Skip to main content
Log in

Biochemical connectionism

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper, we discuss computational architectures that are motivated by connectionist patterns that occur in biochemical networks, and speculate about how this biochemical approach to connectionism might complement conventional neural approaches. In particular, we focus on three features of biochemical networks that make them distinct from neural networks: their diverse, complex nodal processes, their emergent organisation, and the dynamical behaviours that result from higher-order, self-modifying processes. We also consider the growing use of evolutionary algorithms in the design of connectionist systems, noting how this enables us to explore a wider range of connectionist architectures, and how the close relationship between biochemical networks and biological evolution can guide us in this endeavour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Sci Agric 266(5187):1021–1024

    Article  Google Scholar 

  • Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theor Biol 223(1):1–18

    Article  MathSciNet  Google Scholar 

  • Aldana M, Balleza E, Kauffman S, Resendiz O et al (2007) Robustness and evolvability in genetic regulatory networks. J Theor Biol 245(3):433–448

    Article  MathSciNet  Google Scholar 

  • Alon Uri (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  Google Scholar 

  • Andy A, De Lacy Costello B, Tetsuya A (2005) Reaction--diffusion computers. Elsevier, Amsterdam

    Google Scholar 

  • Banzhaf W (2003) Artificial regulatory networks and genetic programming. In: Rick LR, Bill W (eds) Genetic programming theory and practice, Chap 4. Kluwer, Amsterdam, pp 43–62

  • Banzhaf W (2004) Artificial chemistries—towards constructive dynamical systems. Solid State Phenomena, 97/98:43–50

    Article  Google Scholar 

  • Berridge MJ (2012) Cell signalling biology: spatial and temporal aspects of signalling. Portland Press, Colchester

    Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  Google Scholar 

  • Bolouri H (2008) Computational modeling of gene regulatory networks—a primer. Imperial College Press, London

    Book  Google Scholar 

  • Bull L (2012) Evolving Boolean networks on tunable fitness landscapes. IEEE Trans Evolut Comput 16(6):817–828

    Article  Google Scholar 

  • Bull L (2012) A simple computational cell: coupling Boolean gene and protein networks. Artif Life 18(2):223 – 236

    Article  Google Scholar 

  • Bull L (2013) Consideration of mobile DNA: new forms of artificial genetic regulatory networks. Nat Comput. doi:10.1007/s11047-013-9369-6

  • Bull L, Preen R (2009) On dynamical genetic programming: random Boolean networks in learning classifier systems. In: Leonardo V et al (eds) Genetic programming. Lecture notes in computer science, vol 5481. Springer, Berlin, pp 37–48

  • Chaté H, Losson J (1997) Non-trivial collective behavior in coupled map lattices: a transfer operator perspective. Phys D 103(1-4):51–72

    Article  MathSciNet  MATH  Google Scholar 

  • Cedric RC, Bradley RC (2009) The biology of chromatin remodeling complexes. Ann Rev Biochem 78:273–304

    Article  Google Scholar 

  • Conrad M (1990) The geometry of evolution. BioSystems 24:61–81

    Article  Google Scholar 

  • Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucl Acids Res 39(suppl 1):D691–D697

    Article  Google Scholar 

  • de Ronde W, Tostevin F, ten Wolde PR (2011) Multiplexing biochemical signals. Phys Rev Lett 107(4):048101

    Article  Google Scholar 

  • Decraene J, Mitchell GG, McMullin B (2007) Evolving artificial cell signaling networks: perspectives and methods. In: Dressler F, Carreras I (eds) Advances in biologically inspired information systems. Springer, Heidelberg, pp 167–186

  • Dittrich P, Ziegler J, Banzhaf W (2001) Artificial chemistries—a review. Artif Life 7:225–275

    Article  Google Scholar 

  • Dubrova E, Teslenko M, Tenhunen H (2008) A computational scheme based on random Boolean networks. In: Priami C et al (eds) Transactions on computational systems biology X. Lecture notes in computer science, vol 5410. Springer, Berlin, pp 41–58

  • Duch W, Grabczewski K (2002) Heterogeneous adaptive systems. In: Proceedings of the 2002 international joint conference on neural networks, IJCNN’02, vol 1. IEEE, New York, pp 524–529

  • Duch W, Jankowski N (1999) Survey of neural transfer functions. Neural Comput Surv 2(1):163–212

    Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Book  Google Scholar 

  • Egri-Nagy A, Dini P, Nehaniv CL, Schilstra MJ (2010) Transformation semigroups as constructive dynamical spaces. In: Colugnati FAB, Lia CRL, Saulo FAB (eds) Digital ecosystems. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 67. Springer, Berlin, pp 245–265

  • Farmer JD (1990) A rosetta stone for connectionism. Phys D 42(13):153–187

    Article  MathSciNet  Google Scholar 

  • Faulconbridge A, Stepney S, Miller JF, Leo S, Caves D (2012) RBN-World: a sub-symbolic artificial chemistry. In: Kampis G, Karsai I, Szathmáry E (eds) Advances in artificial life. Darwin Meets von Neumann, Part 1. Lecture notes in computer science, vol 5777. Springer, Berlin, pp 377–384

  • Fine P, Paolo E, Philippides A (2006) Spatially constrained networks and the evolution of modular control systems. In: Nolfi S et al (eds) From animals to animats 9. Lecture notes in computer science, vol 4095. Springer, Berlin, pp 546–557

    Google Scholar 

  • Floreano D, Mondada F et al (1996) Evolution of plastic neurocontrollers for situated agents. In: From animals to animats IV: proceedings of the fourth international conference on simulation of adaptive behavior, vol 4. MIT Press, Cambridge

  • Fontana W (1992) Algorithmic chemistry. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artificial life II. Addison-Wesley, Redwood City, pp 159–210

  • Franke R, Theis FJ, Klamt S (2010) From binary to multivalued to continuous models: the lac operon as a case study. J Integr Bioinf 7(1):151

    Google Scholar 

  • Fuente LA, Lones MA, Turner AP, Caves LS, Stepney S, Tyrrell AM (2013a) Adaptive robotic gait control using coupled artificial signalling networks, hopf oscillators and inverse kinematics. In: Proceedings fo 2013 IEEE congress on evolutionary computation (CEC 2013). IEEE, New York

  • Fuente LA, Lones MA, Turner AP, Caves LS, Stepney S, Tyrrell AM (2013b) Computational models of signalling networks for non-linear control. Biosystems 112(2):122–130

    Article  Google Scholar 

  • Funahashi K, Nakamura Y (1993) Approximation of dynamical systems by continuous time recurrent neural networks. Neural networks, 6(6):801–806

    Article  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press, New York

    Book  Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Sci Signal 332(6030):680

    Google Scholar 

  • Hamann H, Schmickl T, Crailsheim K (2011) Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics. In: Proceedings of the 13th annual genetic and evolutionary computation conference, GECCO. ACM, New York, pp 195–202

  • Hancock J (2010) Cell signalling. Oxford University Press, Oxford

    Google Scholar 

  • Hickinbotham S, Stepney S, Nellis A, Clarke T, Clark E, Pay M, Young P (2011) Embodied genomes and metaprogramming. In: Lenaerts T et al (eds) Proceedings of 11th European conference on the synthesis and simulation of living systems. Advances in artificial life, ECAL 2011. MIT Press, Cambridge, pp 334–341

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  MathSciNet  Google Scholar 

  • Hu T, Banzhaf W (2010) Evolvability and speed of evolutionary algorithms in light of recent developments in biology. J Artif Evolut Appl 2010:568375

    Google Scholar 

  • Husbands P, Smith T, Jakobi N, O’Shea M (1998) Better living through chemistry: evolving GasNets for robot control. Connect Sci 10(3-4):185–210

    Article  Google Scholar 

  • Jaeger H (2003) Adaptive nonlinear system identification with echo state networks. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems, vol 15. MIT Press, Cambridge, pp 593–600

  • Jordan MI (1990) Attractor dynamics and parallelism in a connectionist sequential machine. In: Diederich J (ed) Artificial neural networks. IEEE, Piscataway, pp 112–127

  • Joyce AR, Palsson BØ (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7(3):198–210

    Article  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Khan MM, Lester DR, Plana LA, Rast A, Jin X, Painkras E, Furber SB (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: IEEE international joint conference on neural networks, IJCNN 2008. IEEE, New York, pp 2849–2856

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  Google Scholar 

  • Kim S, Coulombe PA (2010) Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 11(1):75–81

    Article  Google Scholar 

  • Kind T, Scholz M, Fiehn O (2009) How large is the metabolome? A critical analysis of data exchange practices in chemistry. PloS One 4(5):e5440

    Article  Google Scholar 

  • Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69

    Article  MathSciNet  MATH  Google Scholar 

  • Komili S, Silver PA (2008) Coupling and coordination in gene expression processes: a systems biology view. Nat Rev Genet 9(1):38–48

    Article  Google Scholar 

  • Koonin EV, Wolf YI, Karev GP, Fernández P, Solé RV (2006) The role of computation in complex regulatory networks. In: Laws P (ed) Scale-free networks and genome biology. Molecular Biology Intelligence Unit. Springer, New York, pp 206–225

  • Kornberg RD (2007) The molecular basis of eukaryotic transcription. Proc Natl Acad Sci USA 104(32):12955–12961

    Article  Google Scholar 

  • Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19(5):675 – 686

    Article  Google Scholar 

  • Lacroix V, Cottret L, Thebault P, Sagot M-F (2008) An introduction to metabolic networks and their structural analysis. IEEE/ACM Trans Comput Biol Bioinf 5(4):594–617

    Article  Google Scholar 

  • Leier A, Kuo PD, Banzhaf W (2007) Analysis of preferential network motif generation in an artificial regulatory network model created by duplication and divergence. Adv Complex Syst 10(02):155–172

    Article  MATH  Google Scholar 

  • Levy ED, Landry CR, Michnick SW (2010) Signaling through cooperation. Sci Signal 328(5981):983

    Google Scholar 

  • Lones MA (2003) Enzyme genetic programming: modelling biological evolvability in genetic programming. PhD thesis, Department of Electronics, University of York

  • Lones MA, Tyrrell AM (2004) Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming. BioSystems 76(1):229–238

    Article  Google Scholar 

  • Lones MA, Tyrrell AM, Stepney S, Caves LS (2010) Controlling complex dynamics with artificial biochemical networks. In: Esparcia-Alczar AI et al (eds) Proceedings of 2010 European conference on genetic programming (EuroGP 2010). Lecture notes in computer science, vol 6021. Springer, Berlin, pp 159–170

  • Lones MA, Tyrrell AM, Stepney S, Caves LSD (2011) Controlling legged robots with coupled artificial biochemical networks. In: Lenaerts T et al (eds) Proceedings of 11th European conference on the synthesis and simulation of living systems. Advances in artificial life ECAL 2011. MIT Press, Cambridge, pp 465–472

  • Lones MA, Smith SL, Tyrrell AM, Alty JE, Jamieson DRS (2012) Evolving computational dynamical systems to recognise abnormal human motor function. In: Lones MA et al (eds) Proceedings of 9th international Conference on information processing in cells and tissues, vol 7223. Lecture notes in computer science. Springer, Berlin, pp 177–182

  • Lones MA, Fuente LA, Turner AP, Caves LSD, Stepney S, Smith SL, Tyrrell AM (2013a) Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans Evolut Comput (in press)

  • Lones MA, Smith SL, Alty JE, Lacy SE, Possin KL, Jamieson DRS, Tyrrell AM (2013b) Evolving classifiers to recognise the movement characteristics of Parkinson’s disease patients. IEEE Trans Evolut Comput (in press)

  • Lones MA, Smith SL, Tyrrell AM, Alty JE, Jamieson DRS (2013c) Characterising neurological time series data using biologically-motivated networks of coupled discrete maps. BioSystems 112(2):94–101

    Article  Google Scholar 

  • Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural Netw 10(9):1659–1671

    Article  Google Scholar 

  • Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560

    Article  MATH  Google Scholar 

  • Mabu S, Hirasawa K, Hu J (2007) A graph-based evolutionary algorithm: genetic network programming (GNP) and its extension using reinforcement learning. Evolut Comput 15(3):369–398

    Article  Google Scholar 

  • MacLeod C, Capanni NF (2010) Artificial biochemical networks: a different connectionist paradigm. Artif Intell Rev 33(1):123–134

    Article  Google Scholar 

  • Marijuán PC (1995) Enzymes, artificial cells and the nature of biological information. BioSystems 35:167–170

    Article  Google Scholar 

  • May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467

    Article  Google Scholar 

  • McAdams HH, Arkin A (1999) It’s a noisy business! genetic regulation at the nanomolar scale. Trends Genetics 15(2):65–69

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    Article  MathSciNet  MATH  Google Scholar 

  • Medler DA (1998) A brief history of connectionism. Neural Comput Surv 1:18–72

    Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nat Environ Pollut Technol 431:343–349

    Google Scholar 

  • Minsky M, Seymour P (1969) Perceptrons: an introduction to computational geometry. MIT Press, Cambridge

    MATH  Google Scholar 

  • Mokhtar M, Halliday DM, Tyrrell AM (2007) Hippocampus neurons and place cells/place field representation to provide path navigation. In: International joint conference on neural networks, IJCNN 2007. IEEE, New York, pp 795 –800

  • Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol 8(6):571–580

    Article  Google Scholar 

  • Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270(48):28495–28498

    Article  Google Scholar 

  • Ohno S et al (1970) Evolution by gene duplication. George Allen & Unwin, London

  • Ohyama T (2005) DNA conformation and transcription. Molecular Biology Intelligence Unit. Springer, New York

  • Pǎun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  Google Scholar 

  • Poole AM, Philips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. BioSystems 69:163–186

    Article  Google Scholar 

  • Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, Pazos A, Araque A (2011) Artificial astrocytes improve neural network performance. PloS One 6(4):e19109

    Article  Google Scholar 

  • Rasmussen TP et al (2003) Embryonic stem cell differentiation: a chromatin perspective. Reprod Biol Endocrinol 1:100

    Article  Google Scholar 

  • Rebollo R, Romanish MT, Mager DL (2012) Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genetics 46(1):21–42

    Article  Google Scholar 

  • Reil T (1999) Dynamics of gene expression in an artificial genome—implications for biological and artificial ontogeny. In: Proceedings of the 5th European conference on artificial life (ECAL’99). Lecture notes in artificial intelligence, vol 1674. Springer, Berlin, pp 457–466

  • Ricard J, Cornish-Bowden A (2005) Co-operative and allosteric enzymes: 20 years on. Eur J Biochem 166(2):255–272

    Article  Google Scholar 

  • Rosenblatt F (1958) The perceptron. Psychol Rev 65(6):386–408

    Article  MathSciNet  Google Scholar 

  • Rumelhart DE, McClelland JL (1986) Parallel distributed processing: explorations in the microstructure of cognition. In: Foundations vol 1. MIT Press, Cambridge

    Google Scholar 

  • Rumelhart DE, Hintont GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  • Shmulevich I, Dougherty ER, Zhang W (2002) From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE 90(11):1778–1792

    Article  Google Scholar 

  • Stanley KO (2007) Compositional pattern producing networks: a novel abstraction of development. Genetic Program Evolv Mach 8(2):131–162

    Article  Google Scholar 

  • Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evolut Comput 10(2):99–127

    Article  Google Scholar 

  • Szejka A, Drossel B (2007) Evolution of canalizing Boolean networks. Eur Phys J B 56(4):373–380

    Article  Google Scholar 

  • Teuscher C (2002) Turing’s connectionism: an investigation of neural network architectures. Springer, London

    Book  Google Scholar 

  • Tsuda S, Artmann S, Zauner K-P (2009) The phi-bot: a robot controlled by a slime mould. In: Artificial life models in hardware. Springer, London, pp 213–232

  • Tuci E, Quinn M, Harvey I (2002) Evolving fixed-weight networks for learning robots. In: Proceedings of the 2002 IEEE congress on evolutionary computation, CEC’02, vol 2. IEEE, New York, pp 1970–1975

  • Turing AM (1948) Intelligent machinery. Technical report, National Physical Laboratory, Teddington

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237(641):37–72

    Article  Google Scholar 

  • Turner AP, Lones MA, Fuente LA, Stepney S, Caves LSD, Tyrrell AM (2013a) The artificial epigenetic network. In: Proceedings of 2013 IEEE symposium series on computational intelligence (SSCI 2013). IEEE, New York

  • Turner AP, Lones MA, Fuente LA, Tyrrell AM, Stepney S, Caves LSD (2013b) Controlling complex tasks using artificial epigenetic regulatory networks. BioSystems 112(2):56–62

    Google Scholar 

  • Ulam S (1952) Random processes and transformations. In: Proceedings of international congress of mathematicians, vol 2. American Mathematical Society, Providence, pp 264–275

  • Vargas PA, Paolo EA, Husbands P (2007) Preliminary investigations on the evolvability of a non-spatial GasNet model. In: e Costa FA et al (eds) Advances in artificial life, vol 4648. Lecture notes in computer science. Springer, Berlin, pp 966–975

  • Volkert LG (2003) Enhancing evolvability with mutation buffering mediated through multiple weak interactions. Biosystems 69(2-3):127–142

    Article  Google Scholar 

  • Walker CC, Ashby WR (1966) On temporal characteristics of behavior in certain complex systems. Kybernetik 3(2):100–108

    Article  Google Scholar 

  • Wellen KE, Thompson CB (2012) A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 13(4):270–276

    Google Scholar 

  • Wilson MZ, Gitai Z (2013) Beyond the cytoskeleton: mesoscale assemblies and their function in spatial organization. Curr Opin Microbiol 16(2):177–183

    Article  Google Scholar 

  • Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3(1):98

    Article  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2(5):a000596

    Google Scholar 

  • Yamauchi Brian M, Beer Randall D (1994) Sequential behavior and learning in evolved dynamical neural networks. Adapt Behav 2(3):219–246

    Article  Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

    Article  Google Scholar 

  • Zandron C, Ferretti C, Mauri G (2001) Solving NP-complete problems using P systems with active membranes. In: Unconventional models of computation, UMC’2K. Springer, London, pp 289–301

  • Zanudo JGT, Aldana M, Martínez-Mekler G (2011) Boolean threshold networks: virtues and limitations for biological modeling. Inf Process Biol Syst 2:113–151

    Google Scholar 

Download references

Acknowledgements

This research was supported by the EPSRC under the Grant “Artificial Biochemical Networks: Computational Models and Architectures” (ref. EP/F060041/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lones, M.A., Turner, A.P., Fuente, L.A. et al. Biochemical connectionism. Nat Comput 12, 453–472 (2013). https://doi.org/10.1007/s11047-013-9400-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9400-y

Keywords

Navigation