Skip to main content
Log in

Entanglement sudden death: a threat to advanced quantum key distribution?

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Entanglement is a global characteristic unique to quantum states that depends on quantum coherence and may allow one to carry out communications and information processing tasks that are either impossible or less efficient using classical states. Because environmental noise, even when entirely local in spatial extent, can fully destroy entanglement in finite time, an effect referred to as “entanglement sudden death” (ESD), it may threaten quantum information processing tasks. Although it may be possible to “distill” entanglement from a collection of noise-affected systems under appropriate circumstances, once entanglement has been completely lost no amount of distillation can recover it. It is therefore extremely important to avoid its complete destruction in times comparable to those of information processing tasks. Here, the effect of local noise on a class of entangled states used in entanglement-based quantum key distribution is considered and the threat ESD might pose to it is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida MP, de Melo F, Hor-Myell M, Salles A, Walborn SP, Souto Ribero PH, Davidovich L (2007) Environment-induced sudden death of entanglement. Science 316:579

    Article  Google Scholar 

  • Ann K, Jaeger G (2007) Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems. Phys Rev A 76:044101

    Article  Google Scholar 

  • Ann K, Jaeger G (2008) Entanglement sudden death in qubit-qutrit systems. Phys Lett A 372:579

    Article  MATH  MathSciNet  Google Scholar 

  • Ann K, Jaeger G (2009) Finite-time destruction of entanglement and non-locality by environmental influences. Found Phys 39:790

    Article  MATH  MathSciNet  Google Scholar 

  • Bennett CH, Popescu S, Rohrlich D, Smolin JA, Thapliyal AV (2001) Exact and Asymptotic Measures of multipartite pure state entanglement. Phys Rev A 63:012307

    Article  Google Scholar 

  • Caves CM, Milburn GJ (2000) Qutrit entanglement. Opt Commun 179:439

    Article  Google Scholar 

  • Ekert AK (1992) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661

    Article  MathSciNet  Google Scholar 

  • Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145

    Article  Google Scholar 

  • Jaeger G (2003) Method and apparatus for creating at least one qubit in a quantum computing device. US Patent No. 6,633,053

  • Jaeger G (2004) Bell gems: the Bell basis generalized. Phys Lett A 329:425

    Article  MATH  MathSciNet  Google Scholar 

  • Jaeger G, Sergienko AV (2006) Entangled states in quantum key distribution. AIP Conf Proc 810:161

    Article  MathSciNet  Google Scholar 

  • Jaeger G (2007) Quantum information: an overview (chapter 10). Springer, Heidelberg

    Google Scholar 

  • Jaeger G, Ann K (2008) Generic tripartite Bell nonlocality sudden death under local phase noise. Phys Lett A 372:6853

    Article  MATH  MathSciNet  Google Scholar 

  • Kraus K (1983) States, effects, and operations. Springer, Berlin

    MATH  Google Scholar 

  • Palma GM, Suominen K-A, Ekert AK (1996) Quantum computers and dissipation. Proc R Soc Lond A 452:567

    Article  MATH  MathSciNet  Google Scholar 

  • Salles A, de Melo F, Almeida MP, Hor-Meyll M, Walborn SP, Souto Ribeiro PH, Davidovich L (2008) Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys Rev A 78:022322

    Article  Google Scholar 

  • Walton ZD, Abouraddy AF, Sergienko AV, Saleh BEA, Teich MC (2003) Decoherence-free subspaces in quantum key distribution. Phys Rev Lett 91:087901

    Article  Google Scholar 

  • Werner RF (1989) Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys Rev A 40:4277

    Article  Google Scholar 

  • Werner RF, Wolf MM (2001) Bell inequalities and entanglement. Quantum Inf Comput 1(3):1

    MATH  MathSciNet  Google Scholar 

  • Wootters WK (1998) Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett 80:2245–2248

    Article  Google Scholar 

  • Yu T, Eberly JH (2004) Finite-Time disentanglement via spontaneous emission. Phys Rev Lett 93:140404

    Article  Google Scholar 

  • Yu T, Eberly JH (2006) Quantum open system theory: bipartite aspects. Phys Rev Lett 97:140403

    Article  Google Scholar 

  • Yu T, Eberly JH (2007) Evolution from entanglement to decoherence. Quantum Inf Comp 7:459

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the DARPA QUINESS program through U.S. Army Research Office Award No. W31P4Q-12-1-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Sergienko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaeger, G.S., Sergienko, A.V. Entanglement sudden death: a threat to advanced quantum key distribution?. Nat Comput 13, 459–467 (2014). https://doi.org/10.1007/s11047-014-9452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9452-7

Keywords

Navigation