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Continuous Input Nonlocal Games
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We present a family of nonlocal games in which the inputs the players receive are
continuous. We study three representative members of the family. For the first two
a team sharing quantum correlations (entanglement) has an advantage over any team
restricted to classical correlations. We conjecture that this is true for the third member

of the family as well.

The nonlocal nature of quantum mechanics, as man-
ifested in Bell inequalities violation ﬂ, 2], has recently
been highlighted in a number of games ]. Termed
nonlocal [9], these are cooperative games with incom-
plete information for a team of remote players. Each of
the players is assigned by a verifier an input generated
according to a known joint probability distribution. The
players must then send an output to the verifier, who
carries a truth table dictating for each combination of
inputs, which combinations of outputs result in a win.
The players may coordinate a joint strategy prior to
receiving their input, but cannot communicate with one
another subsequently. A team sharing quantum corre-
lations (entanglement) is said to employ a “quantum
strategy,” while a team restricted to sharing classical
correlations is said to employ a “classical strategy.”

In this paper we analyze three representative members
of a novel family of nonlocal games, which differ from
other nonlocal games in the literature in that the input
sets are continuous rather than discrete and finite.
Moreover, most nonlocal games include a “promise”
regarding the allowed input combinations and their
frequency. This means that the joint probability dis-
tribution governing the assignment of combinations of
inputs is not uniform. This restriction is especially
tailored to guarantee a maximum quantum advantage,
and can make the rules of the game complex. In the
games that we analyze there is no such promise. The
joint probability distribution governing the assignment
of inputs is uniform, and the rules are simple. Neverthe-
less, a non-negligible quantum advantage obtains.

In the first game two remote players A and B receive
a uniformly generated input a € [0, 1] and b € [0, 1],
respectively. Following this, each of the players sends a
classical bit representing an output o; € {1, =1} (i =
A, B) to the verifier. The game is considered to have
been won if

+1, a+b<1
0A OB = . (1)
-1, a+b>1

The game, therefore, amounts to the problem of return-
ing a positive (negative) product of outputs when the
sum of the inputs is less than (greater than or equal to) 1.
In the following we show that a team employing a quan-
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FIG. 1: Game 1 - the classical strategy. The lower (upper)
big triangle is the region where identical (opposite) outputs
are required to win. Given the choice of outputs regions in
which the game is won (lost) are colored in green (red). It
is easy to see that the green regions add up to % of the total
area of the square.

tum strategy can achieve a higher probability for winning
the game than a team restricted to classical strategies.

We begin by presenting the optimal classical strategy.
It is easy to show that it is deterministic, i.e. the output
is a single-valued function of the input, and is given for
example by

+1, b<
op = . (2)
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The winning probability then equals 75% (see Fig. 1).
This may be verified by noting that the game can be cast
as the continuum limit of a family of Bell inequalities,
first discovered by Gisin [11], for which Tsirelson proved
both the classical and quantum bounds [12]. For more
details see [13).

In the quantum strategy we present the players share
a two qubit singlet state

1
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Having beforehand agreed on a coordinate system, the
players then measure the spin component of their qubits

s) = = (I19) = 1)) (3)
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FIG. 2: Game 1 - the quantum strategy. 04 and 6p denote
the angles at which players A and B, respectively, measure
the spin of their qubit. The dotted and dashed arcs denote
the range of 64 and 0p.

along different axes in the xy-plane. The choice of axes
is dictated by the inputs as follows: A measures along
an axis spanning an angle of f4(a) from the negative
z-axis, while B measures along an axis spanning an an-
gle of O5(b) from the negative y-axis (see Fig. 2). The
players then send the results of the measurements to the
verifier. For a +b > 1 the game is won if the two players
obtain opposite results, while for a + b < 1 the converse
holds. Given a and b the probability for identical results
is sin®(£), where A = 3T —0 4 (a) — 0 (b) is the angle be-
tween the axes of measurement. The winning probability
is therefore given by

1 1 A
Py = / da/ db[@(a+b—1)c082(§)
0 0

A
+0(1—a—"b) sin2(§)], (4)
where © is the unit step function (6(0) = 1). To max-
imize Py we look for 64(a) and 0p(b) such that when
a+b>1(a+b<1) A issmall (large). A most natural
choice is
a(a) = ma, 0p(b) = b, (5)
as is evident from Fig. 2. The integral then equals % + %
corresponding to a winning probability of ~ 81.8% and
saturating the Tsirelson bound of the corresponding Bell
inequality m] This gives an advantage of ~ 6.8% to a
team making use of quantum correlations over a team
limited to classical correlations.

The above game is a special case of a more general
joint task in which A and B are assigned the uniformly
generated inputs a € [0, m] and b € [0, n], respectively,
and must return correlated (anticorrelated) outputs
when a +b < 5™ (a4 b > ™). Note that by setting
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FIG. 3: Game 2 - the classical strategy. The two small tri-
angles and the strip between the two middle dashed lines are
regions where identical outputs are required to win. Given
the choice of outputs regions where the game is won (lost)
regions are colored in green (red). The green regions add up

to % of the total area of the square.

n = —m and defining b= —b, the task reduces to having
to return identical outputs when a < b and opposite
otherwise.

The second game is identical to the first in all but the
winning conditions. The game is now considered to have
been won if

+1, 4/b—al mod3 >1
0A OB = . (6)
-1, 4]b—a|mod3 <1

That is, the players must return correlated outputs if
the absolute value of the their inputs’ difference is in the
interval [, 2], otherwise they must return anticorrelated
outputs.

A possible realization of the optimal classical strategy
is

+1, a <
0A = )
-1, a>%

N[
N[

-1, b<
op = . (7)
+1, b>

N[

The winning probability equals 75%, as in the first game
(see Fig. 3). To see that this is the maximum, consider
Fig. 3. If we cyclically shift the input of one of the
players by %, then the regions that require correlated or
anticorrelated outputs within each quadrant correspond
to the first game [14]. Therefore, if the game admitted
a strategy with a winning probability greater than 75%
in any of the quadrants, so would the first game. The
quantum strategy we present differs from that of the first
game only in the choice of axes A and B measure along.
The winning probability now equals



1 1
Py = / da/ db[©(4|b — al mod3—1)0082(%)
0 0
o A
+0O(1 — 4|b — a| mod 3) sin (5”7 (8)

Here A = 64(a) — 05 (b) with both angles now spanning
from the y-axis in the zy-plane. The maximum obtains
for

04(a) =2ma, 0p(b) = 27b, (9)
giving the same winning probability as in the first game,
i.e. ~ 81.8%, and equalling the Tsirelson bound of the
corresponding Bell inequality [12].

Both games described naturally accommodate a geo-
metric description. For example, as is evident from the
quantum strategy, the second game can be reformulated
as the problem of returning identical outputs when the
angle between a pair of nonvanishing two-dimensional
vectors is greater than 5. The question arises as to
how the quantum advantage changes when playing the
game in three dimensions. More specifically, two remote
players are each assigned a pair of angles 0 < 6; < ,
0 < ¢; < 2m, designating a three dimensional unit vector

r; (1 = A, B). The game is considered to have been won
if

+1, t4-tp<0
04 0B = . (10)
-1, 14-tp>0

The joint probability distribution governing the assign-
ment of angles is a product pa (04, pa)-pp(05, pp) with

pi(0i, pi) = sinb;, (11)

guaranteeing isotropy [15]. The classical strategy that we
present is an extension of the optimal classical strategy
of the second game, where in the geometric description
A (B) returns an output equal to 1 (—1), respectively, if
the angle corresponding to his input is less than or equal
to m. Otherwise, A (B) returns —1 (1). Similarly, we
now have A (B) return 1 (=1) when 04 < % (65 < T),
independent of ¢4 (¢p), and —1 (1) otherwise. This
gives ~ 68.2% (1 — 1) probability of winning. It seems
likely that this strategy is the optimal.

As in the other games, in the quantum strategy that
we consider, A and B share a singlet state of two qubits
and measure along axes dictated by their inputs, 4 (f4)

and np(fp). The probability for winning is then given
by

Py :/ dQA/ dQB[@(f‘A-f‘B)COS2(é)
Qa Qp 2

+O(—t4 - T5) sinz(%)] ) (12)

with A = arccos(ng(f4) - ip(f5)), and maximizes for

na(fa) =1ta, np(tg) =7tp. (13)
The probability of winning than equals 75%. Numerical
evidence obtained using semi-definite programming
(SDP) indicates that this stratgey is optimal. Inter-
estingly, the quantum advantage remains unchanged
equaling =~ 6.8%.

In fact, all the games share a unifying “theme”. Sup-
pose that A and B each receive the coordinates of a ran-
domly generated three dimensional vector ry and rp,
respectively. Then by a suitable choice of the joint prob-
ability distribution governing the assignment of the vec-
tors, each of the games translates to a question about the
quantity

§E|r3—rA|:\/r2B—2rB~rA—|—r?4. (14)

The third game obtains if we restrict the vectors to unit
magnitude. Actually, it is enough to require that the
vectors be nonvanishing so long as they are generated
isotropically. We then ask whether £ < /1% +r%. The
second game is identical except that we further restrict
the vectors to lie on the same plane. In the first game we
abolish isotropy altogether. The vectors are generated
anitparallel to one another, with their magnitudes
uniformly distributed between 0 and 1. ¢ then equals
ra + rp, and the players must decide whether £ > 1.
In particular, we see that by asking different questions
and imposing different constraints we obtain different
games. In this sense the three games can be considered
as belonging to a larger family of games.
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