Skip to main content
Log in

A new gravitational image edge detection method using edge explorer agents

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper, a new algorithm for image edge detection based on the theory of universal gravity is proposed. The problem is represented by a discrete space in which each image pixel is considered as a celestial body and its mass is considered to be corresponding to the pixel’s grayscale intensity. To find the edgy pixels a number of moving agents are randomly generated and initialized through the image space. Artificial agents move through the space via the forces of celestial bodies that are located in their neighborhood and in this way they can find the promising edge pixels. A large number of experiments are employed to determine suitable algorithm parameters and confirm the legitimacy of the proposed algorithm. Also, the results are compared with conventional and soft computing based methods like Sobel, Canny and ant-based edge detector. As compared to other standard techniques, our algorithm provides more accurate results over 11 test images via Baddeley’s error metric. The visual and quantitative comparisons reveal the effectiveness and robustness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alshennawy AA, Aly AA (2002) Edge detection in digital images using fuzzy logic technique. Int J Inf Technol 5(4):252–257

    Google Scholar 

  • Aydin D (2010) An efficient ant-based edge detector, transactions on computational collective intelligence. Lect Notes Comput Sci 6220:39–55

    Article  Google Scholar 

  • Baddeley AJ (1992) An error metric for binary images, in: robust computer vision: quality of vision algorithms. Wichmann, Karlsruhe, pp 59–78

    Google Scholar 

  • Basu M (2002) Gaussian-based edge-detection methods—A survey. IEEE Trans Syst Man Cybern Part C 32(3):252–260

    Article  Google Scholar 

  • Becerikli Y, Demiray HE, Ayhan M, Aktas K (2009) Alternative Neural Network Based Edge Detection. Neural Inf Process—Lett Rev 10(8–9):193–199

    Google Scholar 

  • Bhandarkar SM, Zhang Y, Potter WD (1994) An edge detection technique using genetic algorithm-based optimization. Pattern Recogn 27(9):1159–1180

    Article  Google Scholar 

  • Boskovitz V, Guterman H (2002) An adaptive neuro-fuzzy system for automatic image segmentation and edge detection. IEEE Trans Fuzzy Syst 10:247–262

    Article  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698

    Article  Google Scholar 

  • Ducottet C, Fournel T, Barat C (2004) Scale-adaptive detection and local characterization of edges based on wavelet transform. Signal Processing 84(11):2115–2137

    Article  MATH  Google Scholar 

  • Etemad K, Chellapa R (1993) A neural network based edge detector, in Proc. of IEEE Conference on. Neural Netw 1:132–137

    Google Scholar 

  • Gonzalez RC, Woods RE (2000) Digital image processing. Addison-Wesley, Menlo Park

    Google Scholar 

  • Tizhoosh HR (2002) Fast fuzzy edge detection, proceedings of fuzzy information processing society NAFIPS, pp 497–500

  • Hu L, Cheng HD, Zhang M (2007) A high performance edge detector based on fuzzy inference rules. Inf Sci 177(21):4768–4784

    Article  Google Scholar 

  • Jevtic A, Melgar I and Andina D (2009) In IEEE proceeding of ant based edge linking algorithm: IECON, pp 3353–3358

  • Kerr DA, and Bezdek JC (1992) Edge detection using a fuzzy neural network, in proceedings of SPIE, vol 1710, Bellingham, WA, pp 510–521

  • Li H, Liao X, Li C, Huang H, Li C (2011) Edge detection of noisy images based on cellular neural networks. Commun Nonlinear Sci Numer Simul 16(9):3746–3759

    Article  MATH  MathSciNet  Google Scholar 

  • Liang LR, Looney CG (2003) Competitive fuzzy edge detection. Appl Soft Comput 3:123–137

    Article  Google Scholar 

  • Lopez-Molina C, Bustince H, Fernandez J, Couto P, De Baets B (2010) A gravitational approach to edge detection based on triangular norms. Pattern Recogn 43(11):3730–3741

    Article  MATH  Google Scholar 

  • Lu D-S, Chen C-C (2008) Edge detection improvement by ant colony optimization. Pattern Recogn Lett 29(4):416–425

    Article  Google Scholar 

  • Lu S, Wang Z, Shen J (2003) Neuro-fuzzy synergism to the intelligent system for edge detection and enhancement. Pattern Recogn 36:2395–2409

    Article  MATH  Google Scholar 

  • Mansoori G, Eghbali H (2006) Heuristic edge detection using fuzzy rule-based classifier. J Intell Fuzzy Syst 17(5):457–469

    MATH  Google Scholar 

  • Marr D and Hildreth E (1980) Theory of edge detection, proceedings royal soc. London, vol 207, pp 187–217

  • Medina-Carnicer R, Madrid-Cuevas F, Carmona-Poyato A, noz Salinas RM (2009) On candidates selection for hysteresis thresholds in edge detection. Pattern Recogn 42(7):1284–1296

    Article  MATH  Google Scholar 

  • Medina-Carnicer R, Carmona-Poyato A, Muñoz-Salinasand R, Madrid-Cuevas FJ (2010) Determining hysteresis thresholds for edge detection by combining the advantages and disadvantages of thresholding methods. IEEE Trans Image Process 19(1):165–173

    Article  MathSciNet  Google Scholar 

  • Mehrara H, Zahedinejad M, Pourmohammad A. (2009) Novel edge detection using BP neural network based on threshold binarization, second international conference on computer and electrical engineering, ICCEE ‘09, vol 2, pp 408–412

  • Moreno HG, Bascón SM, Ferreras FL (2001) Edge detection in noisy images using the support vector machines. Lect Notes Comput Sci 2084:685–692

    Article  Google Scholar 

  • Musevi-Niya J, Aghagolzadeh A (2003) Adaptive directional wavelet-based edge detection, international symposium on telecommunications (IST2003), Isfahan, Iran, pp 191–195

  • Nezamabadi-pour H, Saryazdi S, Rashedi E (2006) Edge detection using ant algorithms. Soft Comput 10(7):623–628

    Article  Google Scholar 

  • Nikouei MA, Koohi Moghadam M, Nezamabadi-pour H (2012) A fuzzy difference based edge detector. Iran J Fuzzy Syst 9(6):69–85

    Google Scholar 

  • Paik JK, Brailean JC, Katsaggelos AK (1992) An edge detection algorithm using multi-state adalines. Pattern Recogn 25(12):1495–1504

    Article  Google Scholar 

  • Pratt WK (1991) Digital image processing, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9(3):727–745

    Article  MATH  MathSciNet  Google Scholar 

  • Setayesh M, Zhang M, Johnston M (2009) A new homogeneity-based approach to edge detection using PSO, 24th international conference image and vision computing, pp 231–236

  • Siddigue JI,Edge detection using neural networks, Barner KE (1998) Wavelet-based multi-resolution edge detection utilizing gray level edge map, international conference on image processing (ICIP 98), pp 550–554

  • Sun G, Liu Q, Liu Q, Ji C, Li X (2007) A novel approach for edge detection based on the theory of universal gravity. Pattern Recogn 40(10):2766–2775

    Article  MATH  Google Scholar 

  • Terry P, Vu D (1993) Edge detection using neural networks, in IEEE proceedings of 27th conference on signals, systems and computers, pp 391–395

  • Torre V, Poggio T (1984) On edge detection. Massachusetts Institute of Technology-Artificial Intelligence Laboratory, Cambridge

    Google Scholar 

  • Verma OP, Hanmandlu M, Kumar P, Chhabra S, Jindal A (2011) A novel bacterial foraging technique for edge detection. Pattern Recogn Lett 32(8):1187–1196

    Article  Google Scholar 

  • Wang B, Fan SS (2009) An improved canny edge detection algorithm, second international workshop on computer science and engineering, pp 497–500

  • Wang HL, Ye XQ, Gu WK (2000) Training a neural network for moment based image edge detection. J Zhejiang Univ Sci 1(4):40–398

    Google Scholar 

  • Wang R, Gao L-Q, Yang S, Liu Ya-C (2006) An edge detection method by combining fuzzy logic and neural network. Lect Notes Comput Sci 3930:930–937

    Article  Google Scholar 

  • Wong Y-P, Soh VC-M, Ban K-W, Bau Y-T (2008) Improved canny edges using ant colony optimization, fifth international conference on computer graphics, imaging and visualisation, pp 197–202

  • Wu J, Yin Z, Xiong Y (2007) The fast multilevel fuzzy edge detection of blurry images. IEEE Signal Process Lett 14(5):344–347

    Article  Google Scholar 

  • Wu Y, Hu Y, Lei W, Zhao N, Huang T (2010) Edge detection of laser range image based on a fast adaptive ant colony algorithm. Lect Notes Comput Sci 6145:265–272

    Article  Google Scholar 

  • Yi S, Labate D, Easley GR, Krim H (2009) A shearlet approach to edge analysis and detection. Trans Image Proc 18(15):1057–7149

    MathSciNet  Google Scholar 

  • Yüksel ME, Yıldırım MT (2004) A simple neuro-fuzzy edge detector for digital images corrupted by impulse noise. AEU—Int J Electron Commun 58(1):72–75

    Article  Google Scholar 

  • Zheng S, Liu J, Tian JW (2004) A new efficient SVM-based edge detection method. Pattern Recogn Lett 25(10):1143–1154

    Article  Google Scholar 

  • Zong X, Liu W (2008) Fuzzy edge detection based on wavelets transform, machine learning and cybernetics, 2008 international conference, pp 2869–2873

Download references

Acknowledgments

The authors would like to give special thanks to the anonymous reviewers and Miss Esmat Rashedi for her useful advices. Furthermore, the authors would like to express their gratitude towards Mr. Carlos Lopez-Molina for giving us his BDM programs and for providing valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Appendix

Appendix

For more enlightening mind, consider the following example. Figure 12 shows a typical 3 × 3 window of an image. The intensity value for each pixel is shown in the figure. Suppose that the fun(.) is an identity function, thus the velocity vector for the explorer body in the center of the window is calculated as follows.

Fig. 12
figure 12

a 3 × 3 window of an image that shows the pixel’s intensity values and the explorer body (yellow circle), the red vector is direction of \( \vec{v}^{ \bot } \) and the blue vector is direction of \( \vec{v} \)

$$ f_{r,s}^{x} = \mathop \sum \nolimits I\left( {k,l} \right)\frac{k}{{\left( {\sqrt {k^{2} + l^{2} } } \right)^{3} }} = 6*\left(\frac{ - 1}{2\sqrt 2 } - 1 - \frac{ - 1}{2\sqrt 2 }\right) + \frac{1}{2\sqrt 2 } + 1 + \frac{1}{2\sqrt 2 } = - 5 - \frac{5}{\sqrt 2 } $$
(28)
$$ f_{r,s}^{y} = \mathop \sum \nolimits I\left( {k,l} \right)\frac{l}{{\left( {\sqrt {k^{2} + l^{2} } } \right)^{3} }} = 6*\left(\frac{1}{2\sqrt 2 } - \frac{1}{2\sqrt 2 }\right) + \frac{1}{2\sqrt 2 } - \frac{1}{2\sqrt 2 } = 0 $$
(29)

and hence:

$$ \vec{v} = \left[ {\begin{array}{*{20}c} { - 5 - \frac{5}{\sqrt 2 }} \\ 0 \\ \end{array} } \right]. $$
(30)
$$ \vec{v}^{ \bot } = \left[ {\begin{array}{*{20}c} 0 \\ { - 5 - \frac{5}{\sqrt 2 }} \\ \end{array} } \right] $$
(31)

From the result it could be seen that the direction for the explorer body in not toward brighter pixels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deregeh, F., Nezamabadi-pour, H. A new gravitational image edge detection method using edge explorer agents. Nat Comput 13, 65–78 (2014). https://doi.org/10.1007/s11047-013-9382-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9382-9

Keywords

Navigation