Skip to main content
Log in

A cognitive-inspired algorithm for growing networks

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

We present models for generating different classes of networks by adopting simple local strategies and an original model of the evolutionary dynamics and growth of on-line social networks. The model emulates people’s strategies for acquiring information in social networks, emphasising the local subjective view of an individual and what kind of information the individual can acquire when arriving in a new social context. We assume that the strategy proceeds through two phases: (a) a discovery phase, in which the individual becomes aware of the surrounding world and (b) an elaboration phase, in which the individual elaborates locally the information trough a cognitive-inspired algorithm. Model generated networks reproduce the main features of both theoretical and real-world networks, such as high clustering coefficient, low characteristic path length, strong division in communities, and variability of degree distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. Election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery (LinkKDD ’05). ACM, New York, pp 36–43

  • Bagnoli F, Massaro E, Guazzini A (2012) Community-detection cellular automata with local and long-range connectivity. In: Sirakoulis GC, Bandini S (eds) Cellular automata. Lecture notes in computer science, vol 7495. Springer, Berlin, pp 204–213

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  • Barrat A, Barthlemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. PNAS 101(11):3747–3752

    Article  Google Scholar 

  • Bollobas B (2001) Random graphs. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Dorogovtesev SN, Mendes JFF (2003) Evolution of networks. Oxford University Press, Oxford

    Book  Google Scholar 

  • Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8:128–140

    Google Scholar 

  • Forster KI, Davis C (1984) Repetition priming and frequency attenuation. J Exp Psyc Learn Memory Cogn 10(4):680–698

  • Gigerenzer G, Gaissmaier W (2011) Heuristic decision making. Annu Rev Psychol 62:451–482

    Article  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99:7821–7826

    Article  MATH  MathSciNet  Google Scholar 

  • Internet World Stats (2013) www.internetworldstats.com/facebook.htm. Accessed 1 Feb 2013

  • König D (1936) Theorie der endlichen und unendlichen Graphen, Liepzig

  • Massaro E, Bagnoli F (2014) Hierarchical community structure in complex social networks. Acta Physica Polonica 7(2):379–393

  • Massaro E, Bagnoli F, Guazzini A, Lió P (2012) Information dynamics algorithm for detecting communities in networks. CNSNS 17(11):4294–4303

    MATH  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  Google Scholar 

  • Nicosia V, Bagnoli F, Latora V (2011) Impact of network structure on a model of diffusion and competitive interaction. EPL 94:68009

  • Papadopoulos F, Kitsak M, Serrano M, Bogu M, Krioukov D (2012) Popularity versus similarity in growing networks. Nature 489:537–540

    Article  Google Scholar 

  • Reka A, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Scott J (2000) Social networks analysis: a handbook, 2nd edn. Sage, London

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  Google Scholar 

  • The Koblenz Network Collection (2012) http://konect.uni-koblenz.de. Accessed 05 May 2012

  • Tulving E, Schacter DL, Stark HA (1982) Priming effects in word fragment completion are independent of recognition memory. J Exp Psyc Learn Memory Cogn 8(4):336–342

  • Wasserman S, Faust K (1994) Social networks analysis. University Press, Cambridge

    Book  Google Scholar 

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Massaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaro, E., Bagnoli, F., Guazzini, A. et al. A cognitive-inspired algorithm for growing networks. Nat Comput 13, 379–390 (2014). https://doi.org/10.1007/s11047-014-9444-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9444-7

Keywords

Navigation