
Geiringer Theorems: From Population Genetics to Computational

Intelligence, Memory Evolutive Systems and Hebbian Learning

Boris S. Mitavskiy ∗

Department of Computer Science
Aberystwyth University, Aberystwyth SY23 3DB, UK

Elio Tuci
Department of Computer Science

Aberystwyth University, Aberystwyth SY23 3DB, UK

Chris Cannings
School of Mathematics and Statistics

University of Sheffield, Sheffield, England, S10 2RX

Jonathan Rowe
School of Computer Science

University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

Jun He
Department of Computer Science

Aberystwyth University, Aberystwyth SY23 3DB, UK

Abstract

The classical Geiringer theorem addresses the limiting frequency of occurrence of various alleles after
repeated application of crossover. It has been adopted to the setting of evolutionary algorithms and, a
lot more recently, reinforcement learning and Monte-Carlo tree search methodology to cope with a rather
challenging question of action evaluation at the chance nodes. The theorem motivates novel dynamic
parallel algorithms that are explicitly described in the current paper for the first time. The algorithms
involve independent agents traversing a dynamically constructed directed graph that possibly has loops. A
rather elegant and profound category-theoretic model of cognition in biological neural networks developed
by a well-known French mathematician, professor Andree Ehresmann jointly with a neurosurgeon, Jan
Paul Vanbremeersch over the last thirty years provides a hint at the connection between such algorithms
and Hebbian learning.

1 Introduction

The hereditary material of individuals is arranged along structures called chromosomes which may be linear or
circular. The latter of these are found in bacteria and we focus here only on the linear case. Within a species
each individual has a number of copies of each of a number of homologous (i.e. matching) chromosomes.
Thus, for example, humans have 22 homologous pairs (called diploid) while many organisms exist with four
(tetraploid), six (hexaploid) or eight (octaploid)chromosomes. Less commonly there may be an odd number
of chromosomes.

The implication of the hereditary units (genes) being arranged along chromosomes is that Mendel’s 2nd
Law (that distinct characters are transmitted independently) is violated. For ease we consider a diploid
individual and suppose we have a particular homologous pair of chromosomes and some n genes arranged

∗Email: bom4@aber.ac.uk

1

ar
X

iv
:1

30
5.

25
04

v1
 [

cs
.N

E
]

 1
1

M
ay

 2
01

3

along that chromosomes. During the formation of germ cells (meiosis) a new chromosome is formed from the
pair. If we denote the genes along the chromosome of the individual obtained from its mother as {0, 0, . . . , 0}
and from its father as {1, 1, . . . , 1} (where each vector is of length n) then the chromosome formed will be
some binary string e.g. l = {0, 1, 1, . . . , 0, 1} with some associated probability. Thus the genes are recombined
i.e. mixed from the grandparents while the order is (generally) conserved. Further the genes will take values
referred to as alleles, and the alleles along the chromosomes will be transmitted to the germ cell unchanged
unless some mutation occurs.

There are two important features of the recombination process. The first is that this structure creates
correlations between the transmission of genes which are, in some sense, close to each other along the
chromosome. This has both the potential to allow blocks of genes to be inherited together as recombination
is suppressed in certain regions, and also to rearrange alleles into potentially evolutionarily advantageous
combinations. We can also potentially infer the close linkage (position) of genes through the detection of
correlations. There is however, as proved in [1], a steady weakening of these correlations through time and the
asymptotic mutual independence of the allele frequencies, in the absence of selection. Thus the correlations
can only be used for a limited time from founder population in which a correlation fortuitously existed. Quite
a while later [2] established bounds on the actual rates of convergence towards the independence of the allele
frequencies.

The idea of using Geiringer theorem in evolutionary computation with the aim of predicting the outcome
of repeated applications of crossover has been introduced in [3] and motivated the development of EDAs
(estimation of distribution algorithms). The classical version of the theorem is stated in terms of a discrete-
time quadratic system “infinite population” model very much as follows: let Ω =

∏n
i=1Ai denote the search

space of a given genetic algorithm. (Intuitively, n is the number of loci and Ai is the set of alleles corresponding
to the ith gene.) Denote by Λ the collection of all probability distributions on Ω. Now fix a probability
distribution λ ∈ Λ and consider the sequence of probability distributions λ, C(λ), C2(λ), . . . , Cn(λ), . . .
where C(p)(k) =

∑
i,j p(i)p(j)r(i, j→k) and r(i, j→k) denotes the probability of obtaining the individual k from

the parents i and j after crossover. Here crossover can be thought of as an operator which takes a pair of
elements of the search space (the parents) and produces another element of the search space (the child) by
mingling the alleles of the parents. This will be discussed in more detail later in the paper. Denote by λi
the marginal distribution of λ on Ai. The classical Geiringer theorem says that limn→∞ Cn(λ) →

∏n
i=1 λi

(meaning that the frequency of occurrence of an individual x = (x1, x2, . . . , xn) ∈ Ω under the limiting
distribution limn→∞ Cn(λ) is just the product of the frequencies of xi under the distributions λi). In [4]
this theorem has been generalized to cover the cases of variable-length GA’s and homologous linear GP
crossover. The limiting distributions of the frequency of occurrence of individuals belonging to a certain
schema under these algorithms have been computed. An alternative approach that provides estimates on the
convergence rates towards the limiting distribution of the quadratic dynamical system {Cn}∞n=1 is provided
in [2]. A rather general and powerful finite-population version of Geiringer theorem based on the unique
uniform stationary distribution of the Markov chain of populations on the orbit of the “joint” group action of
bijective recombination transformations has been established in [5]. Knowing that the stationary distribution
of this Markov chain is uniform, for the most types of traditional GAs and GP with homologous recombination
it is quite routine to derive the the limiting frequency of occurrence of various schemata and, not in vain, the
corresponding formulas come out exactly the same as in the infinite-population model. Intuitively speaking,
this happens due to the fact that as the sample size gets larger and larger, sampling with replacement (i.e.
binomial sampling) approaches in distribution sampling without replacement (i.e. hypergeometric sampling).
A rigorous argument does require careful analysis and will be presented in a sequel research paper. Apart
from the already established infinite-population versions of the Geiringer theorems, the methodology for
deriving such theorems allows one to obtain a formula for the limiting frequency of occurrence of various
schemata for non-linear GP with homologous recombination (see [6]) without much effort. Gieringer-like
theorems for non-homologous recombination remained an open question until recently, see [7], when such a
theorem has been derived in the setting of POMDPs (partially observable Markov decision processes) and
model-free reinforcement learning with the aim of enhancing action evaluation at the chance nodes. The
technical challenges have been overcome thanks to a lovely application of the classical and extremely useful
triviality known as the Markov inequality (see, for instance, [8]) and enhancing the methodology for deriving
the Geiringer-like results in [9] through exploiting a slightly extended lumping quotients of Markov chains
technique that has been successfully developed, improved and exploited to estimate stationary distributions

2

of Markov chains modeling EAs in a series of articles: [10], [11], [12] and [13]. Finally, the later version of
the theorem has been further generalized to allow recombination over arbitrary set covers, rather than being
limited to equivalence relations using the particular case in [7] in conjunction with the tools mentioned above
in [14]. While the original purpose of the last two finite-population Geiriger-like theorems is taking advantage
of the intrinsic similarities within the state-action set encountered by a learning agent to evaluate actions
with the aim of selecting an optimal one, the parallel algorithms on the evolving digraph where the nodes
are states and actions are edges from a current state to the one obtained upon executing an action, that are
motivated by the theorems exhibit similarities to the way Hebbian learning takes place in biological neural
networks that is further supported by Andree Ehresmann’s category-theoretic model of cognitive processes
called a “Memory Evolutive System” (see, for instance, [15], [16], [17], [18] and many more related articles). In
the current article we explain the new theorems as well as the algorithms they motivate, how such algorithms
may fit the Memory Evolutive Systems model that hopefully provides a deeper understanding of cognitive
processes and makes a further step in the development of intelligent computational systems.

2 Mathematical Framework, Statement of the new Geiringer-like
Theorem for Action Evaluation in POMDPs and the Corre-
sponding Action-Evaluation Algorithms.

A great number of questions in machine learning, computer game intelligence, control theory, and in cognitive
processes in general involve decision-making by an agent under a specified set of circumstances. In the most
general setting, the problem can be described mathematically in terms of the state and action pairs as follows.
A state-action pair is an ordered pair of the form (s, ~α) where ~α = {α1, α2, . . . , αn} is the set of actions (or
moves, in case the agent is playing a game, for instance) that the agent is capable of taking when it is in the
state (or, in case of a game, a state might be sometimes referred to as a position) s. Due to randomness,
hidden features, lack of memory, limitation of the sensor capabilities etc, the state may be only partially
observable by the agent. Mathematically this means that there is a function φ : S → O (as a matter of
fact, a random variable with respect the unknown probability space structure on the set S) where S is the
set of all states which could be either finite or infinite while O is the set (usually finite due to memory
limitations) of observations having the property that whenever φ(s1) = φ(s2) (i.e. whenever the agent can

not distinguish states s1 and s2) then the corresponding state action pairs (s1, ~α) and (s2, ~β) are such that

~α = ~β (i.e. the agent knows which actions it can possibly take based only on the observation it makes).
The general problem of reinforcement learning is to decide which action is best suited given the agent’s
knowledge (that is the observation that the agent has made as well as the agent’s past experience). In case
when immediate payoffs are not known, self-simulated random trials, named rollouts by the Monte-Carlo tree
search community, until the terminal state (or until a payoff value is available) are implemented and, based
on a sufficiently large sample of such rollouts, an agent has to decide which actions are most advantageous
in which states. Under a reasonable assumption that adaptation and unsupervised learning in biological
organisms takes place largely based on trial followed by reward mechanisms, the corresponding learning
models are very much similar. Thus, suppose a sequence of independent rollouts has been simulated or, in
case of adoptive learning agents, such as robots or biological systems, gained via some learning experience.
Due to alterations within competitor’s, opponent’s or enemy’s strategies and unavailability of immediate
feedback, reward or payoff, the combinatorial explosion in the number of possibilities that could take place
after an execution of the same action at a given state, even in case when the learning agent has just several
actions to choose from at a given state, is tremendous. The situation is significantly exacerbated due to the
unknown information and randomness within the environment, that is likely to cause drastic differences in
the eventual payoffs after the same action starting at a specified observable state has been taken. At the
same time, only a limited sample of rollouts (or trials) is available for action evaluation. Needless to say,
optimal action evaluation under such circumstances is an extremely complex and challenging task. While the
unfortunate reality that the total number of observable states is often drastically limited comparing to the
total overall number of states (i.e. when the non-observable information is taken into account), contributes
to the overall complexity, it turns out, that this could also be exploited to design more effective action-
evaluation policies and the design of such policies is motivated by the Geiringer-like theorems. For the sake

3

of completeness, we now explain these ideas and state the Geiringer-like theorem established in [7] in a
mathematically rigorous fashion. Let S denote the set of states (enormous but finite in this framework).
Formally each state ~s ∈ S is an ordered pair (s, ~α) where ~α is the set of actions an agent can possibly take
when in the state ~s. Let ∼ be an equivalence relation on S. Without loss of generality we will denote every
equivalence class by an integer 1, 2, . . . , i, . . . ,∈ N so that each element of S as an ordered pair (i, a) where
i ∈ N and a ∈ A with A being some finite alphabet. With this notation (i, a) ∼ (j, b) iff i = j. Intuitively,
S is the set of all possible states and ∼ is the similarity relation on S where two states are equivalent under
∼ if and only if they contain identical observable information.1 We will also require that for two equivalent
states ~s1 = {s1, ~α1} and ~s2 = {s2, ~α2} under ∼ there are bijections f1 : ~α1 → ~α2 and f2 : ~α2 → ~α1. For the
time being, these bijections should be obvious and natural from the representation of the environment (and
actions) and reflect the similarity between these actions.

Definition 1. Suppose we are given a state ~s = (s, ~α) and a sequence {αi}bi=1 of actions in ~α (it is possible
that αi = αj for i 6= j). We may then call ~s a root state, or a state in question, the sequence {αi}bi=1, the
sequence of actions under evaluation and the set of actions A = {α |α = αi for some i with 1 ≤ i ≤ b}, the
set of actions under evaluation.

Definition 2. A rollout with respect to the state in question ~s = (s, ~α) and an action α ∈ ~α is a sequence of
states following the action α and ending with a terminal label f ∈ Σ where Σ is an arbitrary set of labels2,
which looks as {(α, s1, s2, . . . , st−1, f)}. For technical reasons that will become obvious later we will also
require that si 6= sj for i 6= j (it is possible and common to have si ∼ sj though). We will say that the total
number of states in a rollout (which is k − 1 in the notation of this definition) is the height of the rollout.

Remark 1. In the paragraph preceding definition 1 we have introduced a convenient notation for states
to emphasize their respective equivalence classes. With such notation a typical rollout would appear as a
sequence {(α, (i1, a1), (i2, a2), . . . , (it−1, at−1), f)} with ij ∈ N while ai ∈ A. According to the requirement
in definition 2, ij = ik for j 6= k =⇒ ak 6= aj .

As mentioned in the beginning of the current section, a single rollout provides rather little information
about an action particularly due to the combinatorial explosion in the branching factor of possible actions
of the agent, randomness, unavailable information etcetera. Normally a large, yet comparable with total
resource limitations, number of rollouts (or trials) is simulated (or attempted) to evaluate the actions at
various states. The challenging question that the Geiringer-like theorem in [7] addresses is how one can take
the full advantage of the available limited size sample of rollouts (or trials). In the language of evolutionary
computing community such samples are known as populations.

Definition 3. Given a state in question ~s = (s, ~α) and a sequence {αi}bi=1 of actions under evaluation (in
the sense of definition 1) then a population P with respect to the state ~s = (s, ~α) and the sequence {αi}bi=1

is a sequence of rollouts P = {rl(i)i }bi=1 where ri = {(αi, si1, si2, . . . , sil(i)−1, fi)}. Just as in definition 2 we

will assume that sik 6= sjq whenever i 6= j (which, in accordance with definition 2, is as strong as requiring

that sik 6= sjq whenever i 6= j or k 6= q)3 Moreover, we also assume that the terminal labels fi are also
all distinct within the same population, i.e. for i 6= j the terminal labels fi 6= fj

4 In a very special case
when sij ∼ sqk =⇒ j = k we will say that the population P is homologous. Loosely speaking, a homologous
population is one where equivalent states can not appear at different “heights”.

Remark 2. Each rollout r
l(i)
i in definition 3 is started with the corresponding move αi of the sequence

of moves under evaluation (see definition 1). It is clear that if one were to permute the rollouts without

1Other scenarios where states might be equivalent due to obvious observable similarity are also conceivable and certainly
play an important role in Monte-Carlo tree search methodology.

2Intuitively, each terminal label in the set Σ represents a terminal state that we can assign a numerical value to via a function
φ : Σ → Q. The reason we introduce the set Σ of formal labels as opposed to requiring that each terminal label is a rational
number straight away, is to avoid confusion in the upcoming definitions

3The last assumption that all the states in a population are formally distinct (although they may be equivalent) will be
convenient later to extend the crossover operators from pairs to the entire populations. This assumption does make sense from
the intuitive point of view as well since the exact state in most situations involving randomness or incomplete information is
simply unknown.

4This assumption does not reduce any generality since one can choose an arbitrary (possibly a many to one) assignment
function φ : Σ→ Q, yet the complexity of the statements of our main theorems will be mildly alleviated.

4

changing the actual sequences of states the corresponding populations should provide identical values for the
corresponding actions under evaluation. In fact, most authors in evolutionary computation theory (see [19],
for instance) do assume that such populations are equivalent and deal with the corresponding equivalence
classes of multisets corresponding to the individuals (these are sequences of rollouts). Nonetheless, when
dealing with finite-population Geiringer-like theorems it is convenient for technical reasons which will become
clear when the proof is presented (see also [9] and [6]) to assume the ordered multiset model i.e. the populations
are considered formally distinct when the individuals are permuted. Incidentally, ordered multiset models
are useful for other types of theoretical analysis in [20] and [21].

Example 1. A typical population with the convention as in remark 2 might look as in figure 1. The height
of the leftmost rollout in figure 1 would then be 5 since it contains 5 states. The reader can easily see that
the heights of the rollouts in this population read from left to right are 5, 4, 3, 5, 3, 1 and 4 respectively.

Figure 1: An example of a population consisting of seven rollouts. Equivalence classes of states are denoted
by distinct numbers so that the letters written next to these numbers distinguish the individual states as
in remark 1. Distinct actions under evaluation (see definition 1) are denoted by different letters of Greek
alphabet.

The main idea is that equivalent states should be interchangeable due to the unavailable information, as
discussed above. In the language of evolutionary computing, such a swap of states is called a crossover. In
order to obtain the most out of a sample (population in our language) of the parallel rollouts it is desirable
to explore all possible populations obtained by making various swaps of the corresponding rollouts at the
equivalent positions. Computationally this task seems expensive if one were to run the type of genetic
programming described precisely below, yet, it turns out that we can predict exactly what the limiting
outcome of this “mixing procedure” would be.5 We now continue with the rigorous definitions of crossover.
Representation of rollouts suggested in remark 1 is convenient to define crossover operators for two given
rollouts. We will introduce two crossover operations below.

5In the finite-population version of the Geiringer-like theorem we will also need to “inflate” the population first and then
take the limit of a sequence of these limiting procedures as the inflation factor increases. All of this will be presented below in
sufficient detail.

5

Definition 4. Given two rollouts

r1 = (α1, (i1, a1), (i2, a2), . . . , (it(1)−1, at(1)−1), f)

and
r2 = (α2, (j1, b1), (j2, b2), . . . , (jt(2)−1, bt(2)−1), g)

of lengths t(1) and t(2) respectively that share no state in common (i.e., as in definition 2,) there are two (non-
homologous) crossover (or recombination) operators we introduce here. For an equivalence class label m ∈ N
and letters c, d ∈ A define the one-point non-homologous crossover transformation χm, c, d(r1, r2) = (t1, t2)
where
t1 = (α1, (i1, a1), . . . , (ik−1, ak−1), (jq, bq), (jq+1, bq+1), . . . , (jt(2)−1, bt(2)−1), g) and
t2 = (α2, (j1, b1), . . . , (jq−1, bq−1), (ik, ak), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f) if [ik = jq = m and either
(ak = c and bq = d) or (ak = d and bq = c)] and (t1, t2) = (r1, r2) otherwise.

Likewise, we introduce a single position swap crossover νm, c, d(r1, r2) = (v1, v2) where
v1 = (α1, (i1, a1), . . . , (ik−1, ak−1), (jq, bq), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)
while
v2 = (α2, (j1, b1), . . . , (jq−1, bq−1), (ik, ak), (jq+1, bq+1), . . . , (jt(2)−1, bt(2)−1), g) if [ik = jq = m and either
(ak = c and bq = d) or (ak = d and bq = c)] and (v1, v2) = (r1, r2) otherwise. In addition, a singe swap
crossover is defined not only on the pairs of rollouts but also on a single rollout swapping equivalent states
in the analogous manner: If

r = (α, (i1, a1), (i2, a2), . . . , (ij−1, aj−1), (ij , aj), (ij+1, aj+1), . . .

. . . , (ik−1, ak−1), (ik, ak), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

and [ij = ik and either (aj = c and ak = d) or (aj = d and ak = c)] then

νm, c, d(r) = (α, (i1, a1), (i2, a2), . . . , (ij−1, aj−1), (ij , ak), (ij+1, aj+1), . . .

. . . , (ik−1, ak−1), (ik, aj), (ik+1, ak+1), . . . , (it(1)−1, at(1)−1), f)

and, of course, νm, c, d(r) fixes r (i.e. νm, c, d(r) = r) otherwise.

Remark 3. Notice that definition 4 makes sense thanks to the assumption that no rollout contains an
identical pair of states in definition 2.

Just as in case of defining crossover operators for pairs of rollouts, thanks to the assumption that all
the states in a population of rollouts are formally distinct (see definition 3), it is easy to extend definition 4
to the entire populations of rollouts. Intuitively, the one-point crossover transformations correspond to the
fact that due to the unavailable and unpredictable information, either of the alternative courses of events
could take place following either of the indistinguishable states (i.e. equivalent states) while the single swap
crossovers correspond to the fact that either of the non-observable components of the state could have arose.
Thus, to get the most informative picture out of the sample of rollouts one would want to run the genetic
programming routine without selection and mutation and using only the crossover operators specified above
for as long as possible and then, in order to evaluate a certain action α, collect the weighted average of the
terminal values (i. e. the values assigned to the terminal labels via some real-valued assignment function) of
all the rollouts starting with the action α that ever occurred in the process. We now describe precisely what
the process is and give an example.

Definition 5. Given a population P and a transformation of the form χi, x, y, there exists at most one pair of
distinct rollouts in the population P , namely the pair of rollouts r1 and r2 such that the state (i, x) appears
in r1 and the state (i, y) appears in r2. If such a pair exists, then we define the recombination transformation
χi, x, y(P) = P ′ where P ′ is the population obtained from P by replacing the pair of rollouts (r1, r2) with
the pair χi, x, y(r1, r2) as in definition 4. In any other case we do not make any change, i.e. χi, x, y(P) = P .
The transformation νi, x, y(P) is defined in an entirely analogous manner with one more amendment: if the
states (i, x) and (i, y) appear within the same individual (rollout), call it

r = (α, (j1, a1), (j2, a2), . . . , (i, x), . . . , (i, y), . . . , (it(1)−1, at(1)−1), f),

6

Figure 2: The unique states (1, c) and (1, d) in the population pictured in figure 1 are enclosed in dashed
squares.

and the state (i, x) precedes the state (i, y), then these states are interchanged obtaining the new rollout

r′ = (α, (j1, a1), (j2, a2), . . . , (i, y), . . . , (i, x), . . . , (it(1)−1, at(1)−1), f).

Of course, it could be that the state (i, y) precedes the state (i, x) instead, in which case the definition would
be analogous: if

r = (α, (j1, a1), (j2, a2), . . . , (i, y), . . . , (i, x), . . . , (it(1)−1, at(1)−1), f)

then replace the rollout r with the rollout

r′ = (α, (j1, a1), (j2, a2), . . . , (i, x), . . . , (i, y), . . . , (it(1)−1, at(1)−1), f).

Remark 4. It is very important for the general finite-population Geiringer theorem that each of the crossover
transformations χi, x, y and νi, x, y is a bijection on their common domain, that is the set of all populations
of rollouts (see [9] or [7] for details on the finite-population version of the theorem that’s based on Markov
chains induced by group actions). As a matter of fact, the reader can easily verify by direct computation
from definitions 5 and 4 that each of the transformations χi, x, y and νi, x, y is an involution on its domain,
i.e. ∀ i, x, y we have χ2

i, x, y = ν2
i, x, y = 1 where 1 is the identity transformation.

Examples below illustrate the important extension of recombination operators to arbitrary populations
pictorially.

Example 2. Continuing with example 1, suppose we were to apply the recombination (crossover) operator
χ1, c, d to the population of seven rollouts pictured in figure 1. The unique location of states (1, c) and (1, d)
in the population is emphasized by the boxes in figure 2 below. After applying the crossover operator χ1, c, d

we obtain the population pictured on figure 3. On the other hand, applying the crossover transformation
ν1, c, d to the population in figures 1 and 2 results in the population pictured on figure 4.

7

Figure 3: The subrollouts rooted at the states (1, c) and (1, d) in the population pictured in figure 2 are
pruned and then swapped.

Figure 4: The uniquely positioned labels (1, c) and (1, d) are enclosed within the dashed squares in figure 2
are swapped.

8

Figure 5: A population of rollouts Q.

Example 3. Consider now the population Q pictured in figure 5. Suppose we apply the transformations
χ6, a, b and ν6, a, b to the population Q. The states (6, a) and (6, b) are enclosed within the dashed squares
in figure 6. Since these states appear within the same rollout, according to definition 5, the crossover
transformation χ6, a, b fixes the population Q (i.e. χ6, a, b(Q) = Q). On the other hand, the population
ν6, a, b(Q) is pictured on figure 7.

Evidently, running the “genetic programming” routine with recombination only, as described above, for
a very long time is computationally expensive, but, fortunately, thanks to to the Geiringer-like theorem
in [9] we can predict the limiting frequency of occurrence of various “schemata” or rollouts as the iteration
time t → ∞. Furthermore, this prediction leads to dynamic parallel action-evaluation algorithms based on
an exponentially larger sample of rollouts obtained after such an “infinitely long time” GP-routine, that
resemble Hebbian learning mechanisms as we intend to demonstrate through Andree Ehresmann’s “Memory
Evolutive Systems” model, the essentials of which will be briefly described in the next section. We now
proceed with the relevant definitions.

Definition 6. Given a state (s, ~α) in question (see definition 1), a rollout Holland-Poli schema is a sequence
consisting of entries from the set~α∪N∪ {#} ∪Σ of the form h = {xi}ki=1 for some k ∈ N such that for k > 1
we have x1 ∈ ~α, xi ∈ N when 1 < i < k represents an equivalence class of states, and xk ∈ {#} ∪ Σ could
represent either a terminal label if it is a member of the set of terminal labels Σ, or any substring defining
a valid rollout if it is a # sign.6 For k = 1 there is a unique schema of the form #. Every schema uniquely

6This notion of a schema is somewhat of a mixture between Holland’s and Poli’s notions.

9

Figure 6: The uniquely positioned labels (6, a) and (6, b) are enclosed within the dashed squares.

Figure 7: The uniquely positioned labels (6, a) and (6, b) which are enclosed within the dashed squares on
figure 6 are interchanged to obtain the population ν6, a, b(Q) pictured above.

10

determines a set of rollouts

Sh =

{(x1, (x2, a2), (x3, a3), . . . , (xk−1, ak−1), xk)

| ai ∈ A for 1 < i < k} if k > 1 and xk ∈ Σ

{(x1, (x2, a2), (x3, a3), . . . , (xk−1, ak−1),

(yk, ak), (yk+1, ak+1), . . . , f)

| ai ∈ A for 1 < i < k, yj ∈ N and aj ∈ A} if k > 1 and xk = #

the entire set of all possible rollouts if k = 1 or, equivalently, h = #.

that fit the schema in the sense mentioned above. We will often abuse the language and use the same word
schema to mean either the schema h as a formal sequence as above or schema as a set Sh of rollouts which fit
the schema. For example, if h and h∗ is a schema, we will write h ∩ h∗ as a shorthand notation for Sh ∩ Sh∗

where ∩ denotes the usual intersection of sets. Just as in definition 2, we will say that k − 1, the number of
states in the schema h is the height of the schema h.

We illustrate the important notion of a schema with an example below:

Example 4. Suppose we are given a schema h = (α, 1, 2, #). Then the rollouts
(α, 1a, 2c, 5a, 3c, f) and (α, 1d, 2a, 3a, 3d, g) ∈ Sh or one could say that both of them fit the schema h. On
the other hand the rollout (β, 1a, 2c, 5a, 3c, f) /∈ Sh (or does not fit the schema h) unless α = β. A rollout
(α, 1a, 3a, 5a, 3c, f) /∈ Sh does not fit the schema h either since x2 = 2 6= 3. Neither of the rollouts above
fit the schema h∗ = (α, 1, 2, f) since the appropriate terminal label is not reached in the 4th position. An
instance of a rollout which fits the schema h∗ would be (α, 1c, 2b, f).

In evolutionary computation Geiringer-like results address the limiting frequency of occurrence of a set of
individuals fitting a certain schema after repeated applications of crossover transformations as in definition 5.
(see [22], [9], [6] and [7]). The finite population Geiringer theorem, originated in [9] and extended to non-
homogenous time Markov processes in section 6 of [7], states that the unique stationary distribution of the
Markov chain of all populations potentially encountered in the process of repeated crossover transformations
is the uniform distribution and holds under rather mild assumptions on the family of all such recombination
transformations. We invite the readers to study [7] for an in-depth understanding. In the current paper
we present only a very brief description of the corresponding Markov chain and the notion of the “limiting
frequency of occurrence” that is sufficient for a surface-level understanding of what the theorem says. The
Geiringer-like theorem that motivates the novel parallel algorithms resembling Hebbian learning mechanisms
is stated purely in terms of the quantities appearing in the following few definitions.

Definition 7. For any action under evaluation α define a set-valued function α ↓ from the set Ωb of popu-
lations of rollouts to the power set of the set of natural numbers P(N) as follows: α ↓ (P) = {i | i ∈ N and at
least one of the rollouts in the population P fits the Holland schema (α, i, #)}. Likewise, for an equivalence
class label i ∈ N define a set valued function on the populations of size b, as i ↓ (P) = {j | ∃x and y ∈ A
and a rollout r in the population P such that r = (. . . , (i, x), (j, y), . . .) } ∪ {f | f ∈ Σ and ∃ an x ∈ A and
a rollout r in the population P such that r = (. . . , (i, x), f) }. In words, the set i ↓ (P) is the set of all
equivalence classes together with the terminal labels which appear after the equivalence class i in at least
one of the rollouts from the population P . Finally, introduce one more function, namely i ↓Σ: Ωb → N ∪ {0}
by letting i ↓Σ (P) = |{f | f ∈ Σ ∩ i ↓ (P)}|, that is, the total number of terminal labels (which are assumed
to be all formally distinct for convenience) following the equivalence class i in a rollout of the population P .

We illustrate definition 7 in example 5 below.

Example 5. Continuing with example 1, we return to the population P in figure 1. From the picture we
see that the only equivalence class i such that a rollout from the population P fits the Holland schema
(α, i, #) is i = 1 so that α ↓ (P) = {1}. Likewise, the only equivalence class following the action β is 2, the
only equivalence class following the action γ is 4 and the only one following π is 3 so that β ↓ (P) = {2},
γ ↓ (P) = {4} and π ↓ (P) = {3}. The only equivalence classes i following the action ξ in the population P
are i = 3 and i = 2 so that the set ξ ↓ (P) = {2, 3}.

Likewise the fragment (1, a), (5, a) appears in the first (leftmost) rollout in P , (1, b), (3, c) in the second
rollout, (1, c), (4, b) in the forth tollout and (1, d), (2, e) in the last, seventh rollout. No other equivalence

11

class or a terminal label follows the equivalence class of the state 1 in the population P and so it follows
that 1 ↓ (P) = {5, 3, 4, 2} and 1 ↓Σ (P) = |{∅}| = 0. Likewise, equivalence class 1 follows the equivalence
class 2 in the second rollout, 7 follows 2 in the forth rollout, 4 follows 2 in the fifth rollout and 6 follows 2 in
the last, seventh rollout. The only terminal label that follows the equivalence class 2 is f6 in the 6th rollout.
Thus we have 2 ↓ (P) = {1, 7, 4, 6, f6} and 2 ↓Σ (P) = |{f6}| = 1. We leave the reader to verify that

3 ↓ (P) = {7, 6, 2, 1} so that 3 ↓Σ (P) = 0,

4 ↓ (P) = {6, 2, f5} so that 4 ↓Σ (P) = 1,

5 ↓ (P) = {6, f3, f4} and so 5 ↓Σ (P) = 2,

6 ↓ (P) = {3, 5, f2, f7} and so 6 ↓Σ (P) = 2

and, finally, 7 ↓ (P) = {5, f1} so that 7 ↓Σ (P) = 1.

Remark 5. Note that according to the assumption that all the terminal labels within the same population
are distinct (see definition 3 together with the comment in the footnote there). But then, since every rollout
ends with a terminal label, we must have

∑∞
i=1 i ↓Σ (P) = b (of course, only finitely many summands, namely

these equivalence classes that appear in the population P may contribute nonzero values to
∑∞
i=1 i ↓Σ (P))

where b is the number of rollouts in the population P , i.e. the size of the population P . For instance, in
example 5 b = 7 and there are totally 7 equivalence classes, namely 1, 2, 3, 4, 5, 6 and 7 that occur within
the population in figure 1 so that we have

∑∞
i=1 i ↓Σ (P) =

∑7
i=1 i ↓Σ (P) = 0 + 1 + 0 + 1 + 2 + 2 + 1 = 7 = b.

Another important and related definition we need to introduce is the following:

Definition 8. Given a population P and integers i and j ∈ N representing equivalence classes, let

Order(i ↓ j, P) =

0 if i(P) = 0 or j /∈ i ↓ (P)

|{((i, a), (j, b)) | the segment

((i, a), (j, b)) appears in one of the

rollouts in the population P}| otherwise

.

Loosely speaking, Order(i ↓ j, P) is the total number of times the equivalence class j follows the equivalence
class i within the population of rollouts P .

Likewise, given a population of rollouts P , an action α under evaluation and an integer j ∈ N, let

Order(α ↓ j, P) =

0 if i(P) = 0 or j /∈ α ↓ j
|{(α, (j, b)) | the segment

(α, (j, b)) appears in one of the

rollouts in the population P}| otherwise

.

Alternatively, Order(α ↓ j, P) is the number of rollouts in the population P fitting the rollout Holland schema
(α, j, #).

We now provide an example to illustrate definition 8.

Example 6. Continuing with example 5 and population P appearing in figure 1, we recall that α ↓ (P) = {1}.
we immediately deduce that Order(α, j, #) = 0 unless j = 1. There are two rollouts, namely the first and
the forth, that fit the schema (α, 1, #) so that Order(α ↓ 1, P) = 2. Likewise, β ↓ (P) = {2} and
exactly one rollout, namely the second one, fits the Holland schema (β, 2, #) so that Order(β, j, #) = 0
unless j = 2 while Order(β ↓ 2, P) = 1. Continuing in this manner (the reader may want to look back at
example 5), we list all the nonzero values of the function Order(action,�, P) for the population P in figure 1:
Order(γ ↓ 4, P) = Order(ξ ↓ 3, P) = Order(ξ ↓ 2, P) = Order(π ↓ 3, P) = 1.

Likewise, recall from example 5, that 1 ↓ (P) = {5, 3, 4, 2} so that Order(1 ↓ j, P) = 0 unless j = 5 or
j = 3 or j = 4 or j = 1. It happens so that a unique rollout exists in the population P fitting each fragment
(1, (j, something in A)) for j = 5, j = 3, j = 4 and j = 2 respectively, namely the first, the second, the forth
and the last (seventh) rollouts. According to definition 8, we then have Order(1 ↓ 5, P) = Order(1 ↓ 3, P) =

12

Order(1 ↓ 4, P) = Order(1 ↓ 2, P) = 1. Analogously, 2 ↓ (P) = {1, 7, 4, 6, f6} so that Order(2 ↓ j, P) = 0
unless j = 1, 7, 4 or 6. The only rollout in the population P involving the fragment with 1 following 2
is the second one, the only one involving 7 following 2 is the forth, the only one involving 4 following 2
is the fifth, and the only one involving 6 following 2 is the last (the seventh) rollouts respectively so that
Order(2 ↓ 1, P) = Order(2 ↓ 7, P) = Order(2 ↓ 4, P) = Order(2 ↓ 6, P) = 1. Continuing in this manner, we
list all the remaining nonzero values of the “Order” function introduced in definition 8 for the population P
in figure 1:

Order(3 ↓ 7, P) = Order(3 ↓ 6, P) = Order(3 ↓ 2, P) = Order(3 ↓ 1, P) = 1,

Order(4 ↓ 6, P) = Order(4 ↓ 2, P) = 1,

Order(5 ↓ 6, P) = Order(6 ↓ 3, P) = Order(6 ↓ 5, P) = Order(7 ↓ 5, P) = 1.

Remark 6. It must be noted that all the functions introduced in definitions 7 and 8 remain invariant if
one were to apply the “primitive” recombination transformations as in definition 5 to the population in the
argument. More explicitly, given any population of rollouts Q that’s obtained from the initial population P
after repeated application of recombination transformations in definition 5, an action α under evaluation, an
equivalence class i ∈ N, a Holland-Poli schema h = (α, i1, i2, . . . , ik−1, xk) an integer j with 1 ≤ j ≤ k, we
have

α ↓ (P) = α ↓ (Q), i ↓ (P) = i ↓ (Q),

i ↓Σ (P) = i ↓Σ (Q), Order(q ↓ r, P) = Order(q ↓ r, Q).

Indeed, the reader may easily verify that performing a swap of the elements of the same equivalence class, or
of the corresponding subtrees pruned at equivalent labels, preserves all the states which are present within
the population and creates no new ones. Moreover, the equivalence class sequel is also preserved and hence
the invariance of the functions α ↓ and i ↓ etc. follows.

We now briefly describe what the “limiting frequency” of a schema of rollouts is as follows: Suppose we put
a probability distribution, call it µ, on the the set of all possible compositions of crossover transformations in
definition 5 such that identity transformation (i.e. the transformation that does not do anything, for instance,
the composition of a one point crossover with itself) is chosen with a positive (it can be very tiny) probability.
Now start with a population P 0 of rollouts, select a composition of recombination transformation θ with
probability µ, apply it to the population P and obtain a new population P 1 = θ(P). Again select another
transformation θ1 with probability µ, apply it to the population P 1, obtain a new population P 2 = θ1(P 1) =
θ1 ◦ θ(P). Continue in this manner so that the new population at time t, P t = θt−1 ◦ θt−2 ◦ . . . ◦ θ1 ◦ θ(P 0).7

Given a Holland-Poli schema h of rollouts, for every population of rollouts Q let X (h, Q) denote the total
number of rollouts in the population Q that fit the schema h. Since every one of the populations P t contains
b = |P 0| rollouts, the total number of rollouts encountered up to time t is bt. The total number of rollouts
fitting the Holland-Poli rollout schema h up to the time t is

∑t
i=0 X (h, P t). We define the frequency of

occurrence of the schema h up to time t as Φ(P, {P i}ti=1, h) =
∑t

i=0 X (h, P t)

bt and the limiting frequency of
occurrence of the Holland-Poli schema h to be limt→∞ Φ(P 0, {P i}ti=1, h). According to the general Geiringer
theorem of [9] (see also the mildly extended version in [7] as in the previous footnote), the limiting frequency
of occurrence of any schema (and, in fact, any specified subset) of rollouts always exists and is independent of
the specific stochastic sample run with probability 1. Computing this limit seems to be a very difficult (if not
impossible) task for any given initial population P 0, however, if we “inflate” the population P 0 by a factor
of m (i.e m-plicate every rollout in the population P 0: more explicitely, construct the new population P by
extending the alphabet by a factor of m and for every rollout xi adding m− 1 copies of the rollout xi to the
population P 0, thereby obtaining a new population P 0

m)8 and then take the limit of the limiting frequencies
of occurrence limm→∞

(
limt→∞ Φ(P 0

m, {P im}ti=1, h)
)

as the inflation factor m → ∞, then the limit can be

7It has been shown in section 6 of [7] that one can actually select an entire collection of such probability distributions on the
family of compositions of recombination transformations and apply different distributions depending on the time as well as the
history of populations up to the current time population (it must not depend on the current time population, of course).

8Notice that inflating the population P 0 by a factor of m ≥ 1 preserves all of the stochastic information within the population
of samples: it only “emphasizes” this information by a factor of m.

13

computed purely in terms of the quantities in definitions 7 and 8 as follows: if h = (α, i1, i2, . . . , ik−1, xk),
where xk ∈ {#} ∪ Σ is a given Holland-Poli schema then

lim
m→∞

lim
t→∞

Φ(P 0
m, {P im}ti=1, h) =

Order(α ↓ i1, P 0)

b
×

×

(
k−1∏
q=2

Order(iq−1 ↓ iq, P 0)∑
j∈iq−1↓Order(iq−1 ↓ j, P 0) + iq−1 ↓Σ (P 0)

)
· LF (P 0, h) (1)

with probability 1, where

LF (P 0, h) =

1 if xk = #

0 if xk = f ∈ Σ and f /∈ xk−1 ↓ (P 0)

Fraction if xk = f ∈ Σ and f ∈ xk−1 ↓Σ (P 0)

where

Fraction =
1∑

j∈ik−1↓(P 0) Order(ik−1 ↓ j, P 0) + ik−1 ↓Σ (P 0)

(we write “LF” as short for “Last Factor”). Furthermore, in the special case when the initial population
P 0 is homologous (see definition 3), one does not need to take the limit as m → ∞ in the sense that
limt→∞Φ(P 0

m, h, t) is a constant independent of m and its value is given by the right hand side of equation 2.
An important comment is in order here: it is possible that the denominator of one of the fractions

involved in the product is 0. However, in such a case, the numerator is also 0 and we adopt the convention
(in equation 2) that if the numerator is 0 then, regardless of the value of the denominator (i.e. even if the
denominator is 0), then the fraction is 0. As a matter of fact, a denominator of some fraction involved is
0 if and only if one of the following holds: α(P) = 0 or if there exists an index q with 1 ≤ q ≤ k − 1 such
that no state in the equivalence class of iq appears in the population P (and hence in either of the inflated
populations Pm).

The Geiringer-like theorem above naturally motivates the following dynamic parallel algorithm for action
evaluation after a number of simulations has been completed. Just as in Monte-Carlo tree search, as the
learning agent keeps simulating rollouts (trials or random self-plays), it stores and dynamically updates a
weighted labeled directed graph where the nodes are the similarity classes while a directed edge from a
similarity class i to the similarity class j is added when some state from the similarity class j follows a state
from the similarity class i within one of the simulated rollout. After being added the edge has weight 1.
Whenever a state with observable information j follows a state with observable information i again, the edge
weight from i to j is incremented by 1. Loops (or edges from a similarity class i to itself) are allowed and
their weights are incremented according to exactly the same rule with i = j. The same exactly rule applies
to the terminal labels following a given edge. Either concurrently or periodically after a certain number of
simulations (trials) independent agents, let’s call them bugs, traverse the dynamically constructed digraph
starting at various actions under evaluation and traveling through the digraph according to the following
simple rule: if an agent is at the state labeled by i, the agent travels to a state labeled by j ∈ i ↓ (P) with the
probability proportional to the directed edge weight from i to j that is, by construction, Order(i ↓ j, P) where
P is the current sampled population. Of course, the situation is analogous if the bug starts at the actions
under evaluation or travels to the terminal states (where it receives payoffs). The bug finishes its journey
at terminal states and then updates the values Q(s, α) of the actions under evaluation that it has started

traveling at according to the following simple rule: Q(s, α) := n(s, α)
n(s, α)+1Q(s, α) + fterm

n(s, α)+1 where n(s, α) is

the total number of times that the bugs updated the action value Q(s, α) up to the current, n(s, α)+1st, bug
and fterm is the numerical value of the payoff where the current, n(s, α) + 1st, bug has finished its trip. the
value Q(s, α) has been updated by the n(s, α)+1st bug that started (or traveled) through that action under
evaluation, increment n(s, α) by 1, i.e. update n(s, α) := n(s, α) + 1. It is not hard to see from equation 2
and the law of large numbers that as the number of bugs updating the payoff values of the action α of the
observable state under evaluation increases, the action value Q(s, α) approaches the expected payoff when
the rollout schemata are sampled with the probabilities equaling to their limiting frequencies of occurrence
as in equation 2 rather rapidly unless the payoff values are truly huge in size. A pictorial diagram appears

14

in figure8:9 let’s say a “bug” has started its trip at the action α under evaluation. Then the bug travels to

Figure 8: α and β denote the actions under evaluation while i1, i2, . . . ∈ N are the equivalence classes of
states.

the similarity class i2 with probability Order(α↓i2)
Order(α↓i2)+Order(α↓i4) while it travels to the node i4 with probability

Order(α↓i4)
Order(α↓i2)+Order(α↓i4) . Likewise, if the bug is at the similarity class i5 then it remains at i5 with probability

Order(i5↓i5)
Order(i5↓i5)+Order(i5↓i3)+Order(i5↓i8) , travels to i3 with probability Order(i5↓i3)

Order(i5↓i5)+Order(i5↓i3)+Order(i5↓i8) and to

i8 with probability Order(i5↓i8)
Order(i5↓i5)+Order(i5↓i3)+Order(i5↓i8) . Notice that if the bug ended up at the state i3, it

travels to the terminal label f1 with probability 1.

3 A Very Brief Description of Memory Evolutive Systems: a
Model of Cognition in Biological Neural Networks and Connec-
tions to the Novel Algorithms Presented in the Current Article

A “memory evolutive system” (see [18] for a detailed exposition by the inventors of the model) is a dynam-
ical system of evolving multilayered digraphs with extra structure of associative composition of links (such
mathematical structures are known as categories: see [23], or, for a gentler introduction that’s more suit-
able to computer scientists, [24]) that are meant to model evolving cognitive processes in biological neural
networks. One can think of a biological neural network as a directed graph where neurons are the nodes
(called objects in a category-theoretic language) and synapses from neuron i to neuron j are links (called
morphisms or arrows, in the language of category theory). Furthermore, this category has a further extra

9Notice that we omit the initial population (or sample) P when writing Order(i ↓ j) (i.e. we write Order(i ↓ j) in place of
Order(i ↓ j, P)) since the population P plays no explicit role in the dynamic parallel algorithm described above. Moreover, as
the new rollouts are simulated so that the weights along the digraph are incremented accordingly and potential new nodes are
added, the initial population of simulated rollouts changes accordingly and yet, this does has no relevance to the algorithmic
implementation.

15

structure: it is a weighted category in the sense that the arrows (the synapsis) have varying strengths and
the strengths vary with time so that one is looking at an entire collection of weighted categories that evolves
over time: {Ct}∞t=1. Another crucial component of the model is the hierarchy: the idea is that the concept
formation is a multistage process, that takes place according to a few common computational mechanisms
based on Hebbian learning i.e. the process of increasing or decreasing the strength between the synapses
based on the presence or absence of signals from one neighboring neuron to another [25]. Concepts form
gradually as clusters of interconnected neurons that collectively influence another neuron or another cluster
of interconnected neurons. Such clusters initially form cocone diagrams and gradually “converge” towards
colimit diagrams (see [23], [24] or any other textbook on category theory for rigorous definitions ranging in a
variety of levels of comprehension). An important reason why the notion of a colimit diagram is selected to
model a conceptual cluster of neurons (or a cluster of conceptual clusters of neurons in a higher level) is that
an entire collection of various arrows (in case of simple neurons synapses) corresponds uniquely to what’s
called a “collective link” or collective arrow from one cluster of neurons to the other. In this manner we can
think of sophisticated pre-learned concepts as objects on a higher level of development while the arrows from
one such object to another are collective links representing an entire family of lower-level collective links (a
collection of synapses from one neuron in the cluster to another one in the cluster when a previous level of
development is the lowest one).

Returning back to the parallel algorithms described in the previous section, imagine that the conceptual
clusters of neurons that are modeled as colimit diagrams represent states while collective links from these
states towards other, motor-related conceptual clusters of neurons, represent actions at these states much
like on the diagram in figure 9 below. Eventually, a state-action sequence leads to a state that has a

Figure 9: A conceptual perception of the new state represented by a cluster of neurons on the right followed
after an execution of an action available at the state represented by a cluster of neurons on the left.

numerical payoff measured by the intensity of a feedback signal thereby resembling the notion of a rollout
in Monte-Carlo tree search and POMDPs. It is conceivable then that the action evaluation mechanisms
for the collective links towards the motor-related clusters of neurons are implemented in a similar manner
as described at the end of the previous section. Moreover, the newest generalized Geiringer-like theorem
in [14] that allows recombination over arbitrary set cover, leads to new fascinating insights into payoff-based

16

clustering algorithms that resemble self-organizing maps and may also play a significant role in the concept-
formation. These algorithms are the subject of sequel papers.

4 Conclusions and Future Research Directions

In the most general setting, Geiringer-like theorems address the limiting frequency of occurrence of various
generalized “genetic material” that ranges from alleles in genomic expressions to functions in genetic pro-
gramming or, even more interestingly, observable states in computational intelligence in the long run after
repeated application of recombination (or crossover) transformations. In the current paper we describe a
rather simple dynamic algorithm motivated by one of the latest theorems in [7] to take advantage of ran-
domness and incomplete information by predicting the outcome of the limiting frequency of occurrence of
various states after an “infinitely long” recombination process as described in section 2. Not only such
algorithms are anticipated to have a tremendous impact when coping with POMDPs (partially observable
Markov decision processes), a link has been exhibited between such algorithms for decision making in the
environments with randomness and incomplete information and the corresponding algorithms in biological
neural networks through an elegant and well-developed category-theoretic model of cognition in [18]. The
most recent version of the theorem in [14] motivates further extensions of the dynamic algorithms in the
current paper for payoff-based clustering and will be investigated in the sequel papers.

Acknowledgements

This work has been supported by the EPSRC EP/I009809/1 “Evolutionary Approximation Algorithms for
Optimization: Algorithm Design and Complexity Analysis” Grant.

References

[1] H. Geiringer. On the probability of linkage in mendelian heredity. Annals of Mathematical Statistics,
15:25–57, 1944.

[2] Y. Rabani, Y. Rabinovich, and A. Sinclair. A computational view of population genetics. In Annual
ACM Symposium on the Theory of Computing, pages 83–92, 1995.

[3] H. Muhlenbein. Parallel genetic algorithms, population genetics, and combinatorial optimization. In
Parallelism, Learning, Evolution, pages 398–406, 1991.

[4] R. Poli, C. Stephens, A. Wright, and J. Rowe. A schema-theory-based extension of geiringer’s theorem
for linear gp and variable-length gas under homologous crossover. In Foundations of Genetic Algorithms
(FOGA 2002), pages 45–62, 2002.

[5] B. Mitavskiy and J. Rowe. An extension of geiringer theorem for a wide class of evolutionary algorithms.
Evolutionary Computation, 14(1):87–118, 2006.

[6] B. Mitavskiy and J. Rowe. A schema-based version of geiringer theorem for nonlinear genetic program-
ming with homologous crossover. In Foundations of Genetic Algorithms 8 (FOGA-2005), pages 156–175.
Springer, lecture Notes in Computer Science 3469, 2005.

[7] B. Mitavskiy, J. Rowe, and C. Cannings. A version of geiringer-like theorem for decision making in
the environments with randomness and incomplete information. International Journal of Intelligent
Computing and Cybernetics, 5(1):36–90, 2012.

[8] A. Auger and B. Doerr. Theory of Randomized Search Heuristics. Series on Theoretical Computer
Science, 2011.

[9] B. Mitavskiy and J. Rowe. An extension of geiringer theorem for a wide class of evolutionary algorithms.
Evolutionary Computation, 14(1):87–118, 2006.

17

[10] B. Mitavskiy and C. Cannings. Exploiting quotients of markov chains to derive properties of the station-
ary distribution of the markov chain associated to an evolutionary algorithm. In Simulated Evolution
and Learning (SEAL-2006), 2006.

[11] B. Mitavskiy, J. Rowe, A. Wright, and L Schmitt. Quotients of markov chains and asymptotic properties
of the stationary distribution of the markov chain associated to an evolutionary algorithm. Genetic
Programming and Evolvable Machines, 17(3):109–123, 2008.

[12] B. Mitavskiy, J. Rowe, A. Wright, and L Schmitt. An improvement of the Quotient Construction method
and further asymptotic results on the stationary distribution of the markov chains modeling evolutionary
algorithms. In IEEE Congress on Evolutionary Computation (CEC-2007), 2007.

[13] B. Mitavskiy and C. Cannings. Estimating the ratios of the stationary distributions of markov chains
modeling evolutionary algorithms using the quotient construction method. Evolutionary Computation,
17(3):343–377, 2009.

[14] B. Mitavskiy and J. He. A further generalization of the finite-population geiringer-like theorem for
pomdps to allow recombination over arbitrary set covers. In Foundations of Genetic Algorithms 12
(FOGA-2013). ACM Press, 2013.

[15] A.C. Ehresmann, N. Baas, and J.-P. Vanbremeersch. Hyperstructures and memory evolutive systems.
Intern. J. Gen. Sys., 33(5):553–568, 2004.

[16] A.C. Ehresmann and P. Smeonov. Wlimes: Towards a theoretical framework for wandering logic intelli-
gence memory evolutive systems. In P. L. Simeonov, L. S. Smith, and A. C. Ehresmann, editors, Integral
Biomathics: Tracing the Road to Reality. Springer-Verlag, 2012.

[17] A.C. Ehresmann and J.-P. Vanbremeersch. The memory evolutive systems as a model of rosens organ-
isms. Axiomathes, 16:165–214, 2006.

[18] A.C. Ehresmann and J.-P. Vanbremeersch. Memory Evolutive Systems: Hierarchy, Emergence, Cogni-
tion, volume 4 of Studies in Multidisciplinarity. Elsevier, 2007.

[19] M. Vose. The simple genetic algorithm: foundations and theory. MIT Press, 1999.

[20] L. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, 259:1–61, 2001.

[21] L. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, 310:181–231, 2004.

[22] Poli R, C. Stephens, A. Wright, and J. Rowe. A schema theory based extension of geiringer’s theorem
for linear gp and variable length gas under homologous crossover. In Foundations of Genetic Algorithms
7 (FOGA-2003). Springer, lecture Notes in Computer Science 3469, 2003.

[23] S. Mc Lane. Categories for the Working Mathematician. Springer Science+Business Media, 1971.

[24] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, 1998.

[25] D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

18

	1 Introduction
	2 Mathematical Framework, Statement of the new Geiringer-like Theorem for Action Evaluation in POMDPs and the Corresponding Action-Evaluation Algorithms.
	3 A Very Brief Description of Memory Evolutive Systems: a Model of Cognition in Biological Neural Networks and Connections to the Novel Algorithms Presented in the Current Article
	4 Conclusions and Future Research Directions

