Skip to main content
Log in

Morphogenesis through moving membranes

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We present a methodology for the modelling of spatially-aware biological phenomena, based on the description of the movement of membranes in the Euclidean space. The time evolution of the system is described by an iterative algorithm, which determines the movement of the objects according to the actions they perform, and the constraints they are subjected to. We exemplify our approach with a model of the morphogenesis of Dictyostelium discoideum, and present the results of its simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Term \(\| p_j[t]-p_i[t] \|\) corresponds to the Euclidean distance between \( p_{j}{[t]}\) and \( p_{i}{[t]}\).

References

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2006) A calculus of looping sequences for modelling microbiological systems. Fundam Inf 72(1–3):21–35

    MATH  MathSciNet  Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Tiberi P, Troina A (2008) Stochastic calculus of looping sequences for the modelling and simulation of cellular pathways. In: Priami C (ed) Transactions on computational systems biology IX. Lecture Notes in Computer Science, vol 9. Springer, Berlin, pp 86–113

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G (2011) Spatial calculus of looping sequences. Theor Comput Sci 412(43):5976–6001

    Article  MATH  MathSciNet  Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G, Tesei L (2011) Spatial P systems. Nat Comput 10(1):3–16

    Article  MATH  MathSciNet  Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G (2013) Simulation of spatial P system models. Theor Comput Sci. doi:10.1016/j.tcs.2013.08.002

  • Cardelli L (2005) Brane Calculi– interactions of biological membranes. In: Danos V, Schachter V (eds) Computational methods in systems biology. Lecture Notes in Computer Science, vol 3082. Springer, Berlin, pp 257–278

  • Cardelli L, Gardner P (2010) Processes in space. In: Ferreira F, Löwe B, Mayordomo E, Mendes Gomes L (eds) Programs, proofs, processes. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, pp 78–87

  • Davidson LA, Koehl MAR, Keller R, Oster GF (1995) How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121(7):2005–2018

    Google Scholar 

  • Drasdo D, Forgacs G (2000) Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev Dyn 219(2):182–191

    Article  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended potts model. Phys Rev Lett 69:2013–2016

    Article  Google Scholar 

  • Hardin JD, Cheng LY (1986) The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 115:490–501

    Google Scholar 

  • John M, Ewald R, Uhrmacher AM (2008) A spatial extension to the π-calculus. Electronic notes in theoretical computer science 194(3):133–148. Proceedings of the first workshop from biology to concurrency and back (FBTC 2007)

  • Kominami T, Takata H (2004) Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium. Dev Growth Differ 46(4):309–326

    Article  Google Scholar 

  • Manca V (2013) Infobiotics: information in biotic systems. Springer, Berlin

    Book  Google Scholar 

  • Maree AF, Hogeweg P (2001) How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc Natl Acad Sci USA 98:3879–3883

    Google Scholar 

  • Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge

    Google Scholar 

  • Murray JD (2002) Mathematical biology: I. An introduction, 3rd edn. Springer, Berlin

    Google Scholar 

  • Murray JD (2003) Mathematical biology: II. Spatial models and biomedical applications, 3rd edn. Springer, Berlin

    Google Scholar 

  • Neumann JV (1966) Theory of self-reproducing automata. University of Illinois Press, Urbana

    Google Scholar 

  • OSG Web page (2013) OpenSceneGraph library. URL http://www.openscenegraph.org

  • P Systems Web page (2013) P Systems web page. URL http://ppage.psystems.eu

  • Palsson E, Othmer HG (2000) A model for individual and collective cell movement in Dictyostelium discoideum. Proc Natl Acad Sci USA 97(19):10448–10453

    Google Scholar 

  • Pardini G (2011) Formal modelling and simulation of biological systems with spatiality. PhD thesis, Università di Pisa

  • Patel M, Nagl S (2006) Mathematical models of cancer. In: Nagl S (eds) Cancer bioinformatics: from therapy design to treatment, Chap 4. Wiley, New York, pp 59–93

    Google Scholar 

  • Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MATH  MathSciNet  Google Scholar 

  • Păun G (2002) Membrane computing. An introduction. Springer, Berlin

  • Regev A, Panina EM, Silverman W, Cardelli L, Shapiro EY (2004) BioAmbients: an abstraction for biological compartments. Theor Comput Sci 325(1):141–167

    Article  MATH  MathSciNet  Google Scholar 

  • Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput Graph 21(4):25–34

    Article  Google Scholar 

  • Savill NJ, Hogeweg P (1997) Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol 184(3):229–235

    Article  Google Scholar 

  • SDL Web page (2013) Simple DirectMedia Layer (SDL) library. URL http://www.libsdl.org

  • Tamulonis C, Postma M, Marlow HQ, Magie CR, De Jong J, Kaandorp J (2011) A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Dev Biol 351(1):217–228

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237(641):37–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pardini.

Additional information

This work started when G. Pardini was employed at Dipartimento di Informatica, Università degli Studi di Verona, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manca, V., Pardini, G. Morphogenesis through moving membranes. Nat Comput 13, 403–419 (2014). https://doi.org/10.1007/s11047-013-9407-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-013-9407-4

Keywords

Navigation