (2004). A 1.7-kilobase single-stranded DNA that

folds into a nanoscale octahedron. Nature 427, 618–621.

Winfree, E. (1998a). Simulation of computing by self-assembly. Technical Report

1998.22, Caltech.

Winfree, E. (1998b). Whiplash PCR for O(1) Computing. Technical report, Caltech.

34

