
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2013 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Description and composition of bio-inspired design patterns: a complete

overview

Fernandez Marquez, Jose Luis; Di Marzo Serugendo, Giovanna; Montagna, Sara; Viroli, Mirko;

Arcos, Josep Lluis

How to cite

FERNANDEZ MARQUEZ, Jose Luis et al. Description and composition of bio-inspired design patterns: a

complete overview. In: Natural Computing, 2013, vol. 12, n° 1, p. 43–67. doi: 10.1007/s11047-012-9324-

y

This publication URL: https://archive-ouverte.unige.ch//unige:111265

Publication DOI: 10.1007/s11047-012-9324-y

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:111265
https://doi.org/10.1007/s11047-012-9324-y

Description and composition of bio-inspired design patterns:
a complete overview

Jose Luis Fernandez-Marquez • Giovanna Di Marzo Serugendo •

Sara Montagna • Mirko Viroli • Josep Lluis Arcos

Published online: 1 May 2012

� Springer Science+Business Media B.V. 2012

Abstract In the last decade, bio-inspired self-organising

mechanisms have been applied to different domains,

achieving results beyond traditional approaches. However,

researchers usually use these mechanisms in an ad-hoc

manner. In this way, their interpretation, definition,

boundary (i.e. when one mechanism stops, and when

another starts), and implementation typically vary in the

existing literature, thus preventing these mechanisms from

being applied clearly and systematically to solve recurrent

problems. To ease engineering of artificial bio-inspired

systems, this paper describes a catalogue of bio-inspired

mechanisms in terms of modular and reusable design pat-

terns organised into different layers. This catalogue uni-

formly frames and classifies a variety of different patterns.

Additionally, this paper places the design patterns inside

existing self-organising methodologies and hints for

selecting and using a design pattern.

Keywords Self-organising systems �
Bio-inspired mechanisms � Design patterns

1 Introduction

Nowadays, emergent technologies are providing new

communication devices (e.g. mobile or smart phones,

PDAs, smart sensors, laptops) that form complex infra-

structures not widely exploited due to their requirements

such as scalability, real-time responses, or failure tolerance.

To deal with these features, a new software tendency is to

provide entities in the system with autonomy and pro-

activity and to increment the interaction between them.

This betting on incrementing interaction and decentralising

responsibilities over entities, so-called self-organisation,

provides systems with better scalability, robustness, and

reduces the computation requirements of each entity.

Self-organising mechanisms usually involve decentrali-

sation (no central entity coordinating the re-organisation of

the other system’s entities) and locality (individual entities

have information about their local neighbourhood, i.e. the

list of adjacent nodes, information about or provided by

these nodes), but no global information, since it is too

costly to maintain it up-to-date. Additionally, computation

at the micro-level, i.e. at the level of individual entities,

involves the execution of relatively simple rules or com-

mands, compared to the complex results these computa-

tions reach when considered at a macro-scale. Key

characteristics of these mechanisms are robustness and

adaptation to changing environmental conditions. Typical

self-organising mechanisms are those using stigmergy, like

ant foraging for coordinating behaviour, schooling and

flocking for coordinating movements, or gradients based

systems (de Castr 2006; Di Marzo Serugendo et al. 2011).

J. L. Fernandez-Marquez (&) � G. Di Marzo Serugendo

University of Geneva, Battelle, Batiment A, Route de Drize 7,

1227 Carouge, Switzerland

e-mail: joseluis.fernandez@unige.ch

G. Di Marzo Serugendo

e-mail: giovanna.dimarzo@unige.ch

S. Montagna � M. Viroli

Alma Mater Studiorum–Università di Bologna, Via Venezia 52,

47521 Cesena, Italy

e-mail: sara.montagna@unibo.it

M. Viroli

e-mail: mirko.viroli@unibo.it

J. L. Arcos

IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

e-mail: arcos@iiia.csic.es

123

Nat Comput (2013) 12:43–67

DOI 10.1007/s11047-012-9324-y

Self-organising mechanisms are usually inspired by nature,

and in particular, by biological systems . Those systems

show appealing characteristics for pervasive scenarios,

since they are robust and resilient, able to adapt to envi-

ronmental changes and able to achieve complex behaviours

using a limited set of basic rules (Dressler 2010).

Self-organising mechanisms have already been applied

to various domains, usually in an ad hoc manner, with

varying interpretations and no defined boundary among the

used mechanisms. This paper provides a catalogue of bio-

inspired mechanisms for self-organising systems. The

mechanisms presented are uniformly described and framed

using a software design pattern structure identifying when

and how to use each pattern, and describing the relation

between the different mechanisms. This catalogue of

mechanisms is a step forward to engineering self-organ-

ising systems in a systematic way.

2 Related work

The idea of engineering self-organising systems has

attracted many researchers since 2004. Nagpal et al. (2004)

present a set of biologically-inspired primitives that

describe how organising principles from multi-cellular

organisms may apply to multi-agent systems. That paper

was a first attempt towards assembling a catalogue of

primitives for multi-agent control. However, those primi-

tives are not presented together with an implementation

process or by taking into consideration the different sce-

narios to which the primitives can be applied. It is then

difficult to use them in a systematic way for engineering

artificial self-organising systems. Mamei et al. (2006)

propose a taxonomy to classify self-organising mechanisms

and describe a set of mechanisms. These descriptions can

drive the implementation of these mechanisms, but they are

not expressed as patterns and cannot be used systemati-

cally. However, that work motivates to go further and

raises new questions: What are the problems that each

mechanism can solve? To what solution contributes each

pattern? What are the main trade-offs to consider in the

implementation? To answer those questions and make the

self-organising mechanisms applicable more systemati-

cally, some authors have focused on proposing descriptions

of self-organising mechanisms under the form of software

design patterns (Gamma et al. 1995). The idea of the

design pattern structure makes it easy to identify the

problems that each mechanism can solve, the specific

solution that it brings, the dynamics among the entities and

the implementation. Gardelli et al. (2007) propose a set of

design patterns for self-organising systems all related with

the ant colonies behaviour, together with the idea that a

mechanism can be composed from other mechanisms. The

provided model, however, presents too many constraints to

be generalised and the examples of usage are not related to

self-organising systems. Based on the set of mechanisms

proposed in Mamei et al. (2006), Sudeikat et al. (2008)

discuss how intended multi-agent systems (MAS) dynam-

ics can be modelled and refined to decentralised MAS

designs, proposing a systematic design procedure that is

exemplified in a case study. De Wolf (2007) presents an

extended catalogue of mechanisms as design patterns for

self-organising emergent applications. The patterns are

presented in detail and can be used to systematically apply

them to engineering self-organising systems. However,

relations among the patterns are missed, i.e. the authors do

not describe how patterns can be combined to create new

patterns or adapted to tackle different problems.

3 A model to describe bio-inspired design patterns

This section presents the computational model used in this

paper to describe the dynamics of the patterns and the

relations between the different entities involved in each

pattern. The proposed model is clearly inspired by biology

but specialised for the artificial world where the patterns

will be engineered.

In biological systems, two main entities can be observed:

(1) the organisms that collaborate in the biological process

(e.g. ants, fish, bees, cells, virus, etc.) and (2) the environ-

ment, a physical space where the organisms are located. The

environment provides resources that the organisms can use

(e.g. food, shelter, raw material) and events that can be

observed by the organisms and can produce changes in the

system (e.g. toxic clouds, storms, thunders, or fires).

Organisms can communicate with each other, sense from the

environment and act over the environment. Moreover,

organisms are autonomous and proactive and they have a

partial knowledge of the world. The environment is dynamic

and acts over the resources and over the organisms (e.g. it can

kill organisms, destroy resources, change the topology of the

space where the organisms are living, change the food

location, remove food, add new food, etc.). The communi-

cation between the organisms can be direct (e.g. dolphins

sending ultra-sounds through the water, beavers emitting

sounds to alert about a predator presence, etc.) or indirect

using the environment to deposit information that other

organisms can sense (e.g. pheromone in ants colonies,

morphogens in the specialisation of cells, etc).

The biological model may be summarised by two layers:

organisms and environment, see Fig. 1a. In order to create

a computational model inspired by the biological model, a

new layer is added, Fig. 1b. This new layer, called the

infrastructure layer, is necessary because, in an engineered

system, the software agent must be hosted in a device with

44 J. L. Fernandez-Marquez et al.

123

computational power that provides the agents with the

ability to interact with the environment (i.e. sensing the

environment through sensors or acting in the environment

through actuators) and to communicate with other agents.

The entities proposed in the computational model are:

(a) the agents, that are autonomous pro-active software

entities, (b) the infrastructure, that contains hosts with

computational power, sensors and actuators and (c) the

environment, the real world space where the infrastructure

is located. Events are phenomena of interest that appear in

the environment, can be sensed by the agents using the

host’s devices. Each agent needs a host to be executed, to

communicate with other agents, to sense events or to act in

the environment. Thus, the infrastructure provides the

agents with all the necessary tools to simulate organisms’

behaviour and a place where information can be stored and

possibly read by other agents. In most biological processes,

the environment plays a key role, due to its ability to act

over the entities present in the system (e.g. spreading and

removing chemical signals in the environment). To tackle

this ability, each host in the infrastructure has an embedded

software, called Infrastructural Agent (IA). Both IA’s and

agent’s behaviours must be designed to follow self-

organising patterns. IAs play an important role when agents

can move freely over the hosts. For instance, IAs may be

responsible for managing information deposited in hosts by

the agents or spreading information over other hosts. In

other cases, the IA stands for software embedded into a

middleware providing built-in features (e.g. evaporation of

digital pheromone).

Figure 2 shows the different layers of the computational

model and their corresponding interactions. The top layer

represents software agents in the system. Agents use the

infrastructure layer to host themselves, communicate with

each other, sense and act with the environment and to

deposit information that other agents can read. There are

two variants in the model: when agents can move freely

over the hosts (e.g. mobile agents) or when they are cou-

pled to the host (e.g. swarm of robots). The separation

between the agents layer and the infrastructure enables to

cover a larger variety of scenarios. On the one hand,

software agents may be mobile or may be coupled with

hosts. On the other hand the infrastructure may be fixed

(i.e. stationary hosts) or mobile. Mobile hosts may be

controlled by the agents (e.g. a robot) or not (e.g. PDA’s

movements under the control of its owner). This is typical

of pervasive scenarios where several mobile devices, such

as, PDAs, laptops, or mobile phones are located in a

common physical space (e.g a shopping mall, a museum,

etc.), forming what is usually referred to as an opportu-

nistic infrastructure, where the nodes are moving according

to the movements of the user carrying them, and the agents

freely jump from one node to another. An example of this

architecture is the Hovering Information Project (Fernan-

dez-Marquez et al. 2011), where information is an active

entity storing itself and its replica according to some

specified spatial structure. Sensor networks are instead a

good example of systems where agents are mobile and

hosts are not but, on the other hand, they also well repre-

sent systems where not only hosts but also agents are static,

as reported in (Vinyals et al. 2011).

To summarise, the entities used in the computational

model are:

– Agents: they are autonomous and pro-active software

entities running in a host.

– Infrastructure: the infrastructure is composed of a set of

connected Hosts and Infrastructural Agents. A Host is

an entity with computational power, communication

capabilities and may have sensors and actuators. Hosts

provide services to the agents. An Infrastructural Agent

is an autonomous and pro-active entity, acting over the

system at the infrastructure level. Infrastructural Agents

may be in charge of implementing those environmental

behaviours present in nature, such as diffusion, evap-

oration, aggregation, etc.

– Environment: the Environment is the real world

space where the Infrastructure is located. An Event is a

phenomenon of interest that appears in the Environment

Organisms

Environment

Environment

Software Agents

Infrastructure

Host Agents, memory, sensors, actuators...

Infrastructural Agents

 Biological Model Computational Model(a) (b)

Fig. 1 Relevant entities of the biological and computational models

Environment

H1IA1

H2IA2

H3IA3

H4IA4
H5IA5

H6IA6

A1

A2

A4

A3

En
vi

ro
nm

en
t

In
fra

st
ru

ct
ur

e

Ag
en

ts

Fig. 2 Computational model

Description and composition of bio-inspired design patterns 45

123

and that may be sensed by the Agents using the sensors

provided by the Hosts.

In this paper, we regard a system as composed of

Agents, Infrastructure, Infrastructural Agents, Hosts, and

Environment. The behaviour of Agents and Infrastructural

Agents is defined by a set of rules (hereafter referred to as

transition rules), while Hosts are defined by the interface

they provide.

4 Design patterns as part of methodologies for self-

organising systems

Current methodologies for self-organising systems (Puvi-

ani et al. 2012) follow the typical phases of software

engineering methodologies: requirements, analysis, design,

implementation, verification and test. Even though these

methodologies all put focus on different aspects, they each

accommodate a specific design phase where interaction

mechanisms are identified, modelled, refined and possibly

simulated. Consequently, self-organising design patterns

are best exploited during the design phase of a chosen

methodology.

The design patterns come into play during the design

phase, which we propose to split into three distinct steps

(Fig. 3): (1) the choice of design patterns is made during an

early phase of design. Self-organising design patterns serve

to identify the problem to solve as well as to determine the

appropriate solution to bring to the problem. In particular,

they help determining the boundaries of each problem and

its corresponding solution provided by the pattern; (2)

during a refined phase, actual entities and their dynamics

are defined. The patterns’ dynamics serve to refine the

model and to identify the entities and their precise inter-

actions, individual responsibilities and to anticipate the

emergent behavior; (3) finally, during the simulation step,

the patterns implementation description will serve to

establish implementation details in relation with the

underlying computational model. These three steps can be

iterated in a loop in order to progressively refine or review

the model. An important issue with self-organising mech-

anisms concerns the parameters tuning. Patterns come with

a description of the main parameters involved in the pattern

and their effect on the resulting behavior. The simulation

phase is then crucial for determining the parameters values.

5 Design patterns’ catalogue

To create the patterns’ catalogue, we analysed the inter-

relations among the self-organising mechanisms for engi-

neering self-systems existing in the literature, in order to

understand how they work and to facilitate their adaptation

or extension to tackle new problems. The classification

process started by selecting those high-level mechanisms

that are well-known in the literature and have been applied

successfully to different self-* systems. By analysing their

behaviours, we identified common lower-level mechanisms,

some of them basic (atomic) and other composed of basic

ones. As a result, we classified the patterns into three layers.

The basic mechanisms that can be used individually or in

composition to form more complex patterns are at the bottom

layer. At the middle layer, there are the mechanisms formed

by combinations of the bottom layer mechanisms. The top

layer contains higher-level patterns that show different ways

to exploit the basic and composed mechanisms.

Figure 4 shows the different design patterns collected in

the catalogue and their relations. The arrows indicate how the

patterns are composed. A dashed arrow indicates that it is

optional (e.g. the Gradient Pattern can use evaporation, but

the evaporation is not necessary to implement gradients).

This classification aims at listing existing mechanisms

from the literature, identifying their own boundaries (i.e.

when one mechanism stops, and when another starts), their

inter-relations and the recurrent problem they solve. For

example, Gossip has been applied to many works in dif-

ferent ways, but all implementations share the fact that

Analysis

Design

Implementation

Verification
Test

Requirements

Early Design
Phase

Refined
Design Phase

Simulation

Design Pattern Choice
Transition rules

Environment

Computational model

Methodology

Design Phase Design Patterns

Fig. 3 Design patterns within the design phase of SO methodologies

H
ig

h
Le

ve
l

 P
at

te
rn

s

C
om

po
se

d
P

at
te

rn
s

B
as

ic
P

at
te

rn
s

ForagingFlocking

GossipDigital Pheromone

MorphogenesisQuorum Sensing

Evaporation AggregationRepulsion

Gradients

Chemotaxis

Spreading

Fig. 4 Patterns and their relationships

46 J. L. Fernandez-Marquez et al.

123

gossip is a process composed of the spreading and aggre-

gation mechanisms. The catalogue provided in this paper

does not intend to be exhaustive. Instead it is meant to be

open to new additions. New basic (atomic) mechanisms

can be added to the catalogue once they are identified and

described under the form of patterns. Similarly, any new

identified combination of basic or higher level patterns can

be as well added to the catalogue.

Patterns are described in Table 1. For each pattern,

besides its name and other known appellations, the problem

it addresses and the solution it provides are clearly iden-

tified. Additional fields precise the biological inspiration

for the pattern, the effect of key parameters involved in the

pattern, the entities involved and their dynamics, as well as

environmental requirements. Implementation or simulation

descriptions are provided, together with references to

known uses in the literature, consequences of the use of the

pattern and a list of other patterns that are used by or that

exploit the considered pattern.

The behaviour of patterns is described through transition

rules using the following simple notation. Each information

in the system is modelled as a tuple hL;Ci; where L is the

location where the information is stored, and C is its cur-

rent content, e.g. in the form of a list with one or more

arguments of different types, such as numbers, strings or

structured data, according to the application specific

information content.

Transition rules are chemical-resembling reactions

working over patterns of tuples. They are of the kind:

name :: hL1;C1i; . . .; hLn;Cni�!
r hL01;C01i; . . .; hL0m;C0mi

where (i) the left-hand side (reagents) specifies which tuples

are involved in the transition rule: they will be removed as an

effect of the rule execution; (ii) the right-hand side (products)

specifies which tuples are accordingly to be inserted back in

the specified locations: they might be new tuples, transfor-

mation of one or more reagents or even unchanged reagents;

and (iii) rate r is a rate, indicating the speed/frequency at

which the rule is to be fired, namely, its scheduling policy.

Rules are then equipped with a set of transition rules that

determine the right-hand side variables as functions of the

left-hand side ones. Such functions (including e.g. evapo-

ration slope) may be subject to conditions and constrains,

which will be specified together with the reaction. Note that

such functions could be:

1. fixed parameters of the system we model;

2. automatically extracted from reagents, e.g. an infor-

mation item also stores the function it should be

applied to; or

3. actually specified in the transition rule.

Our model of transition rules intentionally abstracts

from these aspects. As a notational convenience, we will

use notation fx; y; z; . . .g for sets, and ðx; y; z; . . .Þ for

ordered sequences.

5.1 Basic patterns

Basic patterns are atomic patterns, used to compose more

complex patterns appearing at the middle layer (Sect. 5.2)

and at the top layer (Sect. 5.3). These patterns describe

basic mechanisms that have been frequently used in the

literature.

5.1.1 Spreading pattern

The Spreading Pattern is based on direct communication

among agents for progressively sending information over

Table 1 Description fields

Name The pattern’s name

Aliases Alternative names used for the same pattern

Problem Which problem is solved by this pattern and situations where the pattern may be applied

Solution The way the pattern can solve the problems

Inspiration Biological process inspiring the pattern

Forces Prerequisites for using the pattern and aspects of the problem that lead the implementation, including parameters (trade-offs)

Entities Entities that participate in the pattern and their responsibilities. Entities are agents, infrastructural agents, and hosts

Dynamics How the entities of the pattern collaborate to achieve the goal. A Typical scenario describing the run-time behaviour of the

pattern

Environment Infrastructural requirements of the pattern

Implem./

simulation

Hints of how the pattern could be implemented, including parameters to be tuned

Known uses Examples of applications where the pattern has been applied successfully

Consequences Effect on the overall system design

Related patterns Reference to other patterns that solve similar problems, can be beneficially combined or present conflicts with this pattern

Description and composition of bio-inspired design patterns 47

123

the system. The spreading of information in multi-agent

systems allows the agents to increment the global knowl-

edge of the system. Figure 5 shows the different steps of

the spreading process: (a) an agent initiates the spreading

process (black node); (b) the information spreads over the

network; and (c) the process finishes when information

reaches all the nodes in the network.

Aliases: spreading is also known as information diffu-

sion (Khelil et al. 2002), information or data dissemination

(Sabbineni 2005), flooding (Yi 2003), broadcast (Tseng

et al. 2002), or epidemic spreading (Khelil et al. 2002).

Problem: in systems, where agents perform only local

interactions, agents’ reasoning suffers from the lack of

knowledge about the global system.

Solution: a copy of the information (received or held by

an agent) is sent to neighbours and propagated over the

network from one node to another. Information spreads

progressively over the system and reduces the lack of

knowledge of the agents while keeping the constraint of the

local interaction.

Inspiration: spreading is a basic pattern extended or

exploited by most other patterns presented in this cata-

logue. Spreading appears in important processes, such as,

Morphogenesis, Chemotaxis or Quorum Sensing (Sect. 5.3)

In nature, spreading is a process done by the environment.

Forces: if spreading occurs with high frequency, the

information spreads over the network quickly but the

number of messages increases. A quick spread is desired

when the environment is continuously changing and the

agents must know the new values and adapt themselves. It

may happen that the information is only interesting for

agents close to the source. In that case, the information

spreads only up to a determined number of hops, reducing

the number of messages. Another way to reduce the

number of messages is to determine the number of neigh-

bouring nodes that receive the information. It was dem-

onstrated that it is not necessary to send the information to

all the neighbouring nodes in order to ensure that every

node has received the information (Birman et al. 1999).

Entities-Dynamics-Environment: the entities involved in

the spreading process are the hosts, agents, and infra-

structural agents. The spreading process is initiated by an

agent that first spreads the information in the host it is

residing in. When this information arrives to neighbouring

nodes, the infrastructural agent is in charge to re-send the

information to neighbouring nodes, producing the spread-

ing of the information over the whole system.

Each infrastructural agent forwards the information

received to a specified number of neighbours and up to the

specified number of hops. The dynamics is usually exten-

ded to avoid infinite loops and wasted duplicate deliveries

(e.g. when one agent receives the same information it has

sent before, the agent does not resend that information).

Transition Rule (1) describes more formally the

Spreading Pattern.

spreading :: hL;Ci�!
rspr hL1;C1i; . . .;hLn;Cni

where ðL1; . . .;LnÞ¼ mðLÞ;ðC1; . . .;CnÞ¼ rðC;LÞ
ð1Þ

A function m(L) is given for determining the sequence of

locations, among the neighbours of L, to which the infor-

mation in input has to be spread. The set of such locations

cannot be empty, cannot be composed of L only, but can be

composed of all the neighbourhood of L including L itself.

Start

Broadcast the inf.
received

Stop

input event?

yes

No

Same value
broadcasted

before?

yes

 no

Infrastructural Agent behaviour

HostAgent
Neighbour

Hosts

send(inf)

send(inf)

Initialisation

check inf.

Host
Infrastructural

Agent
Neighbour

Hosts

send(inf)
send(inf)

send(inf)
send(inf)

Interactions(a) (b) (c)

Fig. 5 Spreading: infrastructural agent behaviour (a), corresponding initialisation (b), and interactions with its host and neighbouring hosts (c)

48 J. L. Fernandez-Marquez et al.

123

A function r(C, L) is given for computing the new infor-

mation content, which may change within the spreading

process.

Implementation: the most common algorithm used to

spread the information to the neighbours is the broadcast

algorithm.

It is well known that broadcast causes what is called as

the Broadcast Storm Problem (Tseng et al. 2002). The

Broadcast Storm Problem appears when the radius of the

signal of many nodes overlaps. Thus, a straightforward

broadcasting by flooding will result in serious redundancy,

contention and collision. In order to solve the Broadcast

Storm Problem, an optimised broadcast can be imple-

mented, which can follow a probabilistic, counter-base,

distance-base, location-base or cluster-base schema (Tseng

et al. 2002). As time goes by, new proposals for efficient

ways of spreading the information are proposed.

This work presents a basic implementation to illustrate

how spreading works and how it has been implemented in

the literature. Further comparison between different kinds

of spreading implementations and their performances is out

of the scope of this work.

Figure 5a shows the flow chart where the information

spreads after it is received. Figure 5b shows the interaction

diagram of the spreading initialisation. Figure 5c repre-

sents the interactions when the information arrives to a

neighbour.

Known uses: the spreading mechanism has been applied

to several applications: Swarm motion coordination

(Parunak et al. 2002), coordination in games (Mamei

2004), and problem optimisation (Blu 2005). More refer-

ences of applications can be found in higher level patterns

that exploit the Spreading Pattern (i.e. Gradient Pattern,

Morphogenesis Pattern, Chemotaxis Pattern and Quorum

Sensing Pattern).

Consequences: when the Spreading Pattern is applied,

the agents in the system sense information from beyond

their local sensing. Then, there is an increment of the

network load (i.e. messages and memory). This increment

becomes extreme when the environment is very dynamic

and the agents have to keep the information updated as

soon as possible.

Related Patterns: spreading is used in higher level pat-

terns such as Gradient (Sect. 5.2.1), Morphogenesis (Sect.

5.3.3), or Chemotaxis Pattern (Sect. 5.3.2).

5.1.2 Aggregation pattern

The Aggregation Pattern is a basic pattern used for infor-

mation fusion. The dissemination of information in large

scale systems, either deposited by the agents or taken from

the environment, may produce network and memory

overload. The Aggregation Pattern was introduced as a way

to reduce the amount of information in the system by

synthesising meaningful information (Gardelli et al. 2007).

Alias: aggregation is also known as fusion (Niu 2005).

Problem: in large systems, excess of information pro-

duced by the agents may produce network and memory

overloads. Information must be distributively processed in

order to reduce the amount of information and to obtain

meaningful information.

Solution: aggregation consists in locally applying a

fusion operator to process the information and synthesise

macro information. This fusion operator can take many

forms, such as filtering, merging, aggregating, or trans-

forming (Chen 2002).

Inspiration: in nature, the aggregation (sum) of ant’s

pheromones allows the colony to find the shortest path to

the food, and to discard longer paths. (i.e. two pheromone

scents together create an attractive field bigger than a

single pheromone scent). In nature the aggregation is a

process performed by the environment. Even when there

are no agents present in the system, the environment con-

tinues performing the aggregation process.

Forces: aggregation applies to all the information

available locally or only on part of that information. The

parameter involved is the amount of information that is

fused; it relates to the memory usage in the system.

Entities-Dynamics-Environment: aggregation is executed

either by agents or by infrastructural agents. In both cases the

agents aggregate the information they access locally.

Information may come from the environment or from other

agents. Information coming from the environment is typi-

cally read by sensors (e.g. temperature, humidity, etc.).

According to the model presented in Sect. 3, aggregation is

executed by an agent that receives information from the

host where the agent is residing. Such host is either a sensor

reading information from the environment or a communi-

cation device receiving information from neighbouring

hosts. Aggregation may be applied by any agent that

receives information independently of the underlying

infrastructure. The aggregation process is not repetitive and

finishes when one agent executes the aggregation function.

The Transition Rule for aggregation (2) is as follows:

information in input (possibly a set of information) is

transformed into a new set of information with smaller

cardinality then the input set through an aggregation

function a.

aggregation :: hL;C1i; . . .; hL;Cni�!
raggr hL;C01i; . . .; hL;C0mi

where fC01; . . .;C0mg ¼ aðfC1; . . .;CngÞ ð2Þ

Implementation: available information takes the form of

a stream of events. Aggregation or fusion of information

can take various forms: from a simple operator (sum,

multiplication or average) like in ACO, to more complex

Description and composition of bio-inspired design patterns 49

123

operators (e.g. Kohonen Self-Organising Maps aggregating

sensor data in clusters, Lee 2004). Fusion operators are

classified into four different groups (Chen 2002): (1) filter:

this operator selects a subset of the received events (e.g. the

sensor takes 10 measures per second, but the application

processes only 1 per second); (2) transformer: this operator

changes the type of the information received in input (e.g.

inputs are GPS coordinates and outputs are the countries

where the positions are located); (3) merger: this operator

unifies all information received and outputs all information

received as a single piece of information (e.g. input is the

position of many sensors and the output is the corresponding

tuple of positions); (4) aggregator: this operator applies a

specific operation (e.g. max, min or avg) to one or more

incoming information; input and output types can all be

different. The flow chart 6a shows that the aggregation

process starts when the agent receives the information (an

event). Then, it applies the fusion operator and sends the

aggregated information back to the host. Figure 6b shows

how the agent or infrastructural agent uses the interface

provided by the host to get the data, applies a fusion operator,

and deposits the aggregated data back in the host.

Known uses: aggregation has been used in the ACO

algorithm (Dorigo 1999) to aggregate pheromones, emulating

higher concentrations when two or more pheromones are

close to each other. Aggregation is also used in digital pher-

omones for autonomous coordination of swarming UAVs

(Parunak et al. 2002). Moreover, aggregation has been used

in the field of information fusion, which studies how to

aggregate individual belief bases into a collective one

(Grégoire 2006), or for truth-tracking in MAS (Pigozzi 2007).

Consequences: aggregation increases the efficiency in

networks (e.g. sensor networks, ad-hoc or P2P), by reducing

the number of messages, i.e. increasing the battery life and

the scalability of the system. Also aggregation provides a

mechanism to extract macro-information in large-scale

systems, such as extracting meaningful information from

data reads obtained from many sensors. Thus, the amount of

memory used by the system is reduced.

Related Patterns: the Aggregation Pattern can be

implemented together with Evaporation and Gradient Pat-

terns to form digital pheromones (Parunak et al. 2002).

Evaporation can be used with aggregation in order to

aggregate information recently collected from the envi-

ronment. The Gossip Pattern (Sect. 5.2.3) is a pattern

composed of the Aggregation Pattern and the Spreading

Pattern (Sect. 5.1.1).

5.1.3 Evaporation pattern

Evaporation is a pattern that helps dealing with dynamic

environments where information used by agents can

become outdated. In real world scenarios, the information

appears and changes with time and its detection, prediction,

or removal is usually costly or even impossible. Thus,

when agents have to modify their behaviour taking into

account information from the environment, information

gathered recently must be more relevant than information

gathered a long time ago. Evaporation is a mechanism that

progressively reduces the relevance of information. Thus,

recent information becomes more relevant than informa-

tion processed some time ago. Evaporation was proposed

as a design pattern for self-organising multi-agent systems

in (Gardelli et al. 2007) and is usually related to Ant

Colony Optimisation (ACO) (Dorig 1992).

Aliases: evaporation is also known as decay (Huebel

et al. 2008), temporal degradation function (Ye et al. 2008)

or freshness (Ranganathan et al. 2004).

Problem: outdated information cannot be detected and it

needs to be removed, or its detection involves a cost that

needs to be avoided. Agent decisions rely on the freshness

of the information presented in the system, enabling correct

responses to dynamic environments.

Solution: evaporation is a mechanism that periodically

reduces the relevance of information. Thus, recent infor-

mation becomes more relevant than older information.

Inspiration: evaporation is present in nature. For

instance, in ant colonies (Deneubourg et al. 1983), when

ants deposit pheromones in the environment, these phero-

mones attract other ants and drive their movements from

the nest to the food and vice-versa. Evaporation acts over

the pheromones reducing their concentration along the time

until they disappear. This mechanism allows the ants to

find the shortest path to the food, even when environment

changes occur (such as, new food locations or obstacles in

the path). Ants are able to find the new shortest paths by

discarding the old paths.

Flow

Host

Infrastuctural
Agent or

Agent
data_req()

send_data()

Apply
Aggregation

send_data_aggr()

Store
Aggregated

Data

Interaction(a) (b)

Fig. 6 Aggregation: agent behaviour

50 J. L. Fernandez-Marquez et al.

123

Forces: evaporation is controlled by the parameters

evaporation factor (i.e. how much the information is

evaporated) and the evaporation frequency (i.e. frequency

of evaporation execution), used to decrement the relevance

of the information. The evaporation factor and evaporation

frequency must deal with the dynamics of the environment:

if evaporation is too fast, we may lose information; if

evaporation is too slow, the information may become

outdated and misguide the agents’ behaviour. A higher

evaporation factor releases memory, but also reduces the

information available in the system for the agents. When

the evaporation is applied to collaborative search or opti-

misation algorithms, the evaporation factor controls the

balance between exploration and exploitation: high evap-

oration rates reduce agents’ knowledge about the envi-

ronment, increasing the exploration, and producing fast

adaptation to environment changes. However, a higher

evaporation factor decreases the performance when no

environment changes occur (due to an excess of

exploration).

Entities-Dynamics-Environment: evaporation can be

applied to any information present in the system. Periodi-

cally, its relevance decays over time. Thus, recent infor-

mation becomes more relevant than information processed

some time ago.

Evaporation is performed by the agent or infrastructural

agent periodically executing Transition Rule (3).

evaporation :: hL;Ci�!rev hL;C0i

where C0 ¼ �ðCÞ
ð3Þ

The rule affects the relevance value contained in C

applying the function � that can, for instance, impose that

RelC’ = RelC * Evfactor with Evfactor 2 ½0; . . .; 1� or that

RelC’ = RelC - Evfactor. The requirement for �ðCÞ is that

the relevance value decreases with the application of the

rule.

Implementation: the Evaporation Pattern is executed

by an agent that needs to update the relevance of its

internal information, or by infrastructural agents that

change the relevance of the information deposited in an

environment. We distinguish two approaches. In the first

approach, an agent encapsulates the information and

decays its own relevance. In this case, the agent follows

the flow chart 7a and the corresponding interaction dia-

gram 7b. In the second approach, the information is

deposited by one agent in a host and an infrastructural

agent interacts with the host to decay the information’s

relevance. The host provides an interface for reading and

changing the relevance value. In this case, the interaction

between the infrastructural agent and the host is shown

in Fig. 7c.

Known uses: evaporation has been used mainly in

Dynamic Optimisation. Examples of algorithms using

evaporation are ACO (Dorigo 1999) and Quantum Swarm

Optimisation Evaporation (QSOE) (Fernandez-Marquez

2009). In some other works, evaporation is performed

using a parameter called freshness associated to the infor-

mation (Weyns et al. 2006).

Consequences: evaporation enables adaptation to envi-

ronmental changes. However, the use of evaporation in

static scenarios may decrease the performance, due to the

loss of information associated to this mechanism. The

Evaporation Pattern provides the ability of self-adapting to

environmental changes increasing the tolerance to noise, as

shown in (Fernandez-Marquez 2010).

Related Patterns: the Evaporation Pattern is used by

higher level patterns such as Digital Pheromone Pattern

(Sect. 5.2.2) or Gradient Pattern (Sect. 5.2.1).

5.1.4 Repulsion pattern

The Repulsion Pattern is a basic pattern for motion coor-

dination in large scale MAS. The Repulsion Pattern enables

Rel(Inf) > 0 ?

Start

Apply Evap.Stop

YesNo

rev?

yesNo

Agent flow

A

get_rel(inf)

set_rel(inf)

Apply Evap.
Process

Agent

H
Inf.
Ag.

get_rel(Inf)

rel(inf)

Apply Evap.
Process

set_rel(Inf)

Agent - Host(a) (b) (c)

Fig. 7 Evaporation: agent

behaviour (a), evaporation by

the agent itself (b), evaporation

by the host (c)

Description and composition of bio-inspired design patterns 51

123

the agents to get a uniform distribution in a specific area or

to avoid collision among them. Moreover, using repulsion,

agents can adapt their position when the desired area

changes or when some nodes disappear.

Alias: none to our knowledge.

Problem: agents’ movements have to be coordinated in a

decentralised manner in order to achieve a uniform distri-

bution and to avoid collisions among them.

Solution: the Repulsion Pattern creates a repulsion

vector that guides agents to move from regions with high

concentrations of agents to regions with lower concentra-

tions. Thus, after few iterations agents reach a more uni-

form distribution in the environment.

Inspiration: the repulsion mechanism appears in a wide

range of biological self-organising processes, such as the

diffusion process in physical science, the flocking of birds or

schools of fish. For instance, the diffusion process describes

the spread of particles through random motion from regions

of higher concentration to regions of lower concentration.

Figure 8 illustrates the different steps of the diffusion pro-

cess. First, a concentration of ink is deposited in the glass of

water, step (a). We observe the initial state where the par-

ticles concentrate in one corner of the glass. The corner with

the particles, therefore, contains a higher concentration of

ink’s particles. Second, the particles begin to move in the

diffusion process, from regions of higher concentration to

regions of lower concentration, step (b). The closer the

particles are to the corner, the higher the concentration, thus

creating a so called concentration gradient. This gradient is

provided by the difference in concentration between

neighbouring particles. Finally, we observe how the diffu-

sion process has randomly moved around all the particles

inside the water, producing a uniform random distribution

of the particles. At this point the different ink’s concentra-

tions disappear. Inside a container, the particles reach a

uniform distribution after the diffusion process. However, in

an open space, the diffusion process spreads the particles

until the concentration is so low that it is considered neg-

ligible. As Fig. 8 shows, the diffusion process finishes when

the particles reach a uniform distribution, i.e. when the

concentration gradient becomes zero. The repulsion mech-

anism is also alternatively presented as inspired by the gas

theory (Cheng et al. 2005). In the case of gas theory, the

time to reach a uniform concentration is shorter than in the

case of the diffusion process.

Forces: the main parameters involved in the Repulsion

Pattern are the repulsion frequency (i.e. how frequent the

repulsion is applied) and the repulsion radius (i.e. how

strong the repulsion is). A high repulsion frequency

involves a faster spreading of the agents and a faster

adaptation when the desired formation (or area) changes.

However, it increases the number of messages, because the

Repulsion Pattern requires information about the position

of neighbours. The repulsion radius should be limited to the

communication range of the agents, because it makes not

sense to move to one location where the concentration of

agents is unknown and also because the agent can not jump

to a host that is not in the communication radius. Thus, the

movement of one agent in each repulsion step must be

restricted to its communication range.

Entities-Dynamic-Environment: repulsion can be applied

in systems where the agents are residing in mobile hosts (e.g.

robotic swarms) or in software agents that are moving freely in

a network composed of (stationary or not) hosts. In both cases

the dynamics between them is the same. When repulsion is

applied, the agent that executes the repulsion sends a position

request to all its neighbouring agents. After the agent receives

the positions of neighbouring hosts, it calculates the desired

position and moves to that position. When the environment is

not continuous, as in the mobile agents case, the agent moves

to the host closest to the desired position. In this case the

position request must be sent also to the hosts.

To apply the Repulsion Pattern, each agent should know

its position and its neighbourhood. The Repulsion Pattern

may apply also to information that might need to be spa-

tially distributed.

Transition Rule (4) precises the repulsion behaviour:

repulsion :: hL;Ci; hL1;C1i; . . .; hLn;Cni�!
rev

hL0;Ci; hL1;C1i; . . .; hLn;Cni

where L0 ¼ qðfhL;Ci; hL1;C1i; . . .; hLn;CnigÞ ð4Þ

A function qðfhL;Ci; hL1;C1i; . . .; hLn;CnigÞ is given for

computing the new location of the information or of the

agent according to the spatial distribution of the neighbours

and to its actual position. An example of such a function

follows. Function q depends also on the values of attributes

contained in C, for instance the concentration of particles

in each location.

Implementation: one possible implementation to reach a

uniform distribution, involves a transition rule that calcu-

lates a repulsion vector between the particles that is

inversely proportional to the distance between them. The

transition rule is then implemented as follows: Let R be the

repulsive radius; di the distance between a given node andFig. 8 Diffusion in science

52 J. L. Fernandez-Marquez et al.

123

neighbouring node i; p the position of the given node and pi

the position of the neighbouring node i. Then, the position

pt?1 of the agent at time t ? 1 and the movement vector m

are given by:

ptþ1 ¼ pt þm ð5Þ

m ¼
X

i

p� pi

di
ðR� diÞ ð6Þ

Figure 9 shows how agent 1 is repelled by agents 2 and

3 when it applies the repulsion mechanism. In Fig. 9a agent

1 executes Eq. (6) to create the repulsion vector. In Fig. 9b

agent 1 moves by following the repulsion vector.

Figure 10a shows the behaviour of an agent that is

executing the Repulsion Pattern. At the beginning the

agents send a position request to all the agents in the

communication range. When positions are received, the

repulsion vector is calculated following Eq. (6) and then,

the new desired position by using Eq. (5). At this step if the

system is composed of a swarm of robots, the robot that is

executing the Repulsion Pattern would move to the desired

position. If the Repulsion Pattern is executing using a

mobile agents technology, the agent would move to the

closest node to the desired position. Figure 10b shows the

interaction between the agent that is executing the Repul-

sion Pattern, the host where the agent is running and their

neighbouring hosts.

Known uses: repulsion has not been proposed as a pat-

tern so far. Several applications have used the repulsion

mechanism, such as swarm robotics for pattern formation

(Cheng et al. 2005), where the system achieves shape

formation by simultaneously allowing agents to disperse

within a defined 2D shape. In Particle Swarm Optimisation

(PSO), Repulsion coordinates the position of explorer

particles in a multi-swarm approach (Fernandez-Marquez

2009). In (Fernandez-Marquez et al. 2011), the repulsion is

used to coordinate the position of pieces of information,

ensuring the accessibility to this information in a specific

area of interest using the minimum possible memory.

Consequences: repulsion does not involve replication,

i.e. during the repulsion process no new agents are created,

contrarily to spreading. Repulsion is a continuous process

that produces a uniform distribution of the agents in the

system. Even when the agents are uniformly distributed in

the environment, the repulsion mechanism continues

working, producing a self-adaptation process when the

number of agents changes (i.e. self-repairing formation in

swarms of robots) or environmental changes occur.

Related Patterns: the Repulsion Pattern is used in the

Flocking Pattern (Sect. 5.3.5).Fig. 9 Repulsion

Start

Calculate
Repulsion()

Received
Positions?

yes
No

SendPositionReque
stToNeighbours()

CalculateDesired
Position()

MoveToHostClosest
ToNewPosition()

Flow

HostAgent Neighbouring
Hosts

SendPositionRequest()

SendPositionRequest()

SendPosition()
SendPosition()

CalculateRepulsion
Vector()

CalculateDesired
Position()

MoveToHostClosest
ToNewPosition() MoveToHostClosest

ToNewPosition()

Interactions(a) (b)

Fig. 10 Repulsion: agent

behaviour

Description and composition of bio-inspired design patterns 53

123

5.2 Composed patterns

This section analyses compositions of basic patterns,

widely used in the literature. It provides composed patterns

that can be used on their own or extended in turn by higher

level patterns.

5.2.1 Gradient pattern

The Gradient Pattern is an extension of the Spreading Pattern

where the information is propagated in such a way that it

provides an additional information about the sender’s dis-

tance: either a distance attribute is added to the information;

or the value of the information is modified such that it reflects

its concentration - higher concentration values meaning the

sender is closer, such as in ants’ pheromones. Additionally,

the Gradient Pattern uses the Aggregation Pattern to merge

different gradients created by different agents or to merge

gradients coming from the same agent but through different

paths. Different cases may apply: either only the information

with the shortest distance to the sender is kept, or the con-

centration of the information increases.

Aliases: the Gradient Pattern is a particular kind of

computational fields (Bea 2009) (i.e. physical fields based

abstractions).

Problem: agents belonging to large systems suffer from

lack of global knowledge to estimate the consequences of

their actions or the actions performed by other agents

beyond their communication range.

Solution: information spreads from the location it is

initially deposited and aggregates when it meets other

information. During spreading, additional information

about the sender’s distance and direction is provided:

either through a distance value (incremented or decre-

mented); or by modifying the information to represent its

concentration (lower concentration when information is

further away). Thus, agents that receive gradients have

information that come from beyond their communication

range, increasing the knowledge of the global system not

only with gradients information but also with the direction

and distance of the information source. During the

aggregation process, a filter operator keeps only the

information with the highest (or lowest) distance, or it

modifies the concentration. Gradients can deal with net-

work topology changes. In this case the information

spreads periodically and is subject to evaporation,

reducing its relevance along the time, and enabling the

gradients to adapt to networks topology changes. Such

gradients are called active gradients (Clement 2003).

Inspiration: gradients appear in many biological pro-

cesses. The most known are Ant Foraging, Quorum Sens-

ing, Morphogenesis, and Chemotaxis processes. In these

processes, gradients support long-range communication

among entities (cells, bacteries, etc..) through local

interaction.

Forces: adaptation to environmental changes is faster

when updating frequencies are high, thus increasing net-

work overload. Lower updating frequencies reduce net-

work overload, but can lead to outdated values when

environmental changes occur. There is a trade-off between

the diffusion radius (number of hops) and the load in the

network. A higher diffusion radius brings information

further away from its source, providing guidance to distant

agents. However, it increments the load and may over-

whelm the network (Bea 2009).

Entities-Dynamic-Environment: entities acting in the

Gradient Pattern are Agents, Hosts, and Infrastructural

Agents. Analogously to the Spreading Pattern, when a

gradient is created, it is spread to its neighbours.

The transition rules for the Gradient Pattern are specific

instances of Transition Rule (1) and Transition Rule (2).

An example is given in Transition Rules (7). We assume

that each tuple contains a D attribute that represent the

distance from the current host to the source of the gradient.

spreading :: hL; ½D;C�i�!
rspr hLk; ½D� DD;C�i

where Lk ¼ randomðfL1; . . .; LngÞ

aggregation :: hL; ½D1;C�i; . . .; hL; ½Dn;C�i�!
raggr hL; ½D0;C�i

where D0 ¼ min=maxðfD1; . . .;DngÞ ð7Þ

The first transition rule models the spreading of informa-

tion modifying the distance attribute by incrementing or

decrementing its value so to get to a cone-shaped gradient

with the vertex down or up. Moreover, the rule specifies a

specific instance of the function m(L) introduced in Tran-

sition Rule (1) for determining the sequence of locations,

among the neighbours of L, to which the information in

input has to spread. Such a function randomðfL1; . . .; LngÞ
chooses randomly one location among all the neighbouring

locations of L. The second transition rule models the cor-

responding case of aggregation when multiple tuples with

the same content but different distance attribute are locally

present. This particular rule models the case of an aggre-

gation where only the information with the shortest / lon-

gest distance is kept. It is important to note that D could

also represent concentrations instead of distances.

Implementation: agents start the process by sending

information to all their neighbours, as shown in Fig. 11 b for

the case with distance value. When one agent receives the

information it increments the distance attribute, or it reduces

accordingly the concentration value of the information, and

forwards the gradient again to all its neighbours (Spreading

Pattern) as shown on diagram flow Fig. 11a and sequence

diagram Fig. 11b for the case with distance value. When a

host receives the gradient, infrastructural agents spread it

54 J. L. Fernandez-Marquez et al.

123

further. Notice that this pattern can be also executed by

agents. When an agent receives more than one gradient, it

employs aggregation (Aggregation Pattern) as shown on

sequence diagram Fig. 11c. For instance, it may filter only

the gradient with the lowest distance attribute.

Self-healing gradients (i.e. gradients that adapt to net-

work changes) and their implementations are proposed in

(Beal et al. 1969–1975; Viroli et al. 2011).

Known uses: the Gradient Pattern has been used in prob-

lems such as coordination of swarms of robots (Parunak et al.

2002), coordination of agents in video games (Mamei 2004),

or routing in AD-HOC networks (Perkins 1999).

Consequences: the Gradient Pattern adds an extra

information (distance). Distance can be used to limit the

number of hops during the spreading process.

Related Patterns: the Gradient Pattern is a composition

of the Spreading and Aggregation Patterns, extended with

the distance value or concentration information. It is used

by the Morphogenesis Pattern (Sect. 5.3.3), the Chemotaxis

Pattern (Sect. 5.3.2), and the Quorum Sensing Pattern

(Sect. 5.3.4). The Gradient Pattern may be combined with

the Evaporation Pattern to create active gradients to sup-

port adaptation when agents change theirs positions or

network topology changes.

5.2.2 Digital pheromone pattern

The Digital Pheromone Pattern is a swarm coordination

mechanism based on indirect communication. In this pat-

tern, agents deposit digital pheromones in hosts. A digital

pheromone is a mark that spreads a gradient over the

environment and persists in the environment for a while,

fading away with time. Other agents beyond the commu-

nication range can then receive the information conveyed

by digital pheromones. Digital pheromones are stored in

the hosts and stay active even when agents that deposited

digital pheromones disappear. Digital pheromones can be

identical to each others, like in Ant Colony Optimisation

Algorithm (Dorigo 1999) or can be specialised to a specific

task, like in swarming vehicle control (Sauter et al. 2005).

Digital pheromones are a particular case of stigmergy

communication. Stigmergy is more general and stands for

any indirect communication through the environment, not

necessarily a sign that behaves like a Digital Pheromone.

Alias: none to our knowledge.

Problem: coordination of agents in large scale envi-

ronments using indirect communication.

Solution: digital pheromone provides a way to coordi-

nate agent’s behaviour using indirect communication in

high dynamic environments. Digital pheromones create

gradients that spread over the environment, carrying

information about their distance and direction. Thus, agents

can perceive pheromones from the distance and increase

the knowledge about the system. Moreover, as time goes

by digital pheromones evaporate, providing adaptation to

environmental changes.

Inspiration: the Digital Pheromone Pattern takes inspi-

ration from ant colonies. Ant colonies are able to find the

shortest paths from the nest to food sources using local

interactions and indirect communication based on phero-

mones. Pheromones are deposited in the environment by

ants to mark the path they are following from the nest to

the food source and back. Pheromones quickly evaporate

so they must be continuously released to maintain the

information of the path. Colonies are able to adapt to

environment changes (such as, new obstacles, new food

sources, food sources that become empty, etc. . .).

Forces: the implementation of the Digital Pheromone

Pattern involves the implementation of the Gradient and

Evaporation Patterns in order to create an active gradient

Start

Broadcast
inf. incrementing

counter

Stop

input
events?

yes

No

Distance is
lower than
local one?

no

 yes

Aggregated inf.
(The one with
lower distance
stays stored)

HostAgent
Neighbour

Hosts

send(inf,0)

send(inf,0)
check inf and
aggregate.

Host
Agent or

Infras. Agent
Neighbour

Hosts

send(inf,d)
send(inf,d)

send(inf, d+1)
send(inf, d+1)

(a) (b) (c)

Fig. 11 Gradients: agent

behaviour (a), initialisation (b),

agent and infrastructural

agent (c)

Description and composition of bio-inspired design patterns 55

123

(Nagpa 2004). The main difference between active gradi-

ents and digital pheromones is that pheromone involves

indirect communication, while a gradient spreads from

agents to agents. Thus, the main forces to consider are the

following: (i) as for the Evaporation Pattern, how much and

how frequent evaporation is used at each iteration; (ii) as

for the Gradient Pattern, the Digital Pheromone Pattern is

composed of the Aggregation and Spreading Patterns, thus,

the more frequent the spreading of pheromone, the higher

the bandwidth used. In addition, spreading pheromones to

far away distances, allows more agents to receive the

information, but consumes more memory and bandwidth.

Entities-Dynamic-Environment: agents are the only

entities that can deposit pheromones. Pheromones are

deposited in hosts, infrastructural agents then apply

spreading, aggregation, and evaporation mechanisms (see

Appendix Table 2). Thus, pheromones are spread though

the network, aggregated in each host when two or more

pheromones’ information arrive, and evaporated along the

time until they disappear. During a pheromone life time,

the pheromone can be perceived even beyond the host’s

communication range, where the pheromone is actually

hosted, due to the effect of the Spreading Pattern.

The transition rule for the Digital Pheromone Pattern is

obtained composing the three basic patterns: Spreading,

Aggregation and Evaporation, as shown in Transition

Rules (8).

spreading :: hL; ½PhV ;C�i�!
rspr hLk; ½PhV�DPhV ;C�i

where Lk ¼ randomðfL1; . . .;LngÞ

aggregation :: hL; ½PhV1;C�i; . . .;hL; ½PhVn;C�i�!
raggr hL; ½PhVi;C�i

where PhVi¼maxðfPhV1; . . .;PhVngÞ

evaporation :: hL; ½PhV ;C�i�!rev hL; ½PhV 0;C�i

where PhV 0 ¼PhV �Evfactor ð8Þ

Similar to the Gradient Pattern, the first transition rule

models the spreading of information modifying the PhV

concentration attribute by decreasing its value by a DPhV

interval, representing for instance the distance between two

locations. The selection of the target location is the same as

for the Gradient Pattern. The second transition rule models

the corresponding case of aggregation where only the

pheromone with the biggest value is kept. The third tran-

sition rule models the evaporation of pheromones, with the

Evfactor in the range [0..1].

Implementation: digital pheromones are usually imple-

mented using multiplicative static evaporation (i.e. the same

evaporation factor is used periodically over the phero-

mone’s information). Independently of the patterns used to

implement the Digital Pheromone Pattern, pheromones can

be deposited in hosts, (i.e. following the proposed model),

simulated by software (Sauter et al. 2005), or implemented

using RFID sensors (Mamei 2007). In the Digital Phero-

mone Pattern, the agents just deposit pheromones and sense

from them. Infrastructural Agents are in charge of spread-

ing, aggregating and evaporating the pheromones. The way

the agents exploit the digital pheromones involves new

patterns that are explained in the next sections.

Known uses: digital pheromones have been used mainly

in autonomous coordination of swarming UAVs (Parunak

et al. 2002; Sauter et al. 2005). Moreover, applications of

digital pheromones can be found in the Ant Foraging

Pattern description (Sect. 5.3.1).

Consequences: as reported in (Sauter et al. 2005), the

implementation of Digital Pheromones for swarm coordi-

nation provides the following issues to the system: (1)

simplicity, compared with the logic necessary in a centra-

lised approach, (2) scalability, the digital pheromones work

in a totally decentralised manner, i.e. they are applicable in

large scale MAS, and (3) robustness, due to decentralisa-

tion and the continuous self-organising process the digital

pheromones provide, some agents may fail but the system

is robust enough to overcome these failures.

Related Patterns: the Digital Pheromone Pattern is

composed of the Evaporation and the Gradient Patterns, the

latter itself composed of the Aggregation and the Spreading

Patterns, so that we can say that the Digital Pheromone

Pattern involves the basic patterns Spreading and Evapo-

ration. All these patterns are described in Appendix Table 2.

The Digital Pheromone Pattern is exploited by the Ant

Foraging Pattern (Sect. 5.3.1) from the high level patterns.

5.2.3 Gossip pattern

The goal of the Gossip Pattern is to obtain a shared

agreement about the value of some parameters in the sys-

tem in a decentralised way. All the agents in the system

collaborate to progressively reach this agreement: all of

them contribute with their knowledge by aggregating their

own knowledge with the neighbours’ knowledge and by

spreading this aggregated knowledge. Thus, the Aggrega-

tion Pattern increases the knowledge and reduces the

uncertainty of a single agent by taking into account the

knowledge of other agents. Gossip was proposed as an

Amorphous computing primitive mechanism by Abelson

et al. (2000).

Alias: none to our knowledge.

Problem: in large-scale systems, agents need to reach an

agreement, shared among all agents, with only local per-

ception and in a decentralised way.

Solution: information spreads to neighbours, where it is

aggregated with local information. Aggregates are spread

further and their value progressively reaches the

agreement.

56 J. L. Fernandez-Marquez et al.

123

Inspiration: gossip is inspired from the human social

behaviour linked to spreading rumors. People add their

own information to information received from other peo-

ple, they increase their knowledge and spread this knowl-

edge further. When the process is repeated several times,

people start to share the same knowledge that results from

the sharing of the knowledge of different people.

Forces: the Gossip Pattern is composed of the Spreading

and Aggregation Patterns. It thus presents the same trade-

offs (see Sects. 5.1.1, 5.1.2). As in spreading, the main

problem of gossip is the network overload that is produced

by the continuous broadcast performed by the agents. In

order to reduce the network overload, optimised broadcast

can be applied (e.g. not all the neighbours receive the

information). The number of neighbours that receive the

information is the trade-off of this pattern. The more the

neighbours that receive the information, the more robust the

system is in the case of failures, but more network overload

is produced. Robustness is linked with the network density,

higher nodes’ adjacency leads to a more robust system.

Entities-Dynamics-Environment: the entities involved in

the gossip mechanism are agents, infrastructural agents and

hosts. Gossip is a composed pattern. The dynamics between

the entities is then the same as for aggregation and spread-

ing. Analogously to spreading, only an agent can initiate the

process. When one agent desires to initiate a gossip process,

it sends the information (e.g. parameters and values) to a

subset of its neighbours. If an agent is hosted in one of the

neighbouring nodes, the agent gets the information, aggre-

gates the information received with its own information and

re-sends the aggregated information to a subset of its own

neighbours nodes. The same behaviour is produced by the

infrastructural agents when no agent is hosted in one host

and the host receives an information, in this case the In-

frastructural Agent aggregates all the received information

and re-sends it. One agent or infrastructural agent ends the

gossip process when the information received and the

information previously sent are the same, that means that an

agreement has been reached.

Transition Rules (9) describe gossip. Information

received from the neighbours (denoted with the attribute

Recd) is aggregated to local information and sent to a set of

neighbours.

The first transition rule models the spreading of infor-

mation to a set of locations within the neighbourhood,

without modifying its content C, but indicating that the

information is sent by a neighbour. As for the spreading,

the set of such locations cannot be empty, cannot be

composed of L only, but can be composed of all the

neighbourhood of L including L itself. The second tran-

sition rule models the aggregation of the information

received with the local information producing a smallest

set of information that the agent then broadcasts again.

The process finishes when there is no more broadcast in

the system that means, the agents have reached an

agreement (i.e. the information received by an agent is the

same as its own knowledge).

Implementation: regarding implementation, optimised

broadcast can be applied. One interesting example of

implementation appears in (Haas et al. 2006), where a

probabilistic gossip is proposed. It was demonstrated that

executing the gossip (broadcast) with a probability between

0.6 and 0.8 is enough to ensure that almost every node gets

the message in almost every execution. This optimisation

decrements the number of messages by 35 %. Figure 12a

shows the flow chart for the standard gossip mechanism

where the information spreads using the broadcast. Fig-

ure 12b shows the interaction between the agent that ini-

tiates the gossip process, the host where the agent is

running and the neighbour hosts. Once the gossip has

started, the agents and infrastructural agents follow the

behaviour presented in Fig. 12c.

Known uses: Kempe et al. (2003) analyse a simple

gossip-based protocol for the computation of sums, aver-

ages, random samples, quantiles, and other aggregate

functions. Norman et al. (2010) propose a gossip algorithm

where the aggregation is based on Evolutionary Algorithm,

and apply this mechanism for coordinating large conven-

tion spaces (finding a common vocabulary (lexicon) in

their case). The Evolutionary Algorithm approach keeps

the diversity throughout the agreement process (not 100 %

of agents get the same agreement), this guarantees that

when the environment changes the system can quickly

achieve a new agreement. It was demonstrated that this

approach is resilient to unreliable communications and

guarantees the robust emergence of conventions.

spreading :: hL;Ci�!
rspr hL1; ½Recd;C�i; . . .; hLn; ½Recd;C�i

where fL1; . . .; Lng ¼ mðLÞ

aggregation :: hL;C1i; . . .; hL;Cmi; hL; ½Recd;Cmþ1�i; . . .; hL; ½Recd;Cn�i�!
raggr hL;C01i; . . .; hL;C0ki

where fC01; . . .;C0kg ¼ aðfC1; . . .;CngÞ

ð9Þ

Description and composition of bio-inspired design patterns 57

123

Consequences: the main advantage of gossip is the

robustness. Even in the presence of failures, the pattern is

able to reach the agreement. Moreover, gossip provides a

continuous adaptation when new values arrive in the

system.

Related Patterns: the Gossip Pattern is composed of the

Spreading Pattern (Sect. 5.1.1) and the Aggregation Pattern

(Sect. 5.1.2).

5.3 High-level patterns

This section describes the three high level patterns used in

the literature whose contribution in different fields have

been demonstrated. For instance, other interesting appli-

cations using the Gradient exist in the literature, however

their contributions are only focused on one field and no

generalisation has been proposed. We present here only

those patterns that have been widely accepted and used as

mechanisms.

5.3.1 Ant foraging pattern

Ant foraging is the activity where a set of ants collaborate

to find food. The Ant Foraging Pattern is a decentralised

collaborative search pattern. Mainly, the Ant Foraging

Pattern has been applied to optimisation problems and used

for swarm robotics.

Aliases: Ant Colony Optimisation (Dorigo 2002).

Problem: large scale optimisation problems that can be

transformed into the problem of finding the shortest path on

a weighted graph.

Solution: the Ant Foraging Pattern provides rules to

explore the environment in a decentralised manner and to

exploit resources.

Inspiration: the Ant Foraging Pattern is inspired by the

Ant Colony Foraging behaviour. In ant colonies, ants

coordinate their behaviour to find the shortest path from the

nest to the food. Ant colonies use a stigmergic communi-

cation means, i.e. ants modify the environment by depos-

iting a chemical substance called pheromone. This

pheromone drives the behaviour of other ants in the colony,

pheromone concentrations being used to recruit other ants.

Following the highest pheromone concentration, ants find

the shortest path from the nest to the food, and adapt this

path when obstacles appear or when food is depleted.

Forces: each ant has a probability of following the

gradient produced by the pheromones. When one ant is not

following the gradient, it walks randomly in the environ-

ment looking for new resources (exploration). When the

probability of exploration is high (i.e. low probability of

following the gradient), ants adapt faster to environmental

changes but are slower in reaching the resources (exploi-

tation). Whereas, with a low exploration (i.e. high proba-

bility of following the gradient), ants are quick in

exploiting the resources since most of the ants follow the

path to the resource. However, due to the lack of explo-

ration, when the resource is depleted the ants spend more

time to find new resources and adaptation is slower.

Additionally, the Ant Foraging Pattern presents the same

forces as the Digital Pheromone Pattern (Sect. 5.2.2). If the

evaporation rate of the pheromone is too low, the phero-

mone scent does not evaporate quickly enough and stays

where it has been laid down. The environment gets filled

with pheromone and the exploitation is not efficient. A

high evaporation rate causes the pheromone to evaporate

before ants can build a path and maintain it, reducing the

exploitation and incrementing the exploration.

Entities-Dynamic-Environment: the entities involved in

the Ant Foraging Pattern are the same as for the Digital

Pheromone Pattern (Sect. 5.2.2). When one agent senses

the presence of a digital pheromone, it decides to follow

the gradient or to move randomly.

Start

Broadcast
aggregated
Information

Stop

input
events?

yes

no

Same value
broadcasted

before?

yes

no

Apply
aggregation

operator

HostAgent
Neighbour

Hosts

send(inf)

send(inf)
apply aggr.

operator

Host
Agent or

Infras. Agent
Neighbour

Hosts

send(inf)
send(inf)

send(aggr)
send(aggr)

(a) (b) (c)

Fig. 12 Gossip: agent

behaviour (a), initialisation

(b) and interactions with the

host and neighbouring hosts (c)

58 J. L. Fernandez-Marquez et al.

123

Transition Rule (10) describes the ant foraging behav-

iour. It extends Transition Rule (8) that creates the field of

pheromones.

The first rule models an agent that senses the values of

the pheromone field in its location and in the neighbour-

hood, and then follows the direction of the highest

gradient value to find food. The second rule models an

agent that moves randomly. Both rules are subject to a

rate which regulates the exploitation vs exploration

activities.

Implementation: according to some exploration proba-

bility, agents either follow scouts (i.e. are recruited to

exploit food), or perform some random search. In the case

of ants, scouts deposit pheromones in their environment,

that are later sensed by other ants to find food sources.

Figure 13a shows the general behaviour of ants, Fig. 13b

shows the behaviour of ants looking for food, following a

trail or taking a random path, finally Fig. 13c show the

return to the nest, dropping pheromone, once a piece of

food has been found.

Known uses: the Ant Foraging Pattern has been mainly

applied in Ant Colony Optimisation (ACO) (Dorig 1992) in

applications such as, scheduling (Blu 2005; Martens et al.

2007), vehicle routing problems (Bachem 1996; Secomand

2000; Toth 2002), or assignment problems (Lourenço

1998).

Consequences: the system achieves high quality per-

formance in NP-Hard search problems.

Related Patterns: the Ant Foraging Pattern exploits the

Digital Pheromone Pattern (Sect. 5.2.2). Thus, the Ant Forag-

ing Pattern uses Evaporation, Spreading and Aggregation

Patterns (see Appendix Table 2 for details about these

patterns).

5.3.2 Chemotaxis pattern

The Chemotaxis Pattern provides a mechanism to perform

motion coordination in large scale systems. Chemotaxis

was initially proposed by Nagpal (Nagpa 2004). The

Chemotaxis Pattern extends the Gradient Pattern: agents

identify the gradient direction to decide the direction of

their next movements.

Alias: none to our knowledge.

Problem: decentralised motion coordination aiming at

detecting sources or boundaries of events.

Solution: agents locally sense gradient information and

follow the gradient in a specified direction (i.e. follow

higher gradient values, lower gradient values, or equipo-

tential lines of gradients).

Inspiration: in biology, chemotaxis is the phenomenon

in which single or multi-cellular organisms direct their

Look for
Food

Return to
the Nest

Start

Move a Step
following Trail

yes

Food
Found?

Trail
Found?

Move Random
Step()

no

no

Return to
the Nest

yes

Move Step to
the Nest

Look for
Food

Nest
Found?

yes

Deposit
Pheromone

no

yes

(a) (b) (c)

Fig. 13 Ant foraging: general

flow (a), looking for food (b),

returning to the nest (c)

up move :: hL; ½PhV1;C�i; . . .; hLn; ½PhVn;C�i�!
rumovehLi; ½PhVi;C�i

where PhVi ¼ maxðfPhV1; . . .;PhVngÞ

random move :: hL;C�i�!rrmovehLi;C�i

where Li ¼ randomðfL1; . . .; LngÞ

ð10Þ

Description and composition of bio-inspired design patterns 59

123

movements according to certain chemicals present in their

environment. Examples in nature include: leukocyte cells

moving towards a region of a bacterial inflammation or

bacteria migrating towards higher concentrations of nutri-

ents (Wolpert et al. 2007). Notice that in biology, chemo-

taxis is also a basic mechanism of morphogenesis. It guides

cells during development so that they will be placed in the

final right position. In this paper, following (Nagpa 2004),

the term chemotaxis is used as motion coordination fol-

lowing gradients, while the term morphogenesis is used for

triggering specific behaviours based on relative positions

determined through a gradient.

Forces: the Chemotaxis Pattern exploits the Gradient

Pattern (see Sect. 5.2.1 to find information about the forces

involved in the Gradient Pattern). In the Chemotaxis Pattern

the communication range plays an important role. When the

communication range is long, agents move faster following

the gradients. This, however, causes problems for precisely

locating sources. On the other hand, short communication

ranges need a higher number of hops to follow the gradient,

but they allow to find sources with high precision.

Entities-Dynamic-Environment: the concentration of

gradient guides the agents’ movements in three different

ways, as shown in Fig. 15: (1) attractive movement, when

agents change their positions following higher gradient

values, (2) repulsive movement, when agents follow lower

gradient values, incrementing the distance between the

agent and the gradient source, and (3) equipotential move-

ment, when agents follow gradients between thresholds.

Given the Transition Rule (7) that creates the gradient,

Transition Rule (11) determines the agent movement

towards the highest, lowest, or equipotential gradient value

(depending on the cases).

move :: hL; ½D1;C�i; . . .; hLn; ½Dn;C�i�!
rmove hLi; ½Di;C�i

where Di ¼ min=max=equalðfD1; . . .;DngÞ ð11Þ

Implementation: chemotaxis can be implemented in

two different ways. First, using gradients existing in the

environment to coordinate the agent’s positions or

directions (e.g. using attractive and equipotential

movements to detect the contour of diffuse events (Ruairı́

2007), or using attractive movements to detect diffuse

event sources (Fernandez-Marquez et al. 2012) through a

multi-agent approach over a sensor network infrastructure).

Second, using gradient fields generated by agents (e.g.

using a gradient-based approach to coordinate the position

of bots in the Quake 3 Arena video game (Mamei 2004)).

Diagram 14a, b show a particular case of implementation,

where agents get information about neighbouring

gradients, before taking a decision about where to go

next. As shown in Diagram 14a, each agent chooses n

random neighbouring host and sends them a gradient

concentration request. The agent chooses the neighbouring

host that has a highest gradient concentration and moves

Start

yes

No Inf. Received?

 yes

Move to host with
highest gradient

Send concetration
request to n

neighbouring hosts

HostAgent
Neighbour

Hosts

GradRequest()

GradRequest()

Send_grad()

Send_grad()

Choose host
with highest

concentration

MoveToHost(h) MoveToHost(h)

(a) (b)

Fig. 14 Chemotaxis: agent

behaviour (a), agent interaction

(b)

Agents

Maximum Gradient

Attractive Movement

Repulsive Movement

Equipotential
Movement

Fig. 15 Chemotaxis pattern—adapted from (De Wolf 2007)

60 J. L. Fernandez-Marquez et al.

123

there. By repeating this process the agent is able to find the

gradient source.

Known uses: Mamei et al. (2004) use Chemotaxis to

coordinate the position of a swarm of simple mobile robots.

Chemotaxis is also used in (Viroli et al. 2011), where

chemotaxis is applied to route messages in pervasive

computing scenarios.

Related Patterns: the Chemotaxis Pattern extends the

Gradient Pattern (Sect. 5.2.1).

5.3.3 Morphogenesis pattern

The goal of the Morphogenesis Pattern is to select different

agent’s behaviour depending on the agent’s position in the

system. The Morphogenesis Pattern exploits the Gradient

Pattern: relative spatial position information is assessed

through one or multiple gradient sources generated by

other agents. Morphogenesis was proposed as a self-

organising mechanism in (Mamei et al. 2006; Sudeikat

2008). The morphogenesis process in biology has been

considered as an inspiration source for gradient fields.

Alias: none to our knowledge.

Problem: in large-scale decentralised systems, agents

decide on their roles or plan their activities based on their

spatial position.

Solution: specific agents spread morphogenetic gradients.

Agents assess their positions in the system by computing their

relative distance to the morphogenetic gradients sources.

Inspiration: in the biological morphogenetic process

some cells create and modify molecules (through aggre-

gation) which diffuse (through spreading), creating gradi-

ents of molecules. The spatial organisation of such

gradients is the morphogenesis gradient, which is used by

the cells to differentiate the role that they play inside the

body, e.g. in order to produce cell differentiations.

Forces: the forces presented in this pattern are the same

as the ones of the Gradient Pattern (Sect. 5.2.1).

Entities-Dynamic-Environment: the entities involved in

the morphogenesis process are Agents, Hosts, and Infra-

structural Agents. At the beginning, some of the agents

spread one or more morphogenesis gradients, implemented

using the Gradient Pattern. Other agents sense the mor-

phogenetic gradient in order to calculate their relative

positions. Depending on their relative positions, the agents

adopt different roles and coordinate their activities in order

to achieve collaborative goals.

Given Transition Rule (7) that creates the gradient,

Transition Rule (12) models an agent sensing its local

gradient values and adapting its behaviour depending on its

relative position with respect to the gradient source.

state evolution :: hL; ½D; State;C�i�!rmove hL; ½D; State0;C�i

where State0 ¼ pðDÞ ð12Þ

Function p(D) changes the state variables of the agent,

evolving its state according to the information it locally

perceives in the environment.

Implementation: an interesting implementation of the

morphogenesis gradient to estimate positions is proposed in

(Bea 2009), where a self-healing gradient algorithm with a

tunable trade-off between precision and communication

cost is proposed. In (Mamei et al. 2004) the motion coor-

dination of a swarm of robots is implemented by using both

Morphogenesis and Chemotaxis Patterns (Sect. 5.3.2).

Diagram 16a, b show agents estimating their position in

response to gradient information propagated by neigh-

bouring hosts.

Known uses: the Morphogenesis Pattern is used to

implement control techniques for modular self-reconfigu-

rable robots (meta-morphic robots) (Bojinov et al. 2001) .

Morphogenesis is also employed to create a robust process

for shape formation on a sheet of identically programmed

agents (origami) (Nagpa 2002).

Consequences: the Morphogenesis Pattern equips the

agents with a mechanism to coordinate their activities

based on their relative positions. Like the other mecha-

nisms previously presented, robustness and scalability are

properties ensured by this pattern.

Related Patterns: the Morphogenesis Pattern extends the

Gradient Pattern (Sect. 5.2.1). The Morphogenesis Pattern

can be combined with the Digital Pheromone Pattern where

the role and behaviour of the agents depend on the dis-

tances to the pheromone sources.

5.3.4 Quorum sensing pattern

Quorum sensing is a decision-making process for coordi-

nating behaviour and for taking collective decisions in a

decentralised way. The goal of the Quorum Sensing Pattern

Start

No

Gradients
Received?

 yes

Estimate relative
position based on
received gradients

Change role
according to the
relative position

HostAgent
Neighbour

Hosts

GradInf()

GradInf()

Estimate
relative position

Change
Agent's role

(a) (b)

Fig. 16 Morphogenesis: agent behaviour (a), agent interaction (b)

Description and composition of bio-inspired design patterns 61

123

is to provide an estimation of the number of agents (or of

the density of the agents) in the system using only local

interactions. The number of agents in the system is crucial

in those applications, where a minimum number of agents

are needed to collaborate on specified tasks.

Alias: none to our knowledge.

Problem: collective decisions in large-scale decentra-

lised systems, requiring a threshold number of agents or

estimation of the density of agents in a system, using only

local interactions.

Solution: the Quorum Sensing Pattern allows to take

collective decisions through an estimation by individual

agents of the agents’ density (assessing the number of other

agents they interact with) and by determination of a

threshold number of agents necessary to take the decision.

Inspiration: the Quorum Sensing Pattern is inspired by

the Quorum Sensing process (QS), which is a type of

intercellular signal used by bacteria to monitor cell density

for a variety of purposes. An example is the bioluminescent

bacteria (Vibrio Fischeri) found in some species of squids.

These bacteria self-organise their behaviour to produce

light only when the density of bacteria is sufficiently high

(Miller 2001). The bacteria constantly produce and secrete

certain signalling molecules called auto-inducers. In pres-

ence of a high number of bacteria, the level of auto-

inducers increases exponentially (the higher the auto-

inducer level a bacteria detects, the more auto-inducer it

produces). Another interesting example is given by the

colonies of ants (Leptothorax albipennis) (Sahin 2002),

when the colony must find a new nest site. A small portion

of the ants search for new potential nest sites and assess

their quality. When they return to the old nest, they wait for

a certain period of time before recruiting other ants (higher

assessments produce lower waiting periods). Recruited ants

visit the potential nest site and make their own assessment

about the nest quality returning to the old nest and

repeating the recruitment process. Because of the waiting

periods, the number of ants present in the best nest will

tend to increase. When the ants in this nest sense that the

rate at which they encounter other ants exceeds a particular

threshold, the quorum number is reached. Other swarms

like honeybees or wasps use the same technique for nest

finding.

Forces: the Quorum Sensing Pattern uses gradients

presenting the same parameters as the Gradient Pattern

(Sect. 5.2.1). The threshold, indicating that the quorum

number has been reached, triggers the collaborative

behaviour. Quorum Sensing provides an estimation of the

density of agents in the system. However, this pattern does

not provide a solution to calculate the number of agents

necessary to carry out a collaborative task (i.e. to identify

the threshold value).

Entities-Dynamic-Environment: the entities involved in

the Quorum Sensing Pattern are the same as in the Gradient

Pattern. Namely, Agents, Hosts, and Infrastructural Agents.

The concentration is estimated by the aggregation of the

gradients.

The transition rule for the Quorum Pattern can be

modelled through Transition Rule (12), where the evolu-

tion function p(D) has the form given by Eq. (13):

pðDÞ ¼ State if D� threshold
State0 if D [threshold

�
ð13Þ

Implementation: there is no specific implementation for

the Quorum Sensing Pattern. However, biological systems

presented above give us some ideas about how to

implement the pattern. Here we propose two different

approaches to implement the Quorum Sensing Pattern: (1)

to use the Gradient Pattern to simulate the auto-inducers

like in the bioluminescent bacteria. In this case the gradient

concentration provides the agents with an estimation of the

agents’ density; (2) as in ants’ systems, the agents’ density

can be estimated through the frequency to which agents are

in communication range. The use of gradients provides

better estimations than the use of frequencies. However, it

is more expensive computationally and it requires more

network communications. Diagram 17a, b show agents

identifying whether the concentration gradient has reached

the threshold, in response to gradient information

propagated by neighbouring hosts.

Known uses: the Quorum Sensing Pattern is used to

increase the power saving in Wireless Sensor Networks

(Britton 2004). Quorum sensing permits to create clusters

based on the structure of the observed parameters of

interest, and then only one node for each cluster sends the

Start

No

Gradients
Receved?

 yes

Trigger collaborative
task

Gradient's
concentration higher

than threshold?

No

 yes

HostAgent
Neighbour

Hosts

GradInf()

GradInf()

if Grad > thres
trigger task

(a) (b)

Fig. 17 Quorum sensing: agent behaviour (a), agent interaction (b)

62 J. L. Fernandez-Marquez et al.

123

information on behalf of the quorum. Another known

example is the coordination of Autonomous Swarm Robots

(Sahin 2002).

Consequences: each agent can estimate the density of

nodes or the density of other agents in the system using

only local information received from neighbours, even

when the system is really large and agents are anonymous.

Related Patterns: the Quorum Sensing Pattern, depending

on its implementation, uses the Gradient Pattern (Sect. 5.2.1).

5.3.5 Flocking pattern

Flocking is a kind of self-organising motion coordination

behaviour of a herd of animals of similar size and body

orientation, often moving en masse or migrating in the

same direction and with a common group objective. The

Flocking Pattern is able to control dynamic pattern for-

mations and move the agents over the environment while

keeping the formation pattern, interconnections between

them and avoiding collisions.

Different disciplines have been interested in the emergent

behaviour of flocking, swarming, schooling and herding.

Several examples can be found in (Olfati-Sabe 2006). The

forces that drive the flocking behaviour were proposed in 1986

by Craig W. Reynolds (Reynold 1987). They are known as

Reynolds rules: (1) cohesion (flock centering), (2) separation

(obstacle avoidance and crowd avoidance) and (3) alignment

(velocity and direction matching). Cohesion captures the

intuition that individuals try to keep close to nearby flock-

mates because they always try to move towards the flocking

center. Separation pursues collision avoidance with nearby

flockmates and other obstacles. Alignment is related to the

ability to move the flock with all the individuals at the same

speed. Flocking is typically used for motion coordination of

large scale MAS, mainly 2D or 3D simulations.

Problem: dynamic motion coordination and pattern

formation of swarms.

Solution: the Flocking Pattern provides a set of rules for

moving groups of agents over the environment while

keeping the formation and interconnections between them.

Inspiration: this pattern is inspired by the behaviour of a

group of birds when they are foraging or flying and by

schools of fish when they are avoiding a predator attack or

foraging. For example, when a school of fish is under a

predator attack, the movement of the first fish sensing the

predator presence, produces a fast movement alerting the

other fishes by waves of pressure sent through the water.

The schools of fish then changes its formation for avoiding

the predator attack, recovering the initial formation after

the attack. It is similar for obstacle avoidance.

Forces: parameters such as, avoidance distance, maxi-

mum velocity and maximum acceleration must be tuned to

achieve the desired motion coordination.

Entities-dynamic-environment: the entities participating

in the Flocking Pattern are only Agents using direct com-

munication. Basically, agents sense the position of their

neighbours and keep a constant desired distance. When the

distance changes due to external perturbations, each agent

responds in a decentralised way to control the distance and

to recover the original formation pattern.

The transition rule for the Flocking Pattern is formalised

in Transition Rule (4), where the specific instance of q for

computing the new position is described in the following.

Implementation: details about the algorithm and theory can

be found in (Olfati-Sabe 2006). Here we present some basic

concepts about the algorithm and the implementation. Anal-

ogously to the free-flocking algorithm presented in (Olfati-

Sabe 2006), each agent’s motion is controlled by Eq. (14).

ui ¼
Z
�
g

i

þ
Z
�
d

i

þ
Z
�
c

i

ð14Þ

where
R
�g

i is a gradient based term that represents the

cohesion and separation Reynolds rules (1) & (2).
R
�d

i is a

velocity consensus/alignment term that represents the

alignment rule (3). Finally,
R
�c

i is the navigational feedback

term that drives the group to the objective.

Figures 18 represents two agents that coordinate their

behaviour according to the first term (cohesion and sepa-

ration): (a) agents are attracted to each other, because they

are situated in an attracting zone; (b) agents repel each

other because they are too close; finally, in (c) agents are in

the neutral zone where the term becomes zero. When all

the agents of the flocks are situated in the neutral area, they

form a stress-free structure. Analogously to the Repulsion

Fig. 18 Metric distance

model—movements

Description and composition of bio-inspired design patterns 63

123

Pattern (Sect. 5.1.4), the interactions between the entities

participating in the Flocking Pattern are the same as the

interactions shown in the Repulsion Pattern (Sect. 5.1.4).

The only difference is that the Flocking Pattern applies

more rules, not only repulsion.

Known uses: the first application of the Flocking Pattern

was modelling animal behaviour for movies. Specifically,

it was used to generate realistic crowds moves. Flocking

has also been used to control the behaviour of Unmanned

Air Vehicles (UAVs) (Crowther 2002), Autonomous

mobile robots (Hayes 2002; Jadbabaie et al. 2003), Micro

or Miniature Aerial Vehicles (MAV) (Nardi et al. 2006)

and Mobile Sensor Networks (La 2009, 2009).

Consequences: flocking tries to generalise the behaviour

of flocking, independently of individuals (birds, penguins,

fish, etc.). Its behaviour does not depend on the methods used

for the generation of agents’ trajectories. The Flocking Pat-

tern provides robustness and self-healing properties when

faced with agents’ failures and communication problems.

Related Patterns: the Flocking Pattern extends the Repul-

sion Pattern (Sect. 5.1.4). In fact, repulsion can be seen as a

simplification of the Flocking Pattern where only the repulsion

vector is taken into account for calculating the next position.

6 Conclusion and future work

This paper proposes a catalogue of bio-inspired self-

organising mechanisms uniformly expressed as modular

and reusable design patterns, which we organised into

different layers. On the one hand the design pattern

description allows us to give a detailed information about

how and when each mechanisms should be used. On the

other hand, the classification and relations between the

mechanisms provide a better understanding of their

behaviours, and allows engineers to design and implement

bio-inspired systems by adding modular bio-inspired

functionalities. Future work will consider the inclusion of

additional mechanisms in the catalogue, further investiga-

tion of the patterns’ usage and how applications can be

built on top of a bio-inspired framework where the dif-

ferent mechanisms can be provided by the underlying

environment and requested on demand (preliminary results

can be found in (Fernandez-Marquez et al. 2011)), thus,

allowing applications to be designed and implemented in a

modular way (i.e. reusing code).

Acknowledgments This work has been supported by the EU-FP7-

FET Proactive project SAPERE Self-aware Pervasive Service Eco-

systems, under contract no.256873.

Appendix

1. Design patterns summary

Table 2 summarises each design pattern giving the prob-

lem its solves and the solution it provides.

Table 2 Patterns table

Pattern’s name Problem and solution

Spreading

(Sect. 5.1.1)

In systems, where agents perform only local interactions, agents’ reasoning suffers from the lack of knowledge about the global system. a

copy of the information (received or held by an agent) is sent to neighbours and propagated over the network from one node to another.

Information spreads progressively over the system and reduces the lack of knowledge of the agents while keeping the constraint of the

local interaction

Aggregation

(Sect. 5.1.2)

In large systems, excess of information produced by the agents may produce network and memory overloads. Information must be

distributively processed in order to reduce the amount of information and to obtain meaningful information. aggregation consists in

locally applying a fusion operator to process the information and synthesise macro information. This fusion operator can take many

forms, such as filtering, merging, aggregating, or transforming (Chen 2002)

Evaporation

(Sect. 5.1.3)

Outdated information cannot be detected and it needs to be removed, or its detection involves a cost that needs to be avoided. Agent

decisions rely on the freshness of the information presented in the system, enabling correct responses to dynamic

environments.evaporation is a mechanism that periodically reduces the relevance of information. Thus, recent information becomes

more relevant than older information

Repulsion

(Sect. 5.1.4)

Agents’ movements have to be coordinated in a decentralised manner in order to achieve a uniform distribution and to avoid collisions

among them. The Repulsion Pattern creates a repulsion vector that guides agents to move from regions with high concentrations of

agents to regions with lower concentrations. Thus, after few iterations agents reach a more uniform distribution in the environment

Gradients

(Sect. 5.2.1)

Agents belonging to large systems suffer from lack of global knowledge to estimate the consequences of their actions or the actions

performed by other agents beyond their communication range. Information spreads from the location it is initially deposited and

aggregates when it meets other information. During spreading, additional information about the sender’s distance and direction is

provided: either through a distance value (incremented or decremented); or by modifying the information to represent its concentration

(lower concentration when information is further away). Thus, agents that receive gradients have information that come from beyond

their communication range, increasing the knowledge of the global system not only with gradients information but also with the

direction and distance of the information source. During the aggregation process, a filter operator keeps only the information with the

highest (or lowest) distance, or it modifies the concentration. Gradients can deal with network topology changes. In this case the

information spreads periodically and is subject to evaporation, reducing its relevance along the time, and enabling the gradients to

adapt to networks topology changes. Such gradients are called active gradients (Clement 2003)

64 J. L. Fernandez-Marquez et al.

123

References

Abelson H, Allen D, Coore D, Hanson C, Homsy G, Thomas F,

Knight J, Nagpal R, Rauch E, Sussman GJ, Weiss R (2000)

Amorphous computing. Commun ACM 43(5):74–82

Bachem A, HochstŁttler W, Malich M (1996) The simulated trading

heuristic for solving vehicle routing problems. Tech. Rep. Discr

Appl Math 65:47–72

Beal J (2009) Flexible self-healing gradients. In: SAC ’09: proceed-

ings of the 2009 ACM symposium on applied computing. ACM,

pp 1197–1201

Beal J, Bachrach J, Vickery D, Tobenkin M (2008) Fast self-healing

gradients. In: SAC ’08: proceedings of the 2008 ACM sympo-

sium on applied computing. ACM, New York, pp 1969–1975

Birman KP, Hayden M, Ozkasap O, Xiao Z, Budiu M, Minsky Y

(1999) Bimodal multicast. ACM Trans Comput Syst 17:41–88

Blum C (2005) Beam-aco: hybridizing ant colony optimization with

beam search: an application to open shop scheduling. Comput

Oper Res 32(6):1565–1591

Bojinov H, Casal A, Hogg T (2001) Multiagent control of self-

reconfigurable robots

Britton M, Sack L (2004) The secoas project: development of a self-

organising wireless sensor network for environmental monitor-

ing. In: The 2nd international workshop on sensor and actor

network protocols and applications. Boston

Chen G, Kotz D (2002) Context aggregation and dissemination in

ubiquitous computing systems. In: Proceedings of the fourth

IEEE workshop on mobile computing systems and applications,

WMCSA ’02. IEEE Computer Society, Washington, DC, p 105

Cheng J, Cheng W, Nagpal R (2005) Robust and self-repairing

formation control for swarms of mobile agents. In: Proceedings

of the twentieth national conference on artificial intelligence.

AAAI Press, London, pp 59–64

Clement L, Nagpal R (2003) Self-assembly and self-repairing

topologies. In: Workshop on adaptability in multi-agent systems,

first RoboCup Australian open. AORC

Crowther WJ, Riviere X (2002) Flocking of autonomous unmanned

air vehicles. In: The 17th Bristol UAV conference

de Castro LN (2006) Fundamentals of natural computing: basic

concepts, algorithms, and applications (Chapman & Hall/CRC

computer and information sciences). Chapman & Hall/CRC,

Boca Raton

De Wolf T, Holvoet T (2007) Design patterns for decentralised

coordination in self-organising emergent systems. Eng Self-Org

Syst 4335:28–49

Deneubourg J, Pasteels J, Verhaeghe J (1983) Probabilistic behaviour

in ants: a strategy of errors?. J Theor Biol 105(2):259–271

Di Marzo Serugendo G, Gleizes MP, Karageorgos A (eds) (2011)

Self-organising software—from natural to artificial adaptation,

1st edn. Natural computing series. Springer, New York

Dorigo M (1992) Optimization, learning and natural algorithms.

Ph.D. thesis, Politecnico di Milano, Italy

Dorigo M, Di Caro G (1999) The ant colony optimization meta-

heuristic. In: New ideas in optimization. McGraw-Hill, London,

pp 11–32

Dorigo M, Sttzle T (2002) The ant colony optimization metaheuristic:

algorithms, applications, and advances. In: Handbook of meta-

heuristics. Kluwer, Norwell, pp 251–285

Dressler F, Akan OB (2010) A survey on bio-inspired networking.

Computer Netw 54(6):881–900

Fernandez-Marquez JL, Arcos JL (2009) An evaporation mechanism

for dynamic and noisy multimodal optimization. In: The 11th

annual conference on genetic and evolutionary computation,

GECCO ’09. ACM, pp 17–24

Fernandez-Marquez JL, Arcos JL (2010) Adapting particle swarm

optimization in dynamic and noisy environments. In: Proceed-

ings of IEEE congress on evolutionary computation, pp 765–772

Fernandez-Marquez JL, DiMarzo Serugendo G, Arcos JL (2011)

Infrastructureless spatial storage algorithms. ACM Trans Auton

Adapt Syst 6:15–11526

Fernandez-Marquez JL, Di Marzo Serugendo G, Montagna S (2011)

Bio-core: bio-inspired self-organising mechanisms core. In: 6th

international ICST conference on bio-inspired models of

network, information, and computing systems. LNCS. York

Fernandez-Marquez JL, Lluis AJ, Di Marzo Serugendo G (2012) A

decentralized approach for detecting dynamically changing

Table 2 continued

Pattern’s name Problem and solution

Digital pheromone

(Sect. 5.2.2)

Coordination of agents in large scale environments using indirect communication. Digital pheromone provides a way to coordinate

agent’s behaviour using indirect communication in high dynamic environments. Digital pheromones create gradients that spread over

the environment, carrying information about their distance and direction. Thus, agents can perceive pheromones from the distance and

increase the knowledge about the system. Moreover, as time goes by digital pheromones evaporate, providing adaptation to

environmental changes

Gossip (Sect. 5.2.3) in large-scale systems, agents need to reach an agreement, shared among all agents, with only local perception and in a decentralised

way. Information spreads to neighbours, where it is aggregated with local information. Aggregates are spread further and their value

progressively reaches the agreement

Ant foraging (Sect.

5.3.1)

Large scale optimisation problems that can be transformed into the problem of finding the shortest path on a weighted graph. The Ant

Foraging Pattern provides rules to explore the environment in a decentralised manner and to exploit resources

Chemotaxis (Sect.

5.3.2)

Decentralised motion coordination aiming at detecting sources or boundaries of events. agents locally sense gradient information and

follow the gradient in a specified direction (i.e. follow higher gradient values, lower gradient values, or equipotential lines of gradients)

Morphogenesis

(Sect. 5.3.3)

In large-scale decentralised systems, agents decide on their roles or plan their activities based on their spatial position. specific agents

spread morphogenetic gradients. Agents assess their positions in the system by computing their relative distance to the morphogenetic

gradients sources

Quorum sensing

(Sect. 5.3.4)

Collective decisions in large-scale decentralised systems, requiring a threshold number of agents or estimation of the density of agents in

a system, using only local interactions. The Quorum Sensing Pattern allows to take collective decisions through an estimation by

individual agents of the agents’ density (assessing the number of other agents they interact with) and by determination of a threshold

number of agents necessary to take the decision

Flocking (Sect. 5.3.5) Dynamic motion coordination and pattern formation of swarms. The Flocking Pattern provides a set of rules for moving groups of agents

over the environment while keeping the formation and interconnections between them

Description and composition of bio-inspired design patterns 65

123

diffuse event sources in noisy WSN environments. Applied

artificial intelligence. Taylor & Francis, Bristol (to appear)

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns:

elements of reusable object-oriented software. Addison-Wesley,

Reading

Gardelli L, Viroli M, Omicini A (2007) Design patterns for self-

organizing multiagent systems. In: Proceedings of EEDAS

Grégoire E, Konieczny S (2006) Logic-based approaches to infor-

mation fusion. Inf Fusion 7(1):4–18

Haas ZJ, Halpern JY, Li L (2006) Gossip-based ad hoc routing. IEEE/

ACM Trans Netw 14(3):479–491

Hayes AT, Dormiani-tabatabaei P (2002) Self-organized flocking with

agent failure: off-line optimization and demonstration with real

robots. In: ICRA’02: proceedings of the 2002 IEEE international

conference on robotics and automation, pp 3900–3905

Huebel N, Hirche S, Gusrialdi A, Hatanaka T, Fujita M, Sawodny O

(2008) Coverage control with information decay in dynamic

environments. In: Proceedings of 17th IFAC world congress.

Seoul, pp 4180–4185

Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of

mobile autonomous agents using nearest neighbor rules. IEEE

Trans Autom Control 48(6):988–1001

Kempe D, Dobra A, Gehrke J (2003) Gossip-based computation of

aggregate information. Foundations of computer science, 2003.

In: Proceedings. 44th annual IEEE aymposium on, pp 482–491

Khelil A, Becker C, Tian J, Rothermel K (2002) An epidemic model

for information diffusion in MANETs. In: MSWiM ’02:

proceedings of the 5th ACM international workshop on Mod-

eling analysis and simulation of wireless and mobile systems.

ACM, pp. 54–60

La HM, Sheng W (2009) Flocking control of a mobile sensor network

to track and observe a moving target. In: ICRA’09: proceedings

of the 2009 IEEE international conference on robotics and

automation. IEEE Press, Piscataway, pp 3586–3591

La HM, Sheng W (2009) Moving targets tracking and observing in a

distributed mobile sensor network. In: ACC’09: proceedings of

the 2009 conference on American control conference. IEEE

Press, Piscataway, pp 3319–3324

Lee S, Chung TC (2004) Data aggregation for wireless sensor

networks using self-organizing map. In: AIS, pp 508–517

Lourenço HR, Serra D (1998) Adaptive approach heuristics for the

generalized assignment problem. Economic working papers

series no. 304, Universitat Pompeu Fabra, Department of

Economics and Management

Mamei M, Menezes R, Tolksdorf R, Zambonelli F (2006) Case

studies for self- organization in computer science. J Syst Archit

52:433–460

Mamei M, Vasirani M, Zambonelli F (2004) Experiments of

morphogenesis in swarms of simple mobile robots. J Appl Artif

Intell 18:903–919

Mamei M, Zambonelli F (2004) Field-based motion coordination in

quake 3 arena. In: Proceedings of the third international joint

conference on autonomous agents and multiagent systems,

AAMAS ’04, vol 3. IEEE Computer Society, pp 1532–1533

Mamei M, Zambonelli F (2007) Pervasive pheromone-based interac-

tion with rfid tags. ACM Trans Auton Adapt Syst 2

Martens D, De Backer M, Vanthienen J, Snoeck M, Baesens B (2007)

Classification with ant colony optimization. IEEE Trans Evol

Comput 11:651–665

Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev

Microbiol 55(1):165–199

Nagpal R (2002) Programmable self-assembly using biologically-

inspired multiagent control. In: 1st intl joint conf. on autono-

mous agents and multiagent systems: part 1, pp 418–425

Nagpal R (2004) A catalog of biologically-inspired primitives for

engineering self-organization. In: Engineering self-organising

systems, nature-inspired approaches to software engineering.

Springer, New York, pp 53–62

Nardi RD, Holl O, Woods J, Clark, A (2006) Swarmav: a swarm of

miniature aerial vehicles. In: The 21st Bristol international UAV

aystems conference

Niu R, Varshney PK (2005) Distributed detection and fusion in a

large wireless sensor network of random size. EURASIP J Wirel

Commun Netw 462–472

Olfati-Saber R (2006) Flocking for multi-agent dynamic systems:

algorithms and theory. IEEE Trans Autom Control 51:401–420

Parunak HVD, Purcell M, O’Connell R (2002) Digital pheromones

for autonomous coordination of swarming uavs. In: The first

AIAA unmanned aerospace vehivales, systems, technologies,

and operations, pp 1–9

Perkins CE, Royer EM (1999) Ad-hoc on-demand distance vector

routing. In: Proceedings of the second IEEE workshop on mobile

computer systems and applications, WMCSA ’99. IEEE-CS

Pigozzi G, Hartmann S (2007) Aggregation in multi-agent systems

and the problem of truth-tracking. In: The 6th international joint

conference on autonomous agents and multiagent systems

(AAMAS 07), pp 674 – 676

Puviani M, Di Marzo Serugendo G, Frei R, Cabri G (2012) A method

fragments approach to methodologies for engineering self-

organising systems. In: ACM transactions on autonomous

adaptive systems (to appear)

Ranganathan A, Al-Muhtadi J, Chetan S, Campbell R, Mickunas MD

(2004) Middlewhere: a middleware for location awareness in

ubiquitous computing applications. In: Proceedings of middle-

ware ’04, pp 397–416

Reynolds CW (1987) Flocks, herds, and schools: a distributed

behavioral model. In: SIGGRAPH ’87: proceedings of the 14th

annual conference on computer graphics and interactive tech-

niques. ACM, New York, pp 25–34

Ruairı́ RM, Keane MT (2007) An energy-efficient, multi-agent sensor

network for detecting diffuse events. In: IJCAI’07: proceedings

of the 20th international joint conference on artifical intelligence.

Morgan Kaufmann Publishers Inc, pp 1390–1395

Sabbineni H, Chakrabarty K (2005) Location-aided flooding: an

energy-efficient data dissemination protocol for wireless sensor

networks. IEEE Trans Comput 54:36–46

Sahin E, Franks NR (2002) Measurement of space: from ants to

robots. In: WGW 2002: EPSRC/BBSRC international workshop

biologically-inspired robotics

Salazar N, Rodriguez-Aguilar JA, Arcos JL (2010) Robust coordina-

tion in large convention spaces. AI Commun 23(4):357–372

Sauter JA, Matthews R, Van Dyke Parunak H, Brueckner SA (2005)

Performance of digital pheromones for swarming vehicle

control. In: Proceedings of the fourth international joint confer-

ence on autonomous agents and multiagent systems, AAMAS

’05. ACM, pp 903–910

Secomandi N (2000) Comparing neuro-dynamic programming algo-

rithms for the vehicle routing problem with stochastic demands.

Comput Oper Res 27(11–12):1201–1225

Sudeikat J, Renz W (2008) Engineering environment-mediated multi-

agent systems. Springer, New York

Toth P, Vigo D (2002) Models, relaxations and exact approaches for

the capacitated vehicle routing problem. Discret Appl Math

123(1–3):487–512

Tseng YC, Ni SY, Chen YS, Sheu JP (2002) The broadcast storm

problem in a mobile ad hoc network. Wirel Netw 8(2/3):153–167

Vinyals M, Rodrguez-Aguilar JA, Cerquides J (2011) A survey on

sensor networks from a multiagent perspective. Comput J

54(3):455–447

Viroli M, Casadei M, Montagna S, Zambonelli F (2011) Spatial

coordination of pervasive services through chemical-inspired

tuple spaces. ACM Trans Auton Adapt Syst 6:14:1–14:24

66 J. L. Fernandez-Marquez et al.

123

Weyns D, Boucké N, Holvoet T (2006) Gradient field-based task

assignment in an agv transportation system. In: AAMAS ’06:

Proceedings of the fifth international joint conference on

autonomous agents and multiagent systems. ACM, New York,

pp 842–849

Wolpert L, Jessell T, Lawrence P, Meyerowitz E, Robertson E, Smith

J (2007) Principles of sevelopment. 3rd edn. Oxford University

Press, Oxford

Ye J, McKeever S, Coyle L, Neely S, Dobson S (2008) Resolving

uncertainty in context integration and abstraction. In: ICPS’ 08:

Proceedings of the international conference on pervasive

services. ACM, pp 131–140

Yi Y, Gerla M (2003) Efficient flooding in ad hoc networks: a

comparative performance study. In: Proceedings of the IEEE

international conference on communications, ICC, pp 1059–1063

Description and composition of bio-inspired design patterns 67

123

	Description and composition of bio-inspired design patterns: a complete overview
	Abstract
	Introduction
	Related work
	A model to describe bio-inspired design patterns
	Design patterns as part of methodologies for self-organising systems
	Design patterns’ catalogue
	Basic patterns
	Spreading pattern
	Aggregation pattern
	Evaporation pattern
	Repulsion pattern

	Composed patterns
	Gradient pattern
	Digital pheromone pattern
	Gossip pattern

	High-level patterns
	Ant foraging pattern
	Chemotaxis pattern
	Morphogenesis pattern
	Quorum sensing pattern
	Flocking pattern

	Conclusion and future work
	Acknowledgments
	Appendix
	1. Design patterns summary

	References

