
Natural Computing manuscript No.
(will be inserted by the editor)

Environment Orientation

a structured simulation approach for agent-based complex
systems

Tim Hoverd · Susan Stepney

Received: date / Accepted: date

Abstract Complex systems are collections of independent agents interacting
with each other and with their environment to produce emergent behaviour.
Agent-based computer simulation is one of the main ways of studying com-
plex systems. A näıve approach to such simulation can fare poorly, due to
large communication overhead, and due to the scope for deadlock between the
interacting agents sharing a computational platform.

Agent interaction can instead be considered entirely from the point of view
of the environment(s) within which the agents interact. Structuring a simula-
tion using such Environment Orientation leads to a simulation that reduces
communication overhead, that is effectively deadlock-free, and yet still behaves
in the manner required. Additionally the Environment Orientation architec-
ture eases the development of more sophisticated large-scale simulations, with
multiple kinds of complex agents, situated in and interacting with multiple
kinds of environments.

We describe the Environment Orientation simulation architecture. We re-
port on a number of experiments that demonstrate the effectiveness of the
Environment Orientation approach: a simple flocking system, a flocking sys-
tem with multiple sensory environments, and a flocking system in an external
environment.

1 Introduction

Complex systems are collections of independent agents interacting with each
other and with their environment to produce emergent behaviour. When con-
structing agent-based computer simulations of such systems, the communica-
tion overhead of directly interacting agents becomes expensive, O(N2). Fur-
thermore such a direct communication architecture makes it difficult to par-

S. Stepney
Department of Computer Science, University of York, UK, YO10 5DD



2 Tim Hoverd, Susan Stepney

allelise and distribute such simulations without running in to deadlock issues,
where parallel or pseudo-parallel agents are waiting for each other to progress
before being able to progress themselves.

Here we demonstrate an alternative simulation architecture—Environment
Orientation—designed to overcome these issues. The structure of the paper is:

– Section 2 overviews how agent-based complex system simulations are tra-
ditionally implemented, and the issues that arise.

– Section 3 discusses an alternative approach to agent interaction, which
motivates the Environment Orientation architecture.

– Section 4 defines Environment Orientation.
– Section 5 discusses the requirements for an Environment Orientation sim-

ulation architecture.
– Section 6 presents experiments developed to demonstrate that Environ-

ment Orientation can be used to build complex systems simulations, and
that its architecture results in a flexible simulation platform. The three
experiments described are:
1. to implement a well-known example of complex systems behaviour as

an environment oriented simulation;
2. to implement a similar simulation, albeit one that admits to a number

of environments within which the agents are embedded;
3. to implement a simulation which includes an external environment rep-

resenting the landscape within which the agents are moving.
– Section 7 discusses further issues needed to scale up, including to dis-

tributed platforms.

2 Complex systems simulation implementations

Agent-based modelling [27] is an approach commonly proposed for providing
a complex systems simulation framework. The most obvious way of imple-
menting such a model is the use of object-oriented programming [22]. This
programming paradigm is now almost universal in industrial programming [3,
14] but, as a technique, it has its origins directly in the construction of explicit
simulations [16].

A näıve implementation of an agent-based complex system simulation would
represent each agent as an object; interaction between the simulated agents
could then most obviously be achieved by sending messages. However, such a
simple approach leads directly to significant difficulties. The issue that causes
most implementation problems is caused by processor resource contention:
deadlocking.

Deadlocks occur as a direct result of activities proceeding in parallel (in the
simulated parallelism available on a single processor core). Whenever a number
of resources are shared between activities proceeding in pseudo-parallel then
there is the possibility of contention for those resources. In the case where
shared resources are the agents in a complex systems simulation then, as all



Environment Orientation 3

agents are potentially interested in all other agents, the potential for contention
is significant.

Deadlock is a major concern in distributed systems in general, and has
been much studied since problems such as the Dining Philosophers problem
were described [5,15]. Current items of distributed enterprise software, such as
Microsoft’s SQL Server relational database management system [23], include
deadlock detection and implement a brutal approach to resolving a deadlock:
one of the deadlocked processes is summarily killed, allowing the rest of the
implementation to proceed.

Deadlocks arise naturally in the context of complex systems simulations
where agents in separate threads querying each others’ states. A single-threaded
implementation, typical of simple simulations with a small number of agents,
would not suffer issues of deadlock. However, any larger scale simulation ex-
ploiting multiple cores or multiple processors would be multi-threaded. Pre-
dicting the likely patterns of interaction in such a situation is very difficult;
hence the brutal solutions adopted by existing enterprise software.

Some computational techniques, such as the “client server” pattern for
concurrent systems [21,1] and barrier synchronisation [4], impose a processing
pattern onto communications between the various components of the simula-
tion that prevents deadlocks. All object oriented programming libraries include
classes to serialise interactions and share physical threads.

These computational devices, though, are a consequence of the predomi-
nantly serial world of computation, and frequently have no simple analogue in
the highly parallel world of independent agents interacting in complicated en-
vironments. These devices, typically expressed as patterns and class libraries,
must be used explicitly by the programmer, and impose additional protocols
onto the interaction of the simulation’s agents, moving the simulation design
away from the structure of the complex system being simulated.

For example, in the case of the client server pattern, processes are desig-
nated as either clients or servers. Clients request a service from a server and
wait for a response. Servers wait for a request, which they honour, then wait
again. Servers can also be clients of other servers. Such a system is deadlock
free if the graph of client/server relationships is acyclic. In a complex systems
simulation, such a simple configuration is not feasible for most situations, be-
cause all agents may be both clients and servers, at different moments, meaning
that such an acyclic graph does not naturally appear.

Barrier synchronisation [4] provides a way for multiple agents to synchro-
nise with each other. Enrolled agents individually synchronise on a barrier, and
are blocked until all the enrolled agents have synchronised, at which point all
the enrolled agents are rescheduled. This allows agents to agree that at some
point in time they will behave in a particular manner and at other points in a
different manner.

These approaches are essentially engineered approaches to a technical prob-
lem that is common in enterprise systems. They are a special case of layering
in systems architecture, something that is now expected in all architectures [6,
7]. Although such patterns are of clear use in enterprise systems, they do not



4 Tim Hoverd, Susan Stepney

(a) (b)

Fig. 1 (a) Diagrammatic representation of a collection of birds interacting while flocking
with each other. Some interaction arrows have been removed for clarity. (b) Diagrammatic
representation of a collection of birds interacting exclusively with their environment.

appear to exist in real world complex systems. Flocking birds are not working
to some standard global pattern lest they deadlock and fall out of the sky.
Rather, each bird is observing other birds and doing what it wants, when it
wants, in whatever order it wants, in a deadlock-free world.

One objective of an explicit agent-based complex systems simulation is to
reflect the complex system itself, without an excess of computational artefacts.
Using patterns such as barrier synchronisation introduce such artefacts, and
does not mirror the way the real world complex systems work.

3 Real world agents and their environment

3.1 Action at a distance versus mediating environment

The näıve model of a complex system, with agents directly interacting with
each other, is essentially “action at a distance” (figure 1a). Each agent must
explicitly know what other relevant agents exist, and must directly interact
with them.

But is this how agents in a real world complex system actually interact? In
reality the agents are not interacting with each other directly. Rather, a bird
flying along reflects ambient light into the space around it; as it sings it causes
sound waves in the air. Other birds sense this propagated light and sound. The
birds are not directly communicating with each other; each is interacting only
with its physical environment (figure 1b). The first bird places information into
that environment; the environment propagates the information; the other birds
sense changes in their own environment, some of which may be a consequence
of the presence of the first bird. Other changes in their environment will be a
consequence of the rest of the world, such as the level of ambient sunlight and
the wind speed and direction.

This alternative model of interaction between the birds depends on the
environment as the repository for information about the agents, which are
embodied in the wider environment that can be observed by other agents.
One bird can always look in the environment and see what another bird is



Environment Orientation 5

placing in the environment. It cannot, however, observe anything that is not
in the environment.

The real world is such an environment. In this view the agents are embodied
in the environment [31], and the environment provides services to those agents.
Each agent does what it wants, without regard to direct interactions with other
agents. Even in the real world, the agents in a complex system are interacting in
a manner reminiscent of a client server architecture. The environment provides
services to the agents, in a manner analogous to a server. The agents are clients
of those services.

If we take this model of the real world into simulation, we have a system
where agent-agent interaction is expressed not directly, but rather as com-
munication through the mediating environment. In this approach there is no
direct interaction at all; the individual agents affect each other by virtue of
existing within the same environment: all interaction is entirely stigmergic.

3.2 State

What information is placed in the environment?

In real world flocking, each bird has a large and complex internal state: it
knows whether it is flying or not, how hungry it is, whether it needs to drink.
But, from the point of view of flocking behaviour, other birds are interested
only in its distance and relative velocity.

That is, each agent has an “internal state” that represents everything it
needs to know to behave in its innate manner. Further, each agent exposes
an “external state” to the environment, which is available to other agents in
the same environment. This external state could be a subset of the agent’s
internal state, for example, in the case of the bird it could just be that part of
its state that represents its position, velocity and current song.

However, complex system agents are essentially egocentric, even solipsistic.
A flocking bird does not need to know where it is or what direction it is flying—
it is always “here”, flying “forwards”—it merely needs to know where other
birds are relative to it. In a complex system simulation, something does need
to know where the agents are, because those positions are the overall context
of execution of the complex system. However, that something does not need to
be the agent. The environment can know where each agent is and can therefore
also know which other agents are in the neighbourhood of each agent. That
is, the environment knows things about the agents that are not part of the
agent’s internal state.

An agent can generate external state just by virtue of the physics of its
environment. Photons bounce off a bird into the environment. Other birds
detect some of those photons, enabling them to see the original bird, and to
infer relative position and velocity information. This “involuntary” external
state is contrasted with other state information “voluntarily” placed into the
environment by an agent. Voluntary state could be singing a song.



6 Tim Hoverd, Susan Stepney

3.3 Accessing the environment

In a simulation constructed in this manner, each agent interacts with the
environment to access information about the other agents’ (external) states.
The natural implementation is some form of loop where each agent asks the
environment for information about other relevant agents’ states (the agents it
can see, or hear, for example), then it uses this state information to update
its own internal state appropriately, then it tells the environment its updated
external state.

The environment can be responsible for modulating one agent’s state as
peceived by another agent, depending on its distance, for example. In bird
flocking, one of the items in a query result could represent a bird that is close
to the querying agent. As such, the environment could describe the (relative)
position of the nearby bird and its velocity quite precisely. If the bird being
described is distant from the querying agent, however, then the environment
might not report the position of the bird so precisely. For example, it might
report in what direction the bird lies, but report its distance as “far away”.
Here the simulated environment is acting as the implementation of sophisti-
cated functions performed in the real world by both the agent itself and the
physics of the world.

Concentrating on the environment provides a way, in a simulation, to sep-
arate concerns between the agents and their environment. In a particular sim-
ulation, the choice of what computation is performed by the environment, and
what by agents, is a modelling decision. Certain functions may be embodied
in the environment itself, and those calculations performed by the environ-
ment. For example, in the context of the simulation of ant-trail formation,
ants leave a trail of pheromones. The responsibility for simulating the decay of
the pheromone may be allocated, depending on the requirements of the sim-
ulation, either to the environment itself, or to a special agent whose external
state is the level of pheromone along the trail.

3.4 Multiple environments

Interaction between agents may simultaneously follow a number of different
patterns. One extension of the simple spatial model is to note that a person
is physically “near” a collection of other people, but may nonetheless com-
municate simply with spatially distant people via their telephones. (Milner’s
bigraphical model [24] is designed to model both a spatial and a connectiv-
ity configuration simultaneously.) That is, there are two kinds of “nearness”,
physical nearness and “communicable” nearness, forming two distinct neigh-
bourhood environments.

So agents can be simultaneously embedded in multiple environments, each
with its own particular properties. For example, birds reflect photons, allowing
them to be detected visually. They also can sing, exploiting a separate audio
environment, so that other birds can detect them even if they are not easily



Environment Orientation 7

visible. The characteristics of a sonic environment are rather different from a
visual one: sound can go round corners, for example.

The approach discussed here allows these multiple environments to exist
simultaneously. An agent may place relevant external state in each environ-
ment. An agent that receives multiple states for another agent, from multiple
environments, can fuse the information to form a coherent picture of the other
agent.

4 Environment orientation

The contrast between current simulation implementations (section 2) and real
world interactions (section 3) motivates our introduction of Environment Ori-
entation as a new architecture for constructing agent-based complex systems
simulations. Adopting this approach removes all direct interactions between
agents. Rather, all agent behaviour is mediated through environments, within
which the agents are embodied.

Although the notion of the role of the environment as the key part of
a simulation is based on observations of the physical world, the particular
agents and behaviours that exist in a simulation is a modelling decision. Each
simulation should be constructed with the explicit knowledge of which aspects
are to be embodied in the environment.

The elements of Environment Orientation are:

1. Each agent has its own internal state, representing what the agent knows
of itself.

2. Each agent publicises some aspects of its state, its “external state”, to the
environment(s) within which it is embodied. The agent may decide when
to publicise its external state.

3. Simulation of an agent’s behaviour is performed without reference to other
agents. The behaviour depends only on the contents of the agent’s internal
state and environment(s).

4. An agent can retrieve environmental information about the external state
of other agents.

5. An environment mediates external state information, determining which
other agents can perceive it, and how it is propagated to them.

6. An environment itself is a first class computational component and can
have state and behaviour of its own.

The rest of this paper investigates our claim that Environment Orienta-
tion is an appropriate software paradigm for agent-based simulation
of complex systems. We test this claim through a number of experiments,
building complex systems simulations of several forms.



8 Tim Hoverd, Susan Stepney

5 Software architecture requirements and implementation

5.1 Client Server architecture

The Environment Orientation model is essentially a client-server one: the
agents function as clients of the environment server. The environment server
must provide services for at least:

1. retaining the external state of the simulation’s agents;
2. facilitating the updating of that information in a manner reflective of real

world physics;
3. presenting the state information to agents in a manner assimilable by the

agents.

This approach can be inherently deadlock free, as there is a single locus of
concurrency where it is straightforward to serialise updates using the standard
techniques of transactional control [11]. Such an approach essentially forms the
basis of most high performance commercial computing: applications that de-
mand very high performance in the context of a world that is rapidly changing;
something that seems quite similar to that of a complex system.

The “server” (environment) in a complex systems simulation must provide
a number of services to a client (that is an agent of the simulation). We discuss
these services and the manner in which they can be provided in more detail.

5.2 Environment service requirements

The services discussed in section 5.1 are requirements for an abstract archi-
tecture.

5.2.1 State retention

An agent (client) must be able to supply some state to the environment (server)
that will be retained and supplied to agents at a later time.

Much of this state information will need to be interpreted only by the
agents themselves; we assume that the agents share the metadata that de-
scribes the contents of the external state. However, the environment server
also needs to understand some of the agents’ information, in particular any
that relates to the aspects of physics that it is required to implement. So the
environment is also required to have access to the state metadata. For ex-
ample, all parts of a simulation agree as to the representation of things like
“position” and “velocity”.

The environment must store a large collection of agent external state ob-
jects, elaborated by additional information added by the environment itself,
in some sort of store.



Environment Orientation 9

5.2.2 State update

Agents update their own internal states, and supply updated external state
information to the environment.

A simulation may have other environmental state information, for example,
pheromone intensity on an ant trail. Pheromone decay could be implemented
as a function of the environment, or it could be implemented by agents ex-
plicitly representing the pheromone physics. Whichever approach is taken, the
simulated environment must provide for such state update.

5.2.3 State access

The environment must provide the agents with access to the external state of
other agents. There are two general strategies.

Query oriented: an agent that wishes to see the external state of a set of
other agents makes a query of the underlying environment server. The query
provides the server with the information it needs, along with its knowledge of
the agents, to select the relevant information and provide it to the querying
agent. This is appropriate for systems, like bird flocking simulation, where an
agent’s environment changes rapidly and apparently continuously.

Subscription oriented: agents inform the server of the sort of information
they are interested in, and have that information delivered as and when it
is available. In the meantime the agent carries on with its normal behaviour.
This is appropriate for systems where some information is available only oc-
casionally and unpredictably, or where it is needed to “interrupt” an agent
from its normal activities, in situations where the particular environment is
changing intermittently.

Both these approaches provided communication orthogonality [10]. A re-
ceiver of a message (an agent getting details of another agent’s external state)
does not care which particular agent provided that state as long as it satisfies
the criteria for being provided. The sender of a message (the state placed in
the repository) does not care which agent sees that information, as it is freely
available in the environment.

5.3 Implementation issues

The regularity of the interactions between agents and their environment per-
mits a wide variety of implementations; for example, massively-concurrent sim-
ulations can be constructed using the client-server pattern for process-oriented
implementations [21,32].

5.3.1 Transactions and locking

Environment Orientation can be considered as a transactional approach to
agent-based complex systems simulation. Each agent is responsible for main-
taining the information published about itself. It does this by performing a



10 Tim Hoverd, Susan Stepney

sequence of update transactions against the environment, which is a shared
repository of external states: during each cycle, an agent obtains from the
environment, whether by querying or getting a subscription update, the exter-
nal states of other agents and, in turn, updates the environment with its new
external state.

The transactional approach to software design is common in commercial
computing. In the context of Environment Orientation a simplification is pos-
sible. The external state stored for each agent is only written to by that agent,
so there is no possibility of contention when updating the environment. As
long as updates to the environment are atomic and invisible until commit-
ted, no further locking is necessary. These atomic updates of external state by
individual agents mean that it is never necessary to roll back a transaction.

5.3.2 Time and fairness

When agents do not directly communicate with each other and do not need
to synchronise, as when using Environment Orientation, there is no exter-
nal shared sense of time: agents can perform transactions whenever they like,
which makes it possible for agents to execute at different virtual rates. How-
ever, in the real world, no agent can “run ahead” of the others; agents execute
in a perfectly fair parallel manner, with the rate of their behaviour limited
only by the inherent physical properties of the world.

In a simulation, freewheeling—allowing one agent to rush ahead of others—
is not acceptable: a sense of time must be introduced in order to ensure that
agents’ access to the shared computational resources is scheduled fairly, with
no agent able to starve another of execution time.

One approach would use the “virtual time” technique used in event-based
simulation [19], in which a dimensionless virtual time is represented as a
monotonically-increasing tag tracked by simulation components.

The notion of being able to effectively run a simulation without excessive
concurrency control and allowing “sloppy” synchronisation is appealing.

5.3.3 Reproducibility

Complex systems simulations are generally seen as providing completely repro-
ducible experiments. However, Environment Orientation inherently introduces
non-determinism into simulations, in particular if the notion of virtual time
(section 5.3.2) is adopted.

Simulation can be considered as a scientific instrument [2] that we use to
understand the behaviour of a system. Like all instruments it has a degree of
uncertainty in its results. The scientific method deals with real-world exper-
iments with nondeterministic behaviour; the same techniques—error bounds,
sensitivity analysis, and other statistical techniques—can be applied to inter-
pret the results of nondeterministic simulations.

It is rare that the results of a single run of a complex system simulation
are directly useful. Normally a simulation would be run many times with the



Environment Orientation 11

same parameters, and the results aggregated to give a better understanding of
the typical behaviour of the system. In addition, permitting a greater degree
of nondeterminism will generally speed up the simulation, making it practical
to run it more times—and, unlike in the real world, we can ensure that the
initial conditions for a set of experiments are always exactly the same.

When debugging a simulation implementation, being able to reproduce a
single run exactly is sometimes useful. This could be supported by giving the
programmer a degree of control that allows them to trade determinism against
performance—for example, by reducing the degree of concurrency and enabling
additional explicit synchronisations when greater determinism is required.

Furthermore, techniques exist for debugging nondeterministic concurrent
systems [26] where software is instrumented so that a rough trace of its execu-
tion path is retained. Subsequent debugging runs can then be automatically
steered down the same execution path, with the trace being iteratively refined
with feedback from the programmer until the desired behaviour is reproduced.
This approach could be applied to a nondeterministic simulation.

5.3.4 Robustness

An ideal complex systems simulation would be as robust as the real world
complex system itself. In Environment Orientation, each agent’s behaviour is
largely independent of the other agents in the simulation, and is not affected by
precise time steps and explicit global synchronisation. This decoupling should
tend to increase the robustness of the simulations.

The flexibility of Environment Orientation, from the lack of explicit syn-
chronisation, should allow simulation robustness to be explicitly tested, for ex-
ample by testing the behaviour of the simulation in the presence of artificially-
induced “faults”, such as blocked access to parts of the simulation, changes
to the order in which state updates are recorded, and forcible introduction or
termination of agents.

5.4 Implementation techniques

A possible implementation of environment orientation is as a multi-tier archi-
tecture, as in the commonest commercial software architecture. This abstract
architecture has the following layers:

– at the top, the agents themselves;
– the environment server, which understands the environmental aspects of

the agents such as their spatial position;
– at the bottom, the repository for agent external states.

5.4.1 Repository

One motivation for Environment Orientation comes from the issues of dead-
locks, arising from inter-thread, or process, resource contention. In Environ-



12 Tim Hoverd, Susan Stepney

ment Orientation the only locus of contention between threads is in the repos-
itory. As long as the repository provides for atomicity and durability [12] of
updates then the system is guaranteed to be deadlock free. Hence, the repos-
itory must provide at least:

1. long term storage (that is, for the period of the simulation runs) of agents’
external states;

2. storage of a form that allows the environment server to inspect, elaborate
and update specific parts of those states;

3. atomicity of updates.

A number of implementation techniques could provide for these require-
ments:

1. tuple spaces, or “blackboards”, a concurrent access memory implementa-
tion, as originally provided by Linda [10], and now available in JavaSpaces
[8] (Java/Jini), TSpaces [20] (Java), Rinda [30] (Ruby);

2. a relational database management system (RDBMS), for a query oriented
approach;

3. conventional object-oriented collections, with external state represented
as an opaque object (the structure being defined by the agents), directly
stored in the collection; such collections can be made to operate atomically;
the requirement for the environment server to augment the states with
additional information can be supported using the Decorator pattern [9].

5.4.2 Threading and locking

An implementation of a significant Environment Orientation simulation would
likely execute on a multi-core processor, or a distributed platform, or both.
Execution would take place simultaneously in a number of threads. As the
locus of locking in an Environment Orientation implementation is entirely in
the state repository there should be no particular dependence on the threading
structure, as long as locks do not persist in the repository and the computa-
tional performance is fully used.

The most likely structure is to create a fixed number of threads, of an
amount reflective of the physical characteristics of the computational envi-
ronment, and to locate each agent within a particular thread. As an agent is
the prime mover of simulation behaviour that will mean that each agent and
the interactions it has with the environment server and, indirectly, the state
repository execute within a single thread.

Each thread will have to schedule the activities of the agents it supports,
but that can easily be done either serially by simple code or by some OS
provided facilities.

6 Validation

We have designed and implemented a flexible Environment Oriented simula-
tion platform, and run a variety of different experimental simulations, in order



Environment Orientation 13

to validate the Environment Orientation approach, and the derived architec-
ture requirements above (see [17, ch.5] for detailed design).

We have deliberately chosen a simple implementation approach, as our
aim is to investigate the essential concepts, not to maximise performance, at
this stage. We use Java [3] as the implementation language. Java includes a
rich set of primitive implementation classes which ease the implementation. In
particular, the threading classes and primitives [25] ease the use of parallelism
which is a necessary characteristic of the required platform.

In this section we provide experimental results aimed at some basic claims
relating to Environment Orientation:

1. Emergent properties expected from agent interactions in conventional agent-
based simulations also appear in Environment Oriented simulation with no
direct communication between the agents.

2. Simulations can be extended to multiple environments without reworking
the simulation’s architecture.

3. Simulations can be extended to include representations of the physical
world without without reworking the simulation’s architecture.

These experiments are performed by incrementally extending the imple-
mented simulation platform with simulation-specific classes. In each case we
describe the extensions made to the platform to provide the new facilities,
and the results of running the simulations. The complex system chosen for the
experimental evaluation is Reynold’s boids [28].

6.1 Flocking in a single environment

Reynolds’ algorithm describes how an agent representing a bird behaves ac-
cording to a simple set of rules resulting in emergent flocking. Each boid:

– moves towards the centre of mass of the other boids in its neighbourhood;
– attempts to match its velocity with the overall velocity of the birds in its

neighbourhood;
– moves away from nearby boids, so avoid collisions.

The simulation generates a movement vector for each boid, formed from
the vector sum of the movements due to each rule. This vector is applied to
the position of each boid at each simulation step.

6.1.1 Claim

The known emergent property, flocking, arises from an Environment
Orientation simulation.

In order to investigate this claim it is necessary to define what is meant
by a flock. For this experiment this was defined as follows. In order to be
“flocked”:



14 Tim Hoverd, Susan Stepney

1. an agent must retain over 20 simulations steps a minimum of 10 agents in
its vicinity

2. at least 80% of the set of neighbourhood agents must be the same agents
across all those steps

6.1.2 Platform specialisation

The bare simulation platform was specialised by adding several concrete sub-
classes (including FlockingAgent, FlockingEnvironment) of abstract platform
classes (Agent, Environment).

FlockingNeighbourhood, a subclass of Neighbourhood, knows the absolute
position and velocity of each boid agent. It updates boid positions and veloci-
ties from the velocity state published by the boids. It implements the behaviour
of calculating the three Reynolds vectors of the flocking rules: centre of mass,
average velocity, and proximity, of the agents in the relevant location.

FlockingAgent, a subclass of Agent, adds a velocity state to the basic
Agent. Each agent knows its own velocity; at each step it updates its ve-
locity by an amount according to the three Reynolds vectors provided by the
environment, and publishes its new velocity.

In order to determine if the notion of an agent being “flocked” was be-
ing achieved (section 6.1.1) an instrumentation class was added to produce
information describing how many of the simulation’s agents were flocked.

6.1.3 Simulation results

The simulation of the flocking complex system has several parameters, includ-
ing the number of boids, and parameters in the three the Reynolds rules. As
a test of the platform, we ran a number of tests of flocking, varying a single
one of these parameters, the neighbourhood proximity, determining whether
other agents are “in the neighbourhood” of a specific agent.

We used the instrumentation class to determine the proportion of the
agents in a simulation that were “in a flock” after a two million simulation
steps. We ran 20 simulations for each value of the proximity, to check how
successful the agents were at ending up in a flock.

The chart shown in figure 2 summarises the results of these simulations.
In each simulation 300 agents were introduced into the central 500 unit radius
circle of an infinitely-sized flat world. The chart boxplots show the proportion
of the agents that were in a flock at the end of each simulation run.

The agents are indeed forming into flocks. As expected, changing the prox-
imity parameter improves the system’s ability to incorporate more of the
agents into the emergent flocks. At small proximities, where an agent’s neigh-
bourhood would be expected to include only a few other members of the
simulation, flocking does not occur.



Environment Orientation 15

20 25 30 35 40 45 50 60 70

0
20

40
60

80
10

0

Proximity

P
er

ce
nt

ag
e 

flo
ck

ed

Fig. 2 Box plot showing the result of flocking with a single environment that builds a
neighbourhood based the proximity of agents to the querying agent. Each box shows the
lower quartile, median and upper quartile of the percentage of agents that ended in a flock
over a set of 20 simulation runs for each value of proximity, the values of this variable being
shown in the horizontal axis. Each simulation ran for 2 million simulation steps and started
with an initial population of 300 agents, randomly distributed in a 500-unit radius circle
around the origin.

6.1.4 Discussion

This flocking example validates our core claim, that the Environment Oriented
simulation displays the expected emergent property. The agents do indeed form
flocks, although entirely without direct communication between the agents.
The agents essentially know nothing of each other, other than that other agents
might exist. All they do is interact with their environment.

In this spatial simulation the agents have no knowledge of their position.
The environment is a real participant in the simulation, not merely a repos-
itory. It knows the absolute positions of the agents, and is able to populate
each agent’s neighbourhood with the states of neighbouring agents.

6.2 Flocking in multiple environments

The flocking simulation in section 6.1 has a single environment. However, it is
possible for agent behaviour to depend on multiple sensory inputs, for example,
visual and auditory.



16 Tim Hoverd, Susan Stepney

The experiment described in this section extends the single environment
experiment to one supporting multiple environments. Each agent is simultane-
ously in two environments. In addition to the previous “visual” neighbourhood,
each agent shares a second environment with a small number of other agents.
Agents in this second “auditory species” environment can perceive each other
regardless of proximity.

6.2.1 Claims

The main claims under evaluation here are:

1. Complex systems emergent properties can appear in an environment ori-
ented simulation that uses a number of environments.

2. An individual agent that can perceive more of the set of agents sharing the
environments should flock more successfully. That is that a larger propor-
tion of the agents in a simulation should end up flocked.

3. The Environment Oriented simulation platform is readily extensible to a
simulation which uses multiple environments

6.2.2 Platform extension

The simulation platform architecture explicitly supports the notion of multiple
environments, and the modifications required support specific multiple envi-
ronments are straightforward. Each agent places its external state in one or
more environments, and uses onput from all these environments to determine
its future interactions.

For this experiment, the single environment flocking simulation is extended
to support a simple version of the multiple environment concept. Each agent
is in two environments, a single ProximityEnvironment (for visual state, as
before) and a new single SpeciesEnvironment (for auditory state).

6.2.3 Simulation results

The boxplots in figure 3 summarise the results of performing simulations of
flocking using the multiple environments. These data are presented in the same
form as in figure 2; the earlier results are equivalent to a simulation where the
number of agents in the species environment is one.

6.2.4 Discussion

In a single environment, when the proximity is larger, that is when the agents
can “see” further, they are more likely to end up in a flock. When other
environments are added the results are more complicated. The agents are
continuing to flock, and the number of agents in the species environments
is affecting the success of the flocking. At larger proximities, in particular
proximity > 35, adding more agents to the species environment improves the



Environment Orientation 17

(1)

20 25 30 35 40 45 50 60 70

0
20

40
60

80
10

0

Proximity, agents per species = 1

P
er

ce
nt

ag
e 

flo
ck

ed

(2)

20 25 30 35 40 45 50 60 70

0
20

40
60

80
10

0

Proximity, agents per species = 2

P
er

ce
nt

ag
e 

flo
ck

ed

(3)

20 25 30 35 40 45 50 60 70

0
20

40
60

80
10

0

Proximity, agents per species = 3

P
er

ce
nt

ag
e 

flo
ck

ed

(4)

20 25 30 35 40 45 50 60 70

0
20

40
60

80
10

0

Proximity, agents per species = 4

P
er

ce
nt

ag
e 

flo
ck

ed

Fig. 3 Box plots showing the results of flocking in multiple environments: there is a single
proximity environment; the labels indicate the number of agents in the species environments.
Each box shows the percentage of agents that flocked over 2 million simulation steps, over
20 simulation runs. Each run started with 300 agents, randomly distributed in a 500-unit
radius circle around the origin. Each horizontal axis shows the value of proximity in the
ProximityEnvironment.

amount of flocking. The multiple environments allow an agent to “see” further
than it could previously.

With a small value for proximity, in particular at proximity = 25 and
proximity = 30, there is much more variation in the data. Although the
median value for the flocking percentage increases as the number of agents
in the species environment increases the distribution is much broader. This is
an effect of the random allocation of agents to the species environment. For
example, if agents on opposite sides of the non-cyclic “world” are in the same
species environment then it is slightly more likely that they will move towards
each other, since the members of the species environments can see across the
entire world. As these agents move towards each other, they are more likely
to approach other agents in their proximity environment, and so aggregate



18 Tim Hoverd, Susan Stepney

a collection of agents that the instrumentation deems to be a flock. But, if
the agents of the same species are initially close, then even though they move
together they never manage to attract any further agents; even four agents of
the same species next to each other are not sufficient to be classed as a flock
(section 6.1.3).

These experiments in multiple environments include rather more complex
interactions between the agents. Yet there is no possibility of deadlock in the
simulation, as the only shared resource on which multiple threads could dead-
lock is the underlying repository, and all contending access to that repository
is localised to two specific methods that are serialised.

6.3 Hill climbing

The environments discussed in the previous experiments involve properties
only of the agents themselves. Many complex systems include a significant
external environment, for example the geography. A simulation with a more
complicated external environment is investigated here. The agents’ neighbour-
hoods are extended by an environment that describes the landscape in which
the agents move. Each agent has an altitude which is the height of the land-
scape at the position where the agent finds itself. (The “birds” are now “walk-
ing” on a hilly landscape.)

Here the aim is for the agents to climb to the highest point in the land-
scape. However, the agents cannot directly observe the global landscape, they
can observe it only through their immediate local state, and the external state
of other agents. This case is designed to be directly analogous to metaheuris-
tic optimisation algorithms where particles swarm over a fitness landscape,
searching for the maximum by observing the fitness of other particles.

Here, each agent move towards the highest part of the landscape of which
it are aware, given by the altitudes of the agents in its neighbourhood. The
local repulsion rule prevents agents getting too close to each other.

6.3.1 Claim

In this experiment we investigate the claim that an environment oriented sim-
ulation can be readily extended to include external concepts, representing the
physical world outside the agents. Here this concept is a simple “landscape”.

6.3.2 Platform extension

The platform is specialised by using a different implementation of the Environ-
ment class, LandscapedEnvironment. This uses another class, Landscape, to
find the altitude of the landscape at the agent’s position. The agents (instances
of an new class ClimbingAgent) implement the relevant behaviour given their
neighbourhood state information. In these experiments the landscape is the
classic “sombrero” function [33].



Environment Orientation 19

(1)

20 30 40 50 70 100 150

0
20

40
60

80
10

0

Proximity, agents per species = 1

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

(2)

20 30 40 50 70 100 150

0
20

40
60

80
10

0
Proximity, agents per species = 2

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

(3)

20 30 40 50 70 100 150

0
20

40
60

80
10

0

Proximity, agents per species = 3

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

(4)

20 30 40 50 70 100 150

0
20

40
60

80
10

0

Proximity, agents per species = 4

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

(5)

20 30 40 50 70 100 150

0
20

40
60

80
10

0

Proximity, agents per species = 5

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

(6)

20 30 40 50 70 100 150

0
20

40
60

80
10

0

Proximity, agents per species = 6

P
er

ce
nt

ag
e 

ov
er

 9
0%

 p
ea

k 
he

ig
ht

Fig. 4 Box plots showing the results of hill climbing in multiple environments. The labels
indicate the number of agents in the species environment. Each box shows the percentage
of agents that had reached a height of > 90% of the height of the central peak, with 20
simulation runs for the data in each box. Each horizontal axis shows the value of proximity
in the ProximityEnvironment.

The implementation is enriched with a specialised monitoring class, which
collects information about how many agents are at an altitude above 90% of
the greatest height in a particular landscape.

6.3.3 Simulation results

The box plots in figure 4 summarise the results of the hill climbing simula-
tions. The agents are relatively unsuccessful at finding the central peak when
each agent is in its own species environment in addition to the proximity
environment. (That is, where there is essentially only a single proximity envi-
ronment.) However, even in this situation, the agents are more successful at
finding the central peak as the value of proximity increases. With a larger
value of proximity each agent is more likely to “see” another agent which is
further up the landscape. All the same, even at the largest value there is not
a great deal of success. An agent tends to find a local maximum, the top of
one of the surrounding “foothills” of the sombrero landscape.

As the number of agents in the species environments increases then the
agents become more successful at finding the central peak. Consider two dis-
tant agents that are “connected together” by being in the same species envi-



20 Tim Hoverd, Susan Stepney

ronment. Then, as they move towards each other, one might find the central
peak, or the start of it. If so, it will tend to stay there and drag the other one
(along with all the agents in its nearby neighbourhood) towards it.

The apparently much larger success at proximity = 150 is a consequence
firstly of the non-linear horizontal axis in the figures and the increased chance
of success due to 150 being a large proportion of the distance between the
central peak and the surrounding hills.

6.3.4 Hill-climbing discussion

The claim that Environment Oriented simulations can be extended to include
aspects of the physical world surrounding the agents is supported. In this case
the LandscapedEnvironment is adding into the simulation information about
the world in which the simulation is occurring, in this case the particular in-
stance of Landscape that is being used. Even though the implementation is still
using the basic notion of Environment Orientation, and the implementation of
that embodied in the simulation platform, the simulation works effectively. In
particular management of concurrency has become no more complex as each
agent is still merely using its environments in a transactional manner.

6.4 Validation Discussion

We have demonstrated some simple simulations built on the Environment
Orientation platform. These simulations work with no further attention paid to
deadlock. The behaviour of an agent can be expressed, and simulated, merely
by discussing the relationship of that agent to its environment.

The environment, though, it not merely some passive container. In the
examples already discussed, it is providing a number of discrete services:

– State retention: The environment is retaining the external states of agents
for later supply to other agents.

– State decoration: The environment here is responsible for imposing an over-
all “environment-centric” view on individual agents’ states. For example,
the environment is calculating and retaining the actual positions of each
agent, even though the agent itself is operating in a solipsistic manner at
the centre of its own universe.

– Landscape information: The environment provides information in addition
to the states of other agents. In the hill climbing example this includes the
height of a particular piece of the landscape. In this particular case the
height, at a particular point, is constant. However, this need not always be
the case (see section 7.1.2).



Environment Orientation 21

7 Scaling up

7.1 More complex environments

In addition to the three experiments reported above, we have used the Environ-
ment Orientation platform to perform complex system simulations with more
complex environments. These further support our claims that the Environment
Oriented architecture is flexible and extensible, and supports deadlock-free
simulations. We briefly report on those here.

7.1.1 Fuzzy flocking

The experiments reported above take a simplistic approach to fusing the infor-
mation received from multiple environments. The external states for accessible
agents in all environments are placed verbatim in the querying agent’s neigh-
bourhood. So the querying agent can perceive as much information about a
physically distant agent in a species environment as it can about an adjacent
agent in the proximity environment.

In a real world complex system, distance would degrade the resolution
at which agents’ states could be observed. In a visual environment a nearby
agent would be perceived precisely in three dimensions from the point of view
of the querying agent. Furthermore, its motion in that space would also be
perceptible. That is a flocking bird would be able to tell where another bird
was and what its current velocity was; indeed this is necessary for the flocking
algorithms mentioned here and taken originally from [28]. However, if a distant
agent were perceived in an auditory environment then the detecting agent
would be able to determine roughly in which direction the distant agent lay,
but its precise distance and velocity would be less easy to determine. The visual
environment provides three dimensions of position information and three of
velocity information, but the auditory environment provides just a direction.

To address this issue, we have further extended the simulation platform
to implement a fuzzy flocking simulation, where the information available to
an agent from different sensory modalities is combined, by the environment,
using a fuzzy logic approach [17, ch.7].

The fuzzy process provides a mechanism for fusing together the combi-
nations of multiple environments, although at the cost of a more complex
implementation. The environment has been tasked with more responsibility,
for the fuzzification process, determining what the value is for an observa-
tion’s membership of a fuzzy set. Despite the more complex implementation,
it is still consistent with the original Environment Orientation architecture;
agents still construct their neighbourhoods and use a simple output from that
neighbourhood to control their behaviour.



22 Tim Hoverd, Susan Stepney

7.1.2 Energetic evolution

We have used the Environment Oriented platform to implement a simula-
tion incorporating a more complex environment, and more complex agent be-
haviours. Agents interact, reproduce with variation (evolve), and die in an
environment that includes energy (which agents need to live) and geography.
The aim was to investigate the effect of an energy supply on the diversity of
evolved creatures [17, ch.8],[18].

In this case, we augmented the simulator design with meta-models of the
energy, the world and the agent organisms. Constructing explicit meta-models
is useful, as it defines the sort of world that is being simulated. The relation-
ships between these meta-models are explicit and implemented in the simula-
tion model. The implementation follows the model so constructed, fitting into
the Environment Oriented simulation platform architecture.

The Environment Orientation architecture provides a simple and elegant
approach to implementing simulations of complex systems with a large number
of complex agents interacting in a complicated world.

7.2 Concurrency

Deadlock is not an issue for small simulations that can run single-threaded.
However, any large scale simulation will have to use a multi-threaded imple-
mentation to have any chance of providing the computational power required
to support the necessary number of relatively complex agents. The number of
threads will be much less than the number of agents in such a simulation. The
requirement for concurrency comes from the large number of separate agents
sharing the same computational platform.

Once an implementation is multi-threaded deadlock is an inescapable is-
sue. The difficulties in using concurrent programming are well known and a
large collection of mechanisms have been developed [13,29] to manage them.
Environment Orientation is another such technique, based on the observations
of agent interaction in complex systems, where it can be argued (section 3)
that individuals agents interact only with their environment, not directly with
other agents. Environment Orientation uses one of the standard techniques
for control of concurrency to serialise interactions with the environment itself,
thereby guaranteeing freedom from deadlock.

Building Environment Oriented complex systems simulations is feasible,
as we have demonstrated; such simulations exhibit the expected emergent
properties and their implementation is simplified by the given architecture.

The example Environment Oriented simulations discussed here were all run
on a single multi-core processor. So it was reasonable to delegate the concur-
rency control that is necessary, specifically that around updates of the state
repository, to a simple mechanism: the Java synchronized keyword. A large scale
Environment Oriented simulation would include separate processors. In such
a context the underlying state repository would have to be implemented to be



Environment Orientation 23

shared between the various processor address spaces. In commercial situations
this is commonly resolved by the use of an underlying database management
system; even though computations are carried out in the application level pro-
cessors their results are persisted to the underlying database for access by
any other part of the system. This is the basic approach of modern stateless
computing and the common patterns such as REST [6].

7.3 Caching

Commercial systems address the performance requirements of a distributed
system in several ways, some of which are relevant to complex systems simu-
lations. One approach is to observe that any particular piece of information,
characterised in the complex systems simulation context as an agent’s external
state, is read much more often that it is written. In the context of a query
oriented bird flocking simulation an agent updates its state at each simulation
step, and that information is potentially read by many other agents before it
is next updated.

As such, this information is ripe for local caching. If the environment server,
implemented in each processor, can find the required states in the local cache,
then they can be processed rapidly. If some states are not found in the cache
then they must be retrieved from the central repository, persisting them in the
local cache on the way past: if they are needed once there is a high probability
that they are going to be needed again.

This apparently simple process is complicated by several issues. See [17,
§9.4.1] for a detailed discussion.

8 Conclusions and future work

Environment Orientation is an approach to the construction of computer based
complex systems simulations where the agents do not directly communicate
with each other, but rather communicate through the medium of some envi-
ronment. In such a simulation the agents are regarded as placing their rele-
vant state information into the environment, and observing other agents by
querying the environment; the environment determines which agents are in
the detection neighbourhood. The notion of an agent existing simultaneously
in multiple environments with quite separate characteristics is realistic.

We have demonstrated that Environment Oriented simulations of complex
systems are feasible, and that certain technical issues, such as the combination
of environments, are eased. The software architecture is relatively straightfor-
ward, building on well-established notions of transactional software design.
Simulations built on this architecture are free from deadlock by design. As
such the simulator developer can concentrate on the complex system itself.

Inevitably, though, there are limitations common to highly distributed im-
plementations to do with scaling up (section 7). The simulations performed



24 Tim Hoverd, Susan Stepney

so far here have used only a few thousand simple agents, which can work ef-
fectively on single-processor multi-core hardware, and where these issues are
easier to solve.

There are, though, engineering approaches (section 7) that offer a way of
addressing these limitations to the point where a real complex systems, with
potentially a great many more agents, could be simulated. The next step is to
build such a much larger simulation using Environment Oriented techniques,
and using larger-scale multi-processor hardware.

Acknowledgements The work described here was part of the CoSMoS project, funded by
EPSRC grant EP/E053505/1 and by a Microsoft Research Europe PhD studentship.

References

1. P. Andrews, A. Sampson, J. Bjørndalen, S. Stepney, J. Timmis, D. Warren, and
P. Welch. Investigating patterns for the process-oriented modelling and simulation
of space in complex systems. In Artificial Life XI, pages 17–24. MIT Press, 2008.

2. Paul S. Andrews, Fiona A. C. Polack, Adam T. Sampson, Susan Stepney, and Jon
Timmis. The CoSMoS process version 0.1: A process for the modelling and simulation
of complex systems. Technical Report YCS-2010-453, Department of Computer Science,
University of York, March 2010.

3. Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
Pearson, 3rd edition, 2005.

4. Fred R. M. Barnes, Peter H. Welch, and Adam T. Sampson. Barrier synchronisation for
occam-pi. In Hamid R. Arabnia, editor, PDPTA, pages 173–179. CSREA Press, 2005.

5. E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1(2):115–138, June 1971.

6. Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-
ture. ACM Trans. Inter. Tech., 2(2):115–150, May 2002.

7. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston, MA, USA, 2002.

8. Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns and
Practice. Addison-Wesley, 1999.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

10. David Gelernter. Generative communication in Linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, January 1985.

11. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

12. Jim Gray. The transaction concept: Virtues and limitations. In Proc. 7th International
Conference on Very Large Databases, pages 144–154. IEEE, 1981.

13. Per Brinch Hansen. The architecture of concurrent programs. Prentice-Hall, 1977.

14. Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming Language.
Addison-Wesley, 2nd edition, 2006.

15. C. A. R. Hoare. Communicating sequential processes. Prentice Hall, 1985.

16. Jan Rune Holmevik. Compiling SIMULA: A historical study of technological genesis.
IEEE Annals of the History of Computing, (4):25–37, 1994.

17. Tim Hoverd. Environment Oriented Simulation. PhD thesis, University of York, 2011.

18. Tim Hoverd and Susan Stepney. Energy as a driver of diversity in open-ended evolution.
In ECAL 2011, pages 356–363. MIT Press, 2011.

19. David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425,
July 1985.



Environment Orientation 25

20. Tobin J. Lehman, Alex Cozzi, Yuhong Xiong, Jonathan Gottschalk, Venu Vasudevan,
Sean Landis, Pace Davis andBruce Khavar, and Paul Bowman. Hitting the distributed
computing sweet spot with TSpaces. Computer Networks, 35:457–472, 2001.

21. J. M. R. Martin and P. H. Welch. A design strategy for deadlock-free concurrent systems.
Transputer Communications, 3(4):215–232, 1997.

22. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition,
2000.

23. Microsoft. SQL Server technical bulletin — How to resolve a deadlock, 2007.
http://support.microsoft.com/kb/832524, accessed 1 April 2013.

24. Robin Milner. The Space and Motion of Communicating Agents. CUP, 2009.
25. Scott Oaks and Henry Wong. Java Threads. O’Reilly, 3rd edition, 2004.
26. Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee,

and Shan Lu. Pres: probabilistic replay with execution sketching on multiprocessors.
In SOSP ’09, pages 177–192. ACM, 2009.

27. S.F. Railsback and V. Grimm. Agent-Based and Individual-Based Modeling: A Practical
Introduction. Princeton University Press, 2011.

28. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics, 21(4):25–34, 1987.

29. Adam T. Sampson. Process-Oriented Patterns for Concurrent Software Engineering.
PhD thesis, University of Kent, October 2010.

30. Masatoshi Seki. dRuby and Rinda: Implementation and Application of Distributed
Ruby and its Parallel Coordination Mechanism. International Journal of Parallel Pro-
gramming, 37(1):37–57, 2009.

31. Susan Stepney. Embodiment. In Darren Flower and Jon Timmis, editors, In Silico
Immunology, chapter 12, pages 265–288. Springer, 2007.

32. P. H. Welch, G. R. R. Justo, and C. J. Willcock. Higher-Level Paradigms for Deadlock-
Free High-Performance Systems. In Transputer Applications and Systems ’93, pages
981–1004. IOS Press, 1993.

33. Wikipedia. Sombrero function. http://en.wikipedia.org/wiki/Sombrero function, ac-
cessed on 6 April 2013.


