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Abs t r ac t . We present a computing model based on the DNA strand 
displacement technique which performs Bayesian inference. The model 
will take single stranded DNA as input data, representing the presence 
or absence of a specific molecular signal (evidence). The program logic 
encodes the prior probability of a disease and the conditional probability 
of a signal given the disease playing with a set of different DNA com­
plexes and their ratios. When the input and program molecules interact, 
they release a different pair of single stranded DNA species whose rela­
tive proportion represents the application of Bayes' Law: the conditional 
probability of the disease given the signal. The models presented in this 
paper can empower the application of probabilistic reasoning in genetic 
diagnosis in vitro. 

1 Introduction 

Since the birth of biomolecular computation in Leonard Adleman's seminal work 
[2], different applications have been proposed in the literature. The trend of 
resolving NP-complete problems during the early years of the discipline [11] 
progressively evolved towards nanotechnology and biomedicine oriented applica­
tions, such as genetic diagnosis and drug delivery automata [5,3,1,4]. 

An important research line emerged taking advantage of the DNA strand 
displacement phenomenon, which in short can be described as follows: a s t rand 
A displaces another s t rand B from a complex A'B, due to the higher affinity 
between A and A' and the greater stability of the duplex AA'. We cite only a 
few contributions to this extensive topic introduced by Yurke et al. [23], like for 
example the design of logic gates [19,21,9], DNA automata [22] and theoretical 
models [6[. 

The interest in molecular logical inference was reawakened in 2009 with the 
work presented by the group of Prof. Shapiro [15], where the authors developed 
an enzyme driven system able to perform autonomously simple logical deductions 
with DNA molecules. Since then, Rodriguez-Paton et al. [16,17,13] have been 
working on the design of enzyme free logical inference models tha t only exploit 
the DNA strand displacement operation. 
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With the exception of the work done by the group of Prof. Benenson about 
stochastic enzymatic reactions [1,4], all the logical models cited above share a 
common property: they only implement Boolean logic, and thus their output 
always represent an absolute t ru th value (true / false, active / inactive, presence 
/ absence, 1 / 0 , etc.). None of these deterministic models is able to deal with 
uncertain knowledge. Other enzyme free models (but not autonomous) have been 
presented implementing stochastic paradigms [10,24]. 

Probabilistic reasoning can be used when we want to consider diagnostic ac­
curacy or uncertainty of tests in our clinical decisions (i.e. classic systems like 
Mycin [20]). With the motivation of designing a model tha t can process this 
uncertainty, this article presents a Bayesian biosensor tha t makes probabilistic 
reasoning and whose output represents the probability (value between 0 and 1) 
of a disease. Such type of device can be used to estimate and update the proba­
bility of a certain diagnose based in the light of new evidence, i.e., based on the 
presence or absence of a new specific signal (or set of signals). The DNA sensor 
device would encode two different probabilities as program data: the conditional 
probability of the signal given the disease (P(signal\disease)) and the prior 
probability of the disease {P(disease)). Then, when the sensor interacts with an 
input representing the evidence of a signal (its presence or absence), Bayes' Law 
would be autonomously computed by means of s t rand displacement cascades, 
releasing a set of DNA species whose ratio encodes the posterior probability of 
the disease given the input (P(disease\signal)). 

The rest of the paper is structured as follows: Section 2 includes a brief review 
of the main concepts in probability theory and Bayesian inference. Section 3 de­
scribes how the model encodes the prior and conditional probabilities, as well as 
the input evidences. Section 4 shows an inference process example tha t updates 
the knowledge of a disease applying the Bayes' rule, and how it is implemented 
by our model. Section 5 discusses in detail the scalability and the mapping of 
the biological evidences as inputs to the system. Finally, Section 6 summarizes 
the conclusions and future work. 

2 Principles of the Model 

Basic concepts of probability theory and Bayesian inference [14,18] used through­
out the article are summarized first: 

R a n d o m variable . A function whose possible values are numerical outcomes 
of a random phenomenon. It can take different value domains, so tha t we can 
talk about continuous, discrete, or Boolean random variables. This paper will 
focus on boolean random variables, tha t can take the value t rue or false with 
a certain probability. For example, we can talk about the random variable D 
representing a given disease, which can be present (true) or absent (false). 

Logical p r o p o s i t i o n . A logical formula expressing an assignment between a 
random variable and one of its potential domain values. Hence, the propo­
sitions D = present (also denoted as D\) and D = absent (also denoted as 
-Do) are the possible formulations tha t can be hypothesized on the random 



variable D. Generic propositions of a given variable are denoted with its 
corresponding lower case letter, for example, P(d) can refer either to P(D\) 
or P(D0). 

Probab i l i t y funct ion . A function P tha t assigns a probability to each value in 
the random variable domain (and thus to each potential logical proposition 
derived from the variable). Building on the above example, we can talk 
about the probability of D as the duple P(d) = {P(DI),P(DQ)). The sum 
of probabilities of all the values of the domain must be equal to 1: 

P(Di.) + P(D0) = 1 (1) 

When this function is defined without any dependence on other random 
variables, we call it prior probability. 

Joint probabi l i ty . Having a set of different propositions, a\, ..., an, the prob­
ability of all of them happening at the same time is defined by the joint 
probability function, represented as P(a\ A ... A an) or P(a\, ..., an). 

Condi t iona l probabi l i ty . This function can be intuitively seen as the degree 
of belief in a variable after the observation of other variables related to 
the first. So the conditional probability of a proposition a given b is the 
probability of a when b is known to occur. It is commonly denoted as P(a\b). 
Conditional probability can also be expressed as a function of prior and joint 
probabilities: 

-n, ,,s P(aA b) , . 

P(a\b) = - ± ^ (2) 

This formula can be derived into the so called product rule: 

P{a A 6) = P(a\b) • P(b) = P(b\a) • P(a) (3) 

Continuing the above example, when a disease is extensively studied, the 
probability of a disease d given the signal s is known and expressed as P(d\s). 
This is also called posterior probability. 

Condi t iona l i n d e p e n d e n c e . Two propositions a and b are conditionally inde­
pendent when they do not have any dependency relationship. In such case 
we can rewrite their probabilities as 

P(a\b) = P(a); P(b\a) = P(b); P{a,b) = P{a) • P{b) (4) 

B a y e s ' Law Can be derived from the conditional probability and the product 
rule formulations, and is s tated as follows: 

mt) = a^po (5) 
This rule, together with the property of independence, are key in probabilis­
tic reasoning and allows the establishment of relationships between probabil­
ities and evidences. It allows to update the certainty value of a hypothesis or 
a diagnosis (prior probability P(d)), in the light of new evidence (P(s)) and 



the signal likelihood (P(s\d)), to obtain an "updated" posterior probability 
(P(d\s)). _ 

Assuming we are able to exhaustively estimate all the probabilities con­
cerning the variable D, we can rewrite the law as: 

P(d\s) = a • P(s\d) • P(d) = a-P(dAs) (6) 

Since the sum of the probabilities P(D = present\s) and P(D = absent\s) 
must be equal to 1, we can t reat a as a normalization factor. 

3 Encoding 

Our sensor model aims to implement the product of the probabilities P(s\d) • 
P(d) = P(dAs) shown in Equation 6. This will be achieved using single stranded 
DNA in the encoding of the prior probabilities (P(d)) and double stranded com­
plexes in the encoding of conditional probabilities (P(s\d)). Also the input evi­
dences will need a specific DNA encoding. Details come below: 

E n c o d i n g Input E v i d e n c e s 

Input evidences are encoded using single stranded DNA. A strand S\ represents 
the presence of the signal, while SQ represents its absence. As we talk about 
evidences, only one specie can be present at a time: either only input s t rands Si 
(meaning the signal is present) or So (meaning the signal is not present). This 
input will tell the sensor tha t the prior probability of the disease needs to be 
updated according to the given evidence. 

^ 

• * • 

Fig. 1. Encoding input evidences. Si represents the presence of the signal; So represents 
its absence. Only Si or So species should be present at the same time. 

In case of unwanted presence of one of the two signals in significant con­
centration, the input could not any more be considered as an evidence as the 
probabilities Pi (i = 0,1) it would be different of 1 or 0. Thus the computation 
result would be altered and not valid. 



E n c o d i n g Prior Probabi l i t i e s 

The prior probability of D is represented as the duple P(d) = {P(DI),P(DQ)). 
Our model encodes each value using two different single s tranded species: D\ rep­
resenting P(D = present) and Do representing P(D = absent). The probability 
values are implicitly encoded in the ratio of molecules of each specie against the 
total for D. If we denote the number of molecules of each specie J\^ as |̂ 4. |̂, we 

can express the probability as P(d) = 

an example DNA encoding of P(d) 

The Figure 2 shows |Ai | + | A 0 | ' |Ai | + |A 0 | 

(0.5,0.5). The coloured toeholds at the 
5' end will allow their interaction with the molecules encoding the conditional 
probabilities. 

.£1 

D, 

Fig. 2. Encoding prior probabilities. The model encodes each value using two different 
single stranded species: D)\ representing P(P) = present) and Do representing P(D = 
absent). The probability P{d) = (0.5, 0.5) is encoded as the ratio between the number 
of molecules of each specie and the total number of species for D. 

E n c o d i n g Condi t iona l Probabi l i t i e s 

The conditional probability of S given D needs to encode values for the following 
propositions: 

— (S = present\D = present) 
— (S = absent\D = present) 
— (S = present\D = absent) 
— (S = absent\D = absent) 

The reader can see tha t for each proposition s t rand d interacting with a con­
ditional probability molecule, two different outputs encoding two different joint 
probabilities can be released: (S = present Ad) and (S = absent Ad). Therefore, 
from the four different joint probabilities tha t could be released from the inter­
action of the Di species and the conditional probability molecules (representing 
(S = present A D = present), (S = absent A D = present), (S = present A D = 
absent) and (S = absent A D = absent)), the system needs to be able to select 
only the outputs corresponding to the input evidence: 



— If the input evidence is S\, the output s trands released should encode (S = 
present A D = present) and (S = present A D = absent). 

— If the input evidence is So, the output s trands released should encode (S = 
absent A D = present) and (S = absent A D = absent)). 

The desired behaviour described above for the conditional probability molecules 
can be at tained using a motif equivalent to the AND gate presented by Seelig et 
al. [19]. Other motifs implementing such logic could be equally valid, but we have 
chosen this one due to its simplicity and iteration capability. Figure 3-A shows an 
example of how the s t rands building the joint probability P(S = present A D = 
present) (depicted as S\ A D\) are released in the presence of the input evidence 
S\ and D\. Figure 3-B shows the detailed motifs of the molecules tha t encode 
the conditional probabilities P(s\d). Similarly to the case of prior probabilities, 
the probability figures are taken as ratios relating to the number of molecules of 
each motif. It also shows the formula to establish the correspondence between 
each motif and the conditional probability values they encode. 

In order to ensure we are working with probability values, the following re­
strictions need to be ensured: 

-So I-Do I | | (Si |-Do 
S 0 |Do | + | S i | B o | ' \So\Do\ + \Si\D0 

\Sp\Dr\ . | ffi|.Di | 
S0|Di| + |Si|Di| ' |S0|Di| + |Si|Di 

= 1 (derived from Equation 1) 

= 1 (derived from Equation 1) 

— ISol-Dol + ISil-Dol = ISol-Dil + ISil-Dil (this ensures tha t different \Si\Dj\ can 
be mixed in the output for a fixed i) 

4 Inference Process 

Let us imagine we need to diagnose a disease D with the help of its signal S. 
The following data is known upfront, due to empirical data: 

— Prior probability of the disease: 
• P(D = present) = 0.5 
• P(D = absent) = 0.5 

— Conditional probability of the signal given the disease: 
• P(S = absent\D = absent) = 0.7 
• P(S = present\D = absent) = 0.3 
• P(S = absent\D = present) = 0.2 
• P(S = present\D = present) = 0.8 

Now we get the confirmation tha t the signal is present (S = present). Wha t is 
now the probability of the disease being present given tha t the signal is present, 
P(D = present\S = present)? Since we don't know the prior probability of the 
signal (P(s)), we cannot directly apply the Bayes' Law as stated in Equation 5. 
We apply the derivation stated in Equation 6 instead: 

P(D = present\S = present) = a • P(S = present\D = present) • P(D = 
present) = a • 0.8 • 0.5 = a • 0.4 
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Fig. 3. Encoding conditional probabilities. (A) The top panel shows the hybridization 
flow releasing the joint probability strand P(S = present A D = present) (depicted 
as Si A Di) when the input evidence S = present (depicted as Si) and D = present 
(depicted as Di). It also releases a fluorophore from its quencher, which will allow the 
measurement of the output. DNA segments named with an asterisk prefix (* Si and * Di 
in this panel) are Watson-Crick complementary to the corresponding toeholds named 
without that asterisk. (B) The bottom panel shows the four motifs encoding the condi­
tional probabilities P(s\d), together with the formulas that relate their concentrations 
to the respective probability values. 



In order to find a, we need to calculate P(D = absent\S = present) as well: 

P(D = absent\S = present) = a-P(S = present\D = absent)-P(D = absent) = 
a 0.3 -0.5 = a -0.15 

Since P(D = present\S = present) + P(D = absent\S = present) = 1 (see 
Equation 1) we can derive a = 1.81 and P(D = present\S = present) = 0.73). 

Following the encoding model described in Section 3, we can reproduce with 
DNA the inference process described above: 

— The prior probability P(d) = (0.5,0.5) is encoded with two different DNA 
species, D\ and DQ. Each specie will count 50 copies (|-Di| = 50, |_Do| = 50). 

— The conditional probabilities are encoded as follows: 
• P(S = absent\D = absent) is encoded with 70 copies of the complex 

S0\D0. 
• P(S = present\D = absent) = 0.3 is encoded with 30 copies of the 

complex Si\Do-
• P(S = absent\D = present) = 0.2 is encoded with 20 copies of the 

complex Sol-Di. 
• P(S = present\D = present) = 0.8 is encoded with 80 copies of the 

complex Si | .Di. 
— The input evidence S = present is encoded with a unique DNA specie, Si, 

with a number of copies much bigger than the total number of molecules 
encoding conditional probabilities. 

Then the DNA inference process would s tar t by mixing evidences, prior and 
conditional probabilities all together (see Figure 4): 

1. The strands Dj interact with the strands Si\Dj. Assuming an ideal solution 
(perfectly mixed), the number of complexes Si\Dj "activated" by strands Dj 
would be updated as follows: 

— 35 copies of the complex Sol-Do-
— 15 copies of the complex Si\Do-
— 10 copies of the complex SQ\D\. 

— 40 copies of the complex S\\D\. 
2. The input s trands Si interact with the complexes Si \Do and Si \D\, releasing 

15 copies of the s trand Si A DQ and 40 copies of the s trand Si A D\. 
3. The number of copies of each output s t rand is estimated by the increase of 

the different fluorescent colours (red for Si A DQ and green for Si A D\). 
The only step missing is the calculation of the probability encoded in tha t 
output , which is easily done normalizing both values as follows: P(D\S) = 

I l^ i l^ i ! \Sx\Dg\ \ _ /n 7 o n o 7 \ 
XlSilDol + I S i l D i l ' \Sx\Da\ + \Sx\Dx\ J - \ U . I O , U . Z I / . 

5 Discussion 

The DNA biosensor presented here operates as a Bayesian inference device, which 
allows the introduction of quantitative information in the tests, highlighted by 
the molecular indicators or signals. 
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Fig. 4. Inference process. DNA segments named with an asterisk prefix are Watson-
Crick complementary to the corresponding toeholds named without that asterisk. (I) 
The DNA probabilistic reasoning starts with the prior probability species Di interacting 
with the conditional probability molecules Si\Dj. (2) Then the input evidence species 
Si interact with the molecules Si\Dj that had interacted previously with the species Di, 
releasing the strand species Si A Di and Si A Do. (3) Finally, the probability P(D\S = 
present) is inferred by normalization of the red and green fluorescence emissions. 



Its operation is inspired by the stochasticity of the competing transitions pre­
sented by Adar et al.[l], also used by the authors in another work to modulate 
the ratio between the drug and the drug suppressor in the output [4]. Our work 
is also based on transitions competing stochastically, but using the DNA strand 
displacement operation to eliminate the dependence on the enzyme Fok I. More­
over, we have aimed to identify the way to map the basic concepts of probability 
theory and Bayesian inference and map them into DNA strand displacement 
motifs, so that they can be used as design patterns when implementing Bayesian 
reasoning with DNA. 

In order this model to have realistic applications in genetic diagnosis, it needs 
to deal with more than one signal (s1,..., sn) for the same disease d (superscripts 
denote the signal number). According to Equation 6, the following formulation of 
the Bayes' Law would need to be solved: P(d\s1,..., sn) = a-P(d)-P(s1,..., sn\d). 
Assuming conditional independence of the signals given the disease (as in the 
Naive Bayes model [12]) we can apply Equation 4 and derive the following ex­
pression: P(d|s1 , . . . , sn) = a-P(d)-P(s1\d)- ...-P(sn\d). We can see that the first 
two terms of the product (ignoring a) correspond to the formulation we have 
used for just one signal. Substituting those terms by application of Equation 2 
we get this final expression: P(d\s1,..., sn) = a-P(s1 Ad)- ...-P(sn\d). Translating 
this into our DNA encoding model: 

— P(d), Pis1) and the evidences S1 (i = 0,1) are encoded as described in 
Sections 3 and 4, with subscripts denoting absence (0) or presence (1) of 
signal. 

— Since the output of the previous steps has the form of species S1 A D]~ 
(i = 0,1; k = 0,1), the devices encoding P(s2\d) will need to accept the 
strands Sj A Dj. instead of the strands Dj.- The output of this step will 
release species Sj A 5 2 A Dj. • 

— Previous step would be repeated for each P(sx\d) (x = 1,..., n) until the last 
signal is reached. 

Another important matter to be addressed is the translation of the biological 
data coming from real samples into the input evidence species. When the evi­
dence to be sensed is determined by the presence of a specific nucleic acid strand, 
that strand could be directly taken as the input evidence strand S\ the system 
expects. The problem comes if the signal is determined by the absence of a spe­
cific nucleic acid strand. How can that be mapped into an input evidence strand 
5*0? One possible solution is the addition of an extra "pre-processing" layer, con­
sisting of extra DNA device as described in Figure 5: if no input signal from the 
samples, the device in the pre-processing layer works as being the input strand 
So; but if an input signal is present, it unreleases the strand S\. Another poten­
tial solution would be the use of a DNA aptamer [25]. Other non DNA aptamers 
[8] could also be exploited to allow our model take other molecules different from 
nucleic acids as inputs. 
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Fig. 5. Processing input as absence of DNA strand. If no signal available among the 
input samples, the device in the pre-processing layer works as being the input strand 
So (top-left). However, if an input signal is present (top-right), it unreleases the strand 
Si (bottom-left), leaving a waste molecule that will not react in the system. 

6 Conclusions and Future Works 

We have introduced a new DNA model for realization of Bayesian inference. The 
model is completely autonomous, enzyme-free and it is based on DNA strand 
displacement techniques. Its implementation can be based on experimentally 
verified and general design derived in [19]. According to the properties examined 
in [7], the model can be characterized as part ly scalable, time-responsive and 
energy-efficient. 

We think the models presented in this paper can empower new quantitative 
applications of probabilistic genetic diagnosis in vitro. We plan to construct the 
model in a wet lab and to continue enhancing this model, so tha t it can be 
generalized to work with all types of Bayesian networks (and not only the ones 
following the Naive Bayes approach [12]). 
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