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Abstract Building a structure using self-assembly of DNA molecules by origami folding requires finding
a route for the scaffolding strand through the desired structure. When the target structure is a 1-complex
(or the geometric realization of a graph), an optimal route corresponds to an Eulerian circuit through
the graph with minimum turning cost. By showing that it leads to a solution to the 3-SAT problem, we
prove that the general problem of finding an optimal route for a scaffolding strand for such structures is
NP-hard. We then show that the problem may readily be transformed into a Traveling Salesman Problem
(TSP), so that machinery that has been developed for the TSP may be applied to find optimal routes
for the scaffolding strand in a DNA origami self-assembly process. We give results for a few special cases,
showing for example that the problem remains intractable for graphs with maximum degree 8, but is
polynomial time for 4-regular plane graphs if the circuit is restricted to following faces. We conclude
with some implications of these results for related problems, such as biomolecular computing and mill
routing problems.
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threading strand · biomolecular computing · mill routing · computational complexity · A-trails
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1 Introduction

Given an Eulerian graph (a connected graph in which all the vertices have even degree), it is well
known that an Eulerian circuit, that is, a circuit that traverses each edge exactly once, can be found in
polynomial time. Here we have the additional information of a cost associated with each of the possible
routes that a circuit can take through a vertex (the turnings), and we seek a lowest cost Eulerian circuit.
We show that finding an Eulerian circuit using a best possible set of turnings is in general NP-hard. This
question arose as a design strategy problem for DNA self-assembly via origami folding, which involves
finding an optimal route for the scaffolding strand of DNA through the targeted structure.
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Self-assembly is the physical process by which structures form from disordered components, without
outside direction, based on the local chemical and physical properties of the materials used. DNA natu-
rally possesses properties conducive to self-assembly since DNA strands bond through base pairs within
the strands following well-understood rules. For DNA self-assembly, DNA strands are designed so that
when base pairing occurs, a molecule forms with the desired geometric structure. Several methods of
DNA self-assembly have been implemented, such as those using branched junction molecules pioneered
by Seeman, [8], and those using DNA origami methods pioneered by Rothmund, [40]. A wide range of
possible applications have been proposed for DNA self-assembly such as nanoscale circuitry and robotics,
drug delivery systems, and biomolecular computing. DNA self-assembly methods and their applications
are surveyed in, for example, [33], [36], and [41].

In DNA origami methods of nanoscale self-assembly, a single scaffolding strand of DNA traces the
construct exactly once, and then short helper strands, called staples, bond to this strand to fold and
lock it into the desired configuration (see, for example, [23], [34], and [40]). The design process for DNA
origami assembly involves finding a route for a scaffolding strand through the desired structure. While
originally applied to 2-complexes (solid 2D) structures, and later to 3-complexes (solid 3D structures),
that are ‘filled’ by the strands of DNA, a logical next step is adapting this technique to 1-complexes, or
graph-theoretical structures, such the skeletons of polyhedra. Such graph-theoretical structures (cubes
[8]; truncated octahedra [48]; rigid octahedra [44]; tetrahedra, dodecahedra, and buckyballs [21]; and a 3D
crystalline lattice [47]) have already been assembled via branched junction molecules. It is now reasonable
to try to assemble these and similar structures from DNA origami. However, the design strategies for
‘filled’ constructions, such as the stars and smiley faces of [40], or the 3D solid bricks, honeycombs
and modularly assembled icosahedra of [10], are different from those needed for open, graph-theoretical
structures such as 1-complexes. If the structure is a 1-complex or graph embedded in 3-space, for example
a polyhedral skeleton, then, since the scaffolding strand is usually a single circular strand of DNA, its
route must correspond to an Eulerian circuit through the graph or through some augmentation of the
graph (if it is not Eulerian, for example). We focus here on these structures that require an Eulerian
circuit as the route for the scaffolding strand.

In general, since DNA bonding of complementary base pairs is energetically favourable, a system will
tend to maximise the number of matches naturally, according to the laws of thermodynamics. However,
other physical properties and behaviours of DNA strands may influence the shapes it forms. Thus, in
a DNA origami construction of a 1-complex there may be preferred ways for the scaffolding strand to
pass through each vertex, for example, following a face of the structure rather than weaving through
the vertex. This leads to the associated the graph theoretic problem of finding an Eulerian circuit with
minimum turning costs. For example, a turning in an Euler circuit would have low cost if it corresponds
to a configuration the scaffolding strand would readily adopt, a medium cost if the strand can be made
to conform to the configuration albeit perhaps with some difficulty, and a high cost if the DNA strand
is physically constrained from the configuration. Ideally, the route for the scaffolding strand would only
require turns that the strand follows readily, i.e., those that correspond to the turnings in an Euler circuit
with minimum turning costs.

We show below that finding an Eulerian circuit with minimum turning cost is in general NP-hard
by proving that it implies a solution to the 3-SAT problem, which is well-known to be NP-hard. This
result has significant ramifications for using DNA origami as a basis for biomolecular computing of graph
invariants. (Graph invariants are properties of graphs that remain unchanged under isomorphism.) Many
graph invariants (for example, the existence of a Hamilton cycle, graph colorability, etc.) are known to be
NP-hard. However, biomolecular computing strategies have been proposed for them (see, for example, [2]
for Hamilton cycles, and [25] for 3-SAT and vertex 3-colorability). In order to compute a graph invariant
via a biological process, the graph must first be encoded in molecular structures. The results here show
that assembling a graph from DNA origami as a first step in the computation must be approached with
caution, as finding a good self-assembly strategy may be a priori intractable.

However, there is good news from a more pragmatic view point. We also show that the minimum
cost Eulerian circuit problem may be transformed in polynomial time into a Traveling Salesman Problem
(TSP). While the TSP is also in general NP-hard, extensive work has been done on this problem (see [31]
for a comprehensive overview), and the results here mean that machinery developed for the TSP may
now be brought to bear on finding optimal routes for a scaffolding strand for DNA origami assembly of
reasonably-sized graph-theoretical structures for practical applications.
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We also give the complexity of some special cases of the turning cost problem, showing for example
that if the Eulerian graph is 8-regular, then the problem remains intractable, but that there is a poly-
nomial time algorithm for certain classes of 4-regular graphs. We also discuss some implications of the
results here for biomolecular computing, and for the mill routing problem as given in [1].

2 Graph theoretical background and problem statement

The following conventions are used throughout this paper. Further details and a full formalization of
these concepts, including the transitions discussed below, may be found, for example, in [16,17].

Graphs are finite and may have loops and multiple edges. Thus, a graph G consists of a finite set of
vertices denoted V (G), and a finite multiset of edges, denoted E(G), that are unordered pairs (u, v) of
vertices, with v = u in the case of a loop. We generally use n to denote |V (G)| and call it the size of G.
As usual, indices may be used as needed to distinguish among multiple edges: if (u, v) has multiplicity m
then we index the m copies with 1, 2, . . . ,m. However, following standard convention, we will typically
suppress the index and just write (u, v) for an edge and refer to the edge multiset E(G) simply as the
edge set. Equivalently, a multigraph may be defined as a triple (V,E, f), where V and E are disjoint sets
of vertices and edges respectively, and f is a function from E to the set of unordered pairs of vertices
that specifies the endpoints of each edge. In either case, all edges are distinguishable.

A graph is planar if it may be drawn in the plane without any edges crossing. A plane graph is a
planar graph drawn in the plane.

Intuitively, if an edge is thought of as a line segment between two vertices u and v, and p is the
midpoint, then the two half-edges are the line segments up and vp. If e = (u, v) is an edge, then the
half-edge incident with u is formally denoted by (u, e). The two half-edges incident with a loop may be
arbitrarily assigned indices to distinguish them if necessary, but as with multiple edges, when there is
no danger of confusion we typically suppress the index. Note that, using indices as needed for loops and
multiple edges, all half-edges are distinguishable, and the edge set of a graph is uniquely determined by
its half-edges. The degree, d(v), of a vertex v is the number of half-edges incident with it. The maximum

degree of a graph G is ∆(G) := maxv∈V (G){d(v)}.
The application we consider here involves Eulerian graphs, which are connected graphs wherein the

degree of every vertex is even. A walk traverses consecutive edges in a graph, allowing repeated edges and
vertices; a trail allows repeated vertices but not edges; and a path repeats neither. A circuit is a closed
trail, and a cycle is a closed path. Given a connected graph G, an augmented graph results from drawing
an edge between any two vertices of odd degree, and continuing the process until no vertex of odd degree
remains (a graph necessarily has an even number of odd degree vertices). The resulting augmented graph
is then Eulerian.

The DNA self-assembly application discussed in the introduction now motivates the following defi-
nition and problem formulation, with the turning costs corresponding to the prioritized set of preferred
routes through each vertex for the scaffolding strand. We use the convention that the more preferable a
turning, the lower its turning cost.

Definition 1 (Turning cost.) Let G be an Eulerian graph and v be a vertex of G. A pairing at v
is a set {(v, e), (v, f)}, where (v, e) and (v, f) are distinct half-edges incident with v. To every pairing
{(v, e), (v, f)} we associate a non-negative rational number, called the turning cost of the pairing, denoted
by wv(e, f). (The turning costs at v can be thought of as a function wv from the set of all pairings at v to
the non-negative rational numbers.) When the half-edges involved in a turning is clear from the common
vertex we will usually refer to the pairing and turning cost of the two edges rather than specifying the
half-edges, e.g. simply say {e, f} is a pairing at v. We call the set of costs at a vertex v the turning costs

at v.

A transition system, T (v), at v is a set S of pairings at v such that every half-edge incident with v
appears in exactly one pairing in S. The cost of a transition system at v is the sum of the turning costs
over all pairings in the transition system, and is denoted w(T (v)).

Note that an Eulerian circuit C determines a transition system at each vertex by pairing half-edges
at a vertex v if they appear consecutively in C. (The converse is not true: a set of transition systems at
each vertex determines a disjoint set of circuits in a graph, but not necessarily an Eulerian circuit.) We
denote the transition system at v determined by an Eulerian circuit C by TC(v).
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If C is an Eulerian circuit of a graph G, then the cost of C, denoted w(C), is the sum of the turning
costs of all pairings that it determines:

w(C) =
∑

v∈V (G)

w(TC(v)).

The optimization problem arising from our DNA origami application may now be stated as follows:

Problem 1 Given an Eulerian graph with turning costs, find an Eulerian circuit C with minimum cost
w(C).

We recall that, informally, a decision problem is one for which there is a yes or no answer, such as, can
graph G be colored using k colors? P is the set of decision problems for which it is possible to determine
the answer in polynomial time in the size of the input, and NP is the set of decision problems for which it
is possible to determine if a given answer is correct in polynomial time in the size of the input. Whether
or not P = NP remains a famous open question, but there is a large class of problems, referred to as
NP-hard, for which finding a polynomial time algorithm for any one of them would automatically lead
to polynomial time algorithms for all problems in NP. A decision problem is NP-complete if it is both
NP-hard and in NP. See [19] for additional background.

Here, the decision problem corresponding to Problem 1 is the following:

Problem 2 Given an Eulerian graph G equipped with a set of turning costs at each vertex, and a
non-negative constant c, determine if there is an Eulerian circuit C with the minimum cost w(C) ≤ c.

Note that if there were a polynomial time algorithm for Problem 1, then Problem 2 would be in P,
since we could simply find a minimum cost Eulerian circuit and compare its cost to the given constant
c. However, we will show in the next section that these two problems are in general intractable by using
the following special case of Problem 2.

Problem 3 Given an Eulerian graph G equipped with turning costs in {0, 1} at each vertex, determine
if there is a zero-cost Eulerian circuit C.

3 Finding an Eulerian circuit with minimum turning cost is NP-hard

We will demonstrate that finding an Eulerian circuit with minimum turning cost is NP-hard by showing
that 3-SAT is polynomial time reducible to this problem. In particular, we note that if Problem 2 can be
solved in polynomial time, then the special case Problem 3 can be solved in polynomial time. However,
we show that 3-SAT can be reformulated in polynomial time to the problem of finding such a zero-cost
Eulerian circuit in an associated Eulerian graph with turning costs of zero or one. This would imply that
3-SAT could be solved in polynomial time. From this we conclude that Problem 2 is NP-complete, and
hence Problem 1 is NP-hard.

The 3-SAT problem involves a Boolean logic conjunctive normal form expression such as

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5) ∧ · · · ∧ (x2 ∨ x3 ∨ ¬x4).

In a 3-SAT problem, each clause in such an expression has exactly three distinct variables from a set
{x1, x2, . . . , xn} of Boolean variables, that is, each variable may be assigned a value of true or false. The
symbols ∨, ∧, ¬ represent the logic operations ‘and’, ‘or’, and ‘not’, respectively. A literal is a variable
xi or its negation ¬xi, with the former referred to as a positive literal and the latter as a negative literal.
For the 3-SAT problem, only the logic operations ∨ and ¬ may appear inside the clauses, and only ∧
may join clauses. The decision problem asks whether there is an assignment of true or false to each of
the variables such that the whole expression evaluates to true (see for example, [28] pg. 459).
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x5

x1

x3

x4

(a) Triangles for 3-SAT formula: (x1∨x2∨¬x3)∧
(¬x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x5).

x1(x1∨xp∨xq) (x1∨xl∨xm)

(¬
x
1
∨
x
n
∨
x
r
)

(b) Initial neighbourhood of a ver-
tex x1.

Fig. 1 Forming the triangles of the graph associated with a 3-SAT instance.

3.1 Constructing an Eulerian graph with turning costs from a 3-SAT instance

We begin with an arbitrary 3-SAT instance, and construct an associated Eulerian graph. For expositional
clarity, we will describe this graph via an embedding in 3-space, but since the objective is an abstract
Eulerian graph, the choice of specific embedding is irrelevant. The given embedding simply facilities our
description of which pairs of half-edges should receive which turning costs.

For each Boolean variable xi in the 3-SAT expression, we draw a vertex xi in the plane. We read the
3-SAT expression from left to right, and for each clause we create a triangle on the vertices xi, xj and xk,
where xi, xj , and xk are the variables in the clause. The edges of the triangle may cross in the plane, but we
require each of the three pairings of half-edges {(xi, (xi, xj)), (xi, (xi, xk))}, {(xj , (xj , xi)), (xj , (xj , xk))}
and {(xk, (xk, xi)), (xk , (xk, xj))} in the triangle to appear consecutively in the cyclic orders of the vertices
at their common end points, i.e. the edges are neighbors in the plane drawing. Which of the two possible
orders for two consecutive half-edges does not matter, provided they are consecutive. The order of
the pairs in the cyclic order about a vertex also does not matter. At each vertex, we shade a small
region between the half-edges in the same triangle to record this property, as in Figure 1(a). Again we
emphasize that the shading of regions and the embedding into 3-space are simply expository conveniences
for describing the construction; they are not necessary for the implementation.

We label each triangle with the clause it represents. Observe that each vertex has even degree, with
a neighbourhood consisting of alternating shaded and unshaded regions, where the shaded regions are
parts of triangles labelled by clauses containing the literal (either positive or negative) that labels the
vertex. See Figure 1(b).

We now add an extra apex vertex, u, above the plane. We will draw edges (in general, there will be
multiple edges) between u and a vertex xi so that the half-edge incident with xi lies in the plane in a
small neighbourhood of xi before rising above the plane to meet the other half of the edge (the half-edge
incident with u). See Figure 2(a). These half-edges incident with xi are drawn in the unshaded regions
about xi, according to the following scheme. For each unshaded region at xi, if the literal corresponding
to xi is positive in both clauses labelling the shaded regions bounding the white region, or is negative in
both, then we place two edges from xi to u emerging from this unshaded region. If, however, the literal
is positive in one clause, and negative in the other, we then place one edge emerging from the unshaded
region, as in Figure 2(b).

If we consider the sequence of literals corresponding to the variable xi in the triangles labelling the
shaded regions about the vertex xi, we notice that sequences of consecutive positive literals alternate
with sequences of negative literals. Each time there is a switch from positive to negative, or vice versa,
we add a single edge, hence we have added an even number of single edges. Each time there is no switch,
we add two edges. Thus, in total, we will have added an even number of edges, preserving the even degree
of every vertex xi, and ensuring that u is also of even degree. Since every vertex is connected to u, the
graph is connected. In addition every vertex has even degree, so the graph is Eulerian.
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u

(a) Adding the apex vertex u.

(x1∨xp∨xq) (x1∨xl∨xm)

(¬
x
1
∨
x
n
∨
x
r
)

(b) Final neighbourhood of a vertex
x1.

Fig. 2 Adding the apex vertex.

We now assign turning costs to the half-edge pairings on each vertex as follows. We assign a cost of
zero to every pairing of half-edges incident with the apex vertex u. We also assign a cost of zero to any
consecutive pairing of half-edges in the clockwise orientation about each vertex xi. All other pairings of
half-edges have cost one.

Thus we have associated an Eulerian graph with turning costs to the given 3-SAT instance. For a
3-SAT instance I, we denote this graph by GI and call it the Eulerian graph with turning costs of I.

3.2 The Eulerian graph GI may be constructed in polynomial time

Proposition 1 Given a 3-SAT expression I where n is the number of distinct literals and r is the number

of clauses in the expression, then GI , the Eulerian graph with turning costs of I, may be constructed in

O(nr2) time.

Proof Since the vertices except u are labeled by the literals, which are indexed from 1 to n, only n
needs to be known to create the vertex list, and n may be found simply by recording the highest index
appearing in the clauses as they are read one at a time. Furthermore, each clause contributes three
edges, the three half-edge pairings of which may added (in consecutive order) to the cyclic orders of the
corresponding vertex. Since the order of the pairs about the vertex does not matter, they may be added
to the cyclic order as they are read in. Thus, again, each clause need only be read once to create the list
of these edges.

Adding the half-edges for the edges from each vertex xi to the apex vertex u involves reading through
the cyclic order about each vertex once. Since each clause can contribute at most two half-edges incident
with a given vertex, there are at most 2r half-edges in the sequence for each vertex. Furthermore, we
have to insert no more than 2r half-edges corresponding to edges from the vertex to u. Thus, since there
are n vertices, this process takes O(rn) steps.

Turning costs are assigned by reading the list of half-edges at each vertex, and recording a zero for
consecutive half-edges on the list, and a one for all other pairs. Since no vertex may have degree greater
than 4r, there are at most

(

4r
2

)

pairs of edges to assign turning costs for at each vertex except for u.
There is no need to record turning costs for pairs of edges incident with u as these are all zero and hence
cannot contribute to the total cost of the Eulerian circuit. Thus, listing all the turning costs requires
O(nr2) steps.

Since listing the turning costs for each pair is the most time consuming step, the overall complexity
of constructing the associated Eulerian graph with turning costs is O(nr2). ⊓⊔
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(a) xi is true.
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(b) xi is false.

Fig. 3 These are the only two possible zero-cost transitions at a vertex xi. Dotted lines in the left image represent the
Eulerian circuit configurations at the vertex xi corresponding to variable xi set to true, hence connecting ¬xi triangles.
The image on the right represents xi when xi is set to false.

3.3 Finding an Eulerian circuit with minimum turning costs is NP-hard

We use the construction of Subsection 3.1 to show that the 3-SAT problem is polynomial time reducible
to Problem 2.

Theorem 1 Given a 3-SAT instance I and the Eulerian graph with turning costs of I, there is a solution

to the 3-SAT instance if and only if there is a zero-cost solution to the corresponding turning cost instance.

Proof Suppose there is a zero-cost solution to the associated turning cost problem. Then, at each vertex
xi, only neighbouring pairs of edges can appear consecutively in the Eulerian circuit as these are the only
pairs with turning cost zero. Thus, for each xi, because of the parity of the interspersed xiu edges, there
are only two possible configurations for the Eulerian circuit to follow through the vertex xi: one where it
joins half-edges of the triangles with positive literal xi’s in their labelling clauses, and one where it joins
half-edges of triangles with negative literals ¬xi in their labelling clauses, as in Figure 3.

In the cases where the triangles with xi in their labelled clauses are followed, we assign a value of
“false” to xi. In the case that the edges in the ¬xi labelled triangles are followed, we assign a value of
“true” to xi, again as in Figure 3.

We claim that this is a solution to the given 3-SAT problem. If not, then one of the clauses is false, and
we examine the triangle labelled by that clause. There are four cases, depending on how many positive
and negative literals are in the clause. In each case, since the clause is false, the positive literals must
be set to false, and the negative literals set to true. However, a positive literal set to false corresponds
to the Eulerian circuit following the shaded region of a triangle, as does a negative literal set to true.
Thus, in all cases, a disjoint 3-cycle results, and since this cannot occur in an Eulerian circuit, we have
contradicted the fact that we have a solution to the associated turning cost problem.

For the converse, we need to show that if there is a solution to the 3-SAT problem, then the associated
turning cost problem has a zero-cost solution. This follows from construction, since we can examine each
variable xi in the 3-SAT expression, and assign the vertex xi one of the two transition systems as shown
in Figure 3 according to whether the variable is assigned a value of true or false in the given solution
to the 3-SAT problem. Both of these transitions systems have cost zero. We then just need to check
that these transition systems may always be extended to an Eulerian circuit. This follows since, as in
the previous argument, any closed triangle would correspond to an unsatisfied clause, of which there are
none. Thus, each set of edges in any triangle must form a set of paths, each of which continues to edges
incident with u (see Figure 4). Since all the paths begin and end at u, where every pairing of half-edges
has cost zero, we can simply concatenate these paths in any order through u to get a zero-cost solution
to the associated turning cost problem. ⊓⊔

Corollary 1 Problem 2 is NP-complete.
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Fig. 4 Subpaths in an Eulerian circuit around a triangle, recalling that the Euler circuit follows turns with cost zero, i.e.
using consecutive edges about a vertex.

Proof By Theorem 1, 3-SAT is polynomial time reducible to Problem 2, and 3-SAT is well-known to be
NP-hard. Furthermore, Problem 2 is clearly contained in NP since the turning cost of a given solution
may be computed in polynomial time. ⊓⊔

Corollary 2 Problem 1 is NP-hard.

Proof If an optimization problem has a corresponding decision problem that is NP-Complete, the opti-
mization problem must be NP-hard. ⊓⊔

It is convenient at this point make the following technical observation which we will use in Section 5.2.

Observation 1 Given a 3-SAT instance I, we may assume without loss of generality that any vertex

xi in the GI , Eulerian graph with turning costs of I that is used in the proof of Theorem 1, has a degree

that is not divisible by 4.

Proof If the degree of xi is divisible by 4, then modify the graph by taking two parallel copies of any
edge (xi, u) from xi to the apex vertex and making the region between them in the neighborhood of
xi unshaded. This increases the degree by two, without changing the parity of the number of edges in
any unshaded region. Thus, we are still able to distinguish between the two possible transitions at the
vertex xi (consider Figure 3 with the two additional edges added), so the additional edges do not affect
the ways in which a zero-cost Eulerian circuit can follow the triangles corresponding to the clauses, and
the construction of the graph is still polynomial time. Thus the proofs of Proposition 1, Theorem 1, and
Corollaries 1 and 2 still hold with the modified graph. ⊓⊔

4 Reformulating Problem 1 as a TSP

Recall that Traveling Salesman Problem (TSP) seeks a minimum cost Hamilton cycle in a graph with edge
weights, that is, a cycle that visits each vertex of the graph with a minimum sum of the edge weights
of the edges used in the cycle. The best-known algorithm for the general version of the TSP is the
O(n22n) dynamic program described by Held and Karp in 1962 [22]. Because of the practical importance
of the TSP, there is a rich history of computational work, including heuristics, integer programming
solutions, genetic algorithms, and simulated annealing algorithms (see [31] for a survey). There are good
approximations for special cases of the TSP. For example, in the case of the metric TSP (where costs
are non-negative, symmetric, and obey the triangle inequality), there is a simple 3/2-approximation
algorithm, i.e., an algorithm guaranteed to find a solution, in polynomial time, with cost at most 3/2
times the optimal cost [9]. Unfortunately finding a good approximation algorithm for the general TSP
is (provably) challenging, since such an algorithm would lead to a solution for the NP-hard Hamiltonian
cycle problem.

The relevance of all these results for the TSP here is that the problem of finding a minimum turning
cost Eulerian circuit can be reformulated as a TSP. This means that the TSP machinery may be brought
to bear on solving Problem 1, and hence on finding optimal threading routes for the scaffolding strand
in DNA origami methods of self-assembly. While the cost data is unlikely to be metric in the case of a
turning cost problem, in small instances, such as those likely to arise in practice from DNA self-assembly
problems, should be tractable using the Held-Karp algorithm [22] or an integer programming solution.
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wv(fv, ev)
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(c) L(G2) with some
of its edge weights
shown.

Fig. 5 A graph G, G2, and L(G2) with some edge labels and edge-weights shown.

We will use line graphs to give the connection between Problem 1 and the TSP. Let G be a graph,
and E(G) = {e1, . . . , em} be the edges of G. The line graph, L(G), of G has vertex set V (L(G)) = E(G),
and edge set E(L(G)) = {(ei, ej) | ei and ej are adjacent edges in G}. Clearly, L(G) may be constructed
in polynomial time from G.

We now solve Problem 1, by reducing it to the TSP.

Theorem 2 Given a graph G with turning costs, there is an associated edge weighted graph that may

be constructed in polynomial time such that applying the TSP to this graph yields an optimal Eulerian

circuit for G.

Proof Given an Eulerian graph G equipped with a set of turning costs at each vertex, we first form
another graph G2 by subdividing all of the edges of G twice, that is, adding two vertices to each edge of
G, as in Figure 5(b). Note that even if G has loops or multiple edges, G2 has none. We assign pair costs
to G2 as follows. Each edge e = (u, v) of G gives rise to three edges in G2. Call these eu, ec, ev, where
eu is incident with u and ev is incident with v (if u = v denote these two edges by eu1

and eu2
), and

ec is the remaining edge in the center. Let the turning cost of the pair (ev, fv) in G2 equal the turning
cost wv(e, f) in G. Set the turning cost of all other pairs of edges in G2 (these are the edges of the form
(ev, ec) for some v) to zero. Note that there is a one-to-one correspondence between the Eulerian circuits
of G and those of G2, and, moreover, the corresponding Eulerian circuits have the same turning costs.
Clearly G2 with its edge costs may be constructed from G in polynomial, even linear, time.

We now form the line graph, L(G2), again in polynomial time. As G2 has no loops or multiple edges,
each pair of edges ev, fv at v corresponds to a unique edge (ev, fv) in L(G2). Assign weights to the edges
of L(G2) as follows. If e and f are adjacent edges in G2, then they have an associated turning cost
wv(e, f). We give the corresponding edge (e, f) in L(G2) weight wv(e, f). See Figure 5(c).

Every walk in G2 is uniquely determined by its sequence of edges, and, as L(G2) has no multiple
edges, every walk in L(G2) is determined by a sequence of vertices. If C is an Eulerian circuit in G2 then
it is well-known (or see [7,20]) that C defines a Hamiltonian cycle H in L(G2). By construction, the costs
of C in G2, and the weights of H in L(G2) are equal. Conversely, let H be a Hamiltonian cycle in L(G2).
Since each vertex ec of L(G2) is of degree 2, H is of the form e1u1

e1c1e
1
v1e

2
u2

· · · emcmemvm , where vi = ui+1

and the indices are taken modulo m. From this, it is easily seen that the corresponding walk in G2 is an
Eulerian circuit of G2 of cost equal to the weight of H . Thus, there is a bijection between Hamiltonian
cycles in L(G2) and Eulerian circuits in G2, and hence also the Eulerian circuits in G. As this bijection
maps costs to weights directly, if H is a solution to the TSP in L(G2), then the corresponding Eulerian
circuit in G2 gives a minimum turning cost Eulerian circuit of G2 and hence of G. ⊓⊔

Thus we have formulated the problem of finding a minimum turning cost Eulerian circuit, Prob-
lem 1, as a TSP. Note that the above argument does not reduce the TSP to Problem 1 since not every
Hamiltonian graph is a line graph.
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v
−→

white smoothing black smoothing crossing.

Fig. 6 The three transition systems of a vertex v in a face two colored 4-regular plane graph.

5 Some special cases

Often special instances of intractable problems may be solved efficiently, and that is true here as well. We
see below that an optimal Eulerian circuit may be found in polynomial time for 4-regular plane graphs
with no crossing transitions. It is fortuitous that this case is tractable, as many likely graph structured
targets for DNA origami assembly, for example lattice subsets and cages, are planar, while requiring
that a scaffolding strand and staples follow faces without crossing over one another respects the physical
constraints of DNA. On the other hand however, we will also see that the problem remains NP-hard
even if we restrict to the class of graphs with maximum degree 8.

5.1 4-regular plane graphs with no crossing transitions

If v is a vertex in a 4-regular plane graph, then it has three transition systems, determined by the
embedding in the plane, as in Figure 6. In this section, we will assume the crossing transition systems
are prohibited. (This can be done by assigning the pairs that comprise them large turning costs, in
particular, larger than the sum of all the turning costs of other non-crossing transition systems.)

More generally, if G is an Eulerian graph embedded in some surface, then an A-trail (or a non-

intersecting Eulerian circuit) ofG is an Eulerian circuit in which consecutive edges in the circuit, (vi−1, vi)
and (vi, vi+1) say, are adjacent in the cyclic ordering of the edges incident to vi. (Thus an Eulerian circuit
of a 4-regular plane graph that has no crossing transitions is an A-trail.) In [29], Kotzig proved that every
4-regular plane graph contains an A-trail. However, Bent and Manber, in [6], showed that dropping the
4-regularity requirement results in a problem that is NP-complete, i.e., the problem of deciding if an
Eulerian plane graph contains an A-trail is NP-complete. This remains the case even when restricted
to simple, 3-connected graphs with only 3-cycles and 4-cycles as face boundaries (see [4]), although
a polynomial-time algorithm for finding A-trails in simple 2-connected outerplane Eulerian graph was
given in [5]. Andersen, Bouchet and Jackson [3] characterised all 4-regular plane graphs that have two
orthogonal A-trails, where two A-trails of G are orthogonal if the two trails have different transitions
at each vertex of G. Furthermore the complexity of the related problem of finding Eulerian circuits on
4-regular graphs in which only crossing transitions are allowed (which corresponds to finding Eulerian
Petrie walks in an underlying graph) has been studied by Žitnik in [46].

In light of these results, it is in general non-trivial to determine the minimal cost A-trail when
turning costs are assigned to the graph. However, we demonstrate below that it can be accomplished in
polynomial time for all 4-regular plane graphs.

Theorem 3 If G is a 4-regular plane graph with a set of turning costs such that the crossing transitions

are prohibited, then an optimal Eulerian circuit may be found in polynomial time.

Proof We recall that every 4-regular plane graph G is the medial graph of its Tait graph (or blackface
graph), as in Figure 7 (see, for example, [14] for details). The Tait graph, F , is constructed by face
2-colouring G using the colors black and white such that the unbounded region is colored white, and
placing a vertex of F in the interior of each black face. (Note that G is face 2-colourable as it is plane
and 4-regular.) There is an edge between two vertices in F whenever the two regions corresponding to
the vertices have a shared vertex of G on their boundary. The edge is drawn between the two vertices
of F , passing through this shared vertex of G. Thus, there is a one-to-one correspondence between the
edges of F and the vertices of G, and if v is a vertex of G, we label the corresponding edges of F by ev.

The face 2-coloring of G allows us to distinguish the two non-crossing transition systems at each
vertex as either a black smoothing or a white smoothing, as in Figure 6. (The term smoothing derives
from standard terminology in knot theory.) It is well-known that for plane graphs there is a one-to-one
correspondence between the spanning trees of F and the Eulerian circuits of G (see e.g. [32] or [39]). The
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(a) A 4-regular plane
graph G.

(b) A face 2-colouring
of G.

(c) Forming F . (d) The Tait graph F .

Fig. 7 Forming Tait graphs.

correspondence identifies an edge ev in a spanning tree of F with a white smoothing at v in the Eulerian
circuit of G, and an edge eu not in the spanning tree with a black smoothing at u in the Eulerian circuit.
Again, see Figures 6 and 7.

Suppose for each vertex v in G, the cost for the white smoothing is av, while the cost for the black
smoothing is bv. Then we assign the value av − bv to the edge ev in F . Now suppose C is an Eulerian
circuit without crossing in G, and let I be the vertices of G which have a white smoothing in C. We can
see that the total cost of the Eulerian circuit will be,

∑

v∈I

av +
∑

v/∈I

bv =
∑

v∈I

(av − bv) +
∑

v∈V

bv.

However, because of the correspondence between Eulerian circuits of G and the spanning trees of F ,
the set of edges {ev | v ∈ I} is a spanning tree of F . Since we have assigned the value of av − bv to the
edge ev in F , the summand

∑

v∈I (av − bv) on the right-hand side is the weight of this spanning tree.
Thus, a minimum weight spanning tree in F corresponds to a minimum cost Eulerian circuit in

G. Since it is well known that minimum weight spanning trees may be found in polynomial time (for
example, by Kruskal’s algorithm), it follows that optimal Eulerian circuits without crossings may be
found for 4-regular plane graphs in polynomial time. ⊓⊔

5.2 Graphs of low degree.

The associated graphs GI used to prove Theorem 1 may have vertices of very high degree, but we show
that restricting ourselves to graphs with low degree vertices, does not, in general, change the complexity
of Problem 1.

For the proof of Theorem 4 we will need the Cartesian product of graphs. Let G and H be simple
graphs (i.e., with no loops or multiple edges). Then the Cartesian product G�H is the graph with vertex
set V (G)× V (H) and whose edge set is the set of all unordered pairs ((u1, v1), (u2, v2)) such that either
(u1, u2) ∈ E(G) and v1 = v2, or (v1, v2) ∈ E(H) and u1 = u2.

Theorem 4 Solving Problem 1 remains NP-hard even restricted to the class of graphs of maximum

degree 8.

Proof Let G = GI be the Eulerian graph with turning costs associated with a 3-SAT instance I as
constructed in Section 3.1. By Observation 1, we may assume, without loss of generality, that if a non-
apex vertex of G has degree greater than 8, then its degree is not divisible by 4. To prove the theorem,
we will construct, in polynomial time, a Eulerian graph with turning costs, G′, that has maximum degree
∆(G′) ≤ 8. Furthermore, G′ will have a zero-cost Eulerian circuit if and only if G does. To construct G′,
we ‘blow-up’ each high degree vertex of G, replacing it with a special graph that has maximum degree 8.
We will need two types of blow-ups: one for the vertices xi arising from the variables of I, and one for
the apex vertex u.

We denote the edges incident with a non-apex vertex xi of G by ei1, e
i
2, . . . , e

i
d(xi)

and we assume

that they appear in that cyclic order (with respect the orientation of the plane, as in the construction
of G). Furthermore, if d(u) = 2d, we let f1, . . . , f2d denote the edges of G that are incident with u. See
Figures 8(a) and 8(d).
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(c) Blowing-up xi.

u
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(d) The apex vertex u.
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(e) The graph Bu for d = 3.

Fig. 8 The blow-ups Bi and Bu.

For the first type of blow-up, for a vertex xi, we note that since d(xi) is even and not divisible by 4,
then d(xi)/2 = 2k+1 for some k. We then form a graph Bi as follows. Start with a plane (2k+1)-cycle.
At each vertex, place two nugatory edges (i.e., edges with a degree one vertex) such that one lies in the
bounded region, and one in the unbounded region. Add two parallel copies of each non-nugatory edge
to the (2k + 1)-cycle. Label the nugatory edges by labelling an arbitrary edge ei1. Then, if e

i
j has been

assigned to some nugatory edge in the unbounded (respectively, bounded) face, travel round the outer
face following the orientation of the plane and at the next vertex label the nugatory edge in the bounded
(respectively, unbounded) face eij+1. Continue until all nugatory edges have been labelled, which happens
since 2k + 1 is odd. See Figure 8(b). Assign pair costs to this graph as follows. Give a cost of zero to
any consecutive pairing of half-edges with respect to the (plane) orientation about each vertex in Bi. All
other pairings of half-edges have cost one. The resulting graph with turning costs is Bi.

To blow-up a vertex xi in G, we replace it with Bi as follows. Suppose an edge eij of G has endpoints

xi and w. Then we identify the degree one vertex of eij in Bi with the vertex w. We do this for each eij ,
and then delete the vertex xi and its incident edges.

For the blow-up of the apex vertex u, which has degree 2d, we begin by taking the Cartesian product
C2d�Pd of a 2d-cycle and a d-path. Consider the 2d-cycles in C2d�Pd that correspond to the original
copy of C2d. Exactly two of these cycles contain degree 3 vertices. Denote these two cycles by C′

2d and
C′′

2d. For each vertex in C′
2d attach a nugatory edge, and label these nugatory edges f1, . . . , f2d. Next take

a parallel copy of d distinct non-adjacent edges in the cycle C′′
2d. Denote the resulting graph by Bu. See

Figure 8(e). Note that Bu contains exactly 2d degree one vertices, which are ends of the edges labelled
f1, . . . , f2d, and every other vertex is of degree 4. Assign pair costs to the degree 4 vertices of Bu by
giving each pairing cost zero. Observe, for later, that for every partition of {f1, . . . , f2d} into pairs, there
exists d edge-disjoint paths in Bu such that fi and fj are in the same path if and only if they are paired
in the partition, in other words, edge-disjoint paths can be found such that each path contains the fi, fj
from exactly one pair. One way of doing this is to assign a copy of C2d to each pair fi, fj. The path for
a pair fi, fj begins by following the copy of Pd that fi is incident to until it intersects the copy of C2d

assigned to fi, fj. Then follow C2d in either direction until it copy of Pd that fj is incident to, and follow
that Pd to fj .

The vertex u is blown-up similarly to the xi’s by identifying each degree 1 vertex labeled fi in Bu

with the non-u endpoint of the edge labeled fi in G, and then deleting u and its incident edges.

Now, let G′ be the graph obtained from G by blowing-up each vertex xi that has d(xi) > 8 using
Bi, and, if d(u) > 8, blowing-up u using Bu. The turning costs of G′ are inherited from those of the
Bi, Bu, and those of the vertices of G with degree at most 8. Observe that G′ is constructed from G in
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polynomial time in the number of edges and vertices. It remains to show that G has a zero-cost Eulerian
circuit if and only if G′ does.

Suppose that C′ = g1g2 · · · gp is a zero-cost Eulerian circuit of G′, specified by the edges gi of G′.
(We read all circuits here cyclically so that we regard, for example, gpg1 as a subtrail of C′.) Consider a
subtrail in C′ of the form eijwe

i
k, where w is a trail contained entirely in Bi. By examining Figure 8(b),

observe that k = j + 1 or k = j − 1 (otherwise there is a cost greater than zero, or C′ contains more
than one closed walk and hence is not an Eulerian circuit). Thus any subtrail in C′ contained in any
Bi is of the form eijwe

i
j±1, and we can obtain a zero-cost pairing at the vertex xi of G by deleting the

subtrail w. Now given C′, construct a subsequence C by reading through C′ (cyclically). Whenever there
is a subtrail eijwe

i
j±1 with w contained entirely in Bi, delete w; whenever there is a subtrail of the form

fiwfj with w contained entirely in Bu, delete w. Then C defines an Eulerian circuit in G (since the edges
contained in C are exactly the edges of G; and since each eije

i
j±1, and each fifj define valid pairings in

G). Moreover, C is of cost zero since each pairing eije
i
j±1, and fifj in G is of cost zero. Thus if there is

a zero-cost Eulerian circuit in G′, there is a zero-cost Eulerian circuit in G.

Conversely, let C = g1w1g2w2 · · · gpw1 be a zero-cost Eulerian circuit of G, where the gi are edges and
the wi are vertices. Any subtrail eijxie

i
j±1 in C determines a unique zero-cost trail eijwije

i
j±1 through

Bi (see Figures 8(a)–8(c)). Also, C determines a partition of {f1, . . . , f2d} into pairs where the pairs
correspond to the subtrails fiufj. As observed above, there exist d(u)/2 disjoint paths in Bu such that
fi and fj are in the same path if and only if they are paired in the partition. For such a set of disjoint
paths, let Pij denote the one that contains fi and fj . Now read through C (cyclically), replace each pair

eije
i
j±1 with eijwije

i
j±1, and replace each pair fiufj with Pij . Denote the resulting sequence by C̃′. We

have that C̃′ determines a circuit in G′. Moreover, all turning costs in this circuit are zero. However,
C̃′ may not be an Eulerian circuit. This is since there may be edges in Bu that are not in C̃′. By
construction, any edges of G′ that are not in C̃′ must be unlabelled edges of Bu. We extend C̃′ to include
these edges as follows. As G′ is Eulerian, each component of G′\E(C̃′) is even, and therefore contains
an Eulerian circuit. Denote these Eulerian circuits by D1, . . . , Dq. Extend C̃′ to an Eulerian circuit C′

of G′ by following C̃′ until we meet a vertex in one of the Dj, detour round this circuit and remove it

from the list of circuits, then continue along C̃′, repeating this process until each Dj has been used. As
G is connected, this results in an Eulerian circuit. Moreover, as all transitions in Bu have zero-cost, C′

is a zero-cost Eulerian Circuit. Thus if there is a zero-cost Eulerian circuit in G there is a to a zero-cost
Eulerian circuit in G, completing the proof of the theorem ⊓⊔

6 Further implications

Our results have immediate ramifications for biomolecular computing. In addition there are other closely
related problems in the literature, for example mill routing, about which the results here also inform.

Our primary motivation for this investigation was finding design strategies for self-assembling struc-
tures (see [15,35], for example). One of the measures of the goodness of a design strategy, particularly one
that is to be used as part of a biomolecular computing process, is how efficiently it may be found. Finding
an optimal threading for the scaffolding strand of a DNA origami construction of a graph theoretical
structure corresponds to finding an optimal Eulerian circuit with turning costs, and we have shown here
that this problem is intractable. This is an important first step in determining the complexity of the
input to biomolecular computing problems. A consequence is that single strand DNA origami methods
may not be suitable as a generic starting point for efficient biomolecular computation of graph invariants.
While there are some provably optimal design strategies for other construction methods, for example
for branched junction molecules methods of DNA self-assembly of a few common classes of graphs (see
[15,35]), the computational complexity of the general problem for these other methods has not yet been
studied.

While we have addressed here a computational question arising from origami folding, an earlier
assembly method of DNA self-assembly uses a design strategy of tracing each edge of the graph twice,
once in each direction, while prohibiting double-backs (hairpin turns) and other disconnections at the
vertices (see [26,27]). To our knowledge, the computational complexity of this method has not yet been
addressed beyond its correspondence with graph genus. While it is possible that the techniques presented
here could be adapted to this earlier method, it is not immediate, since simply doubling the edges of the
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graph and forbidding only double-backs gives a very special case of the turning cost problem, and might
conceivably be tractable. Furthermore, simply doubling the edges does not guarantee a solution where
each original edge is traversed in opposite directions. Also, finding a route for the scaffolding strand and
placing the staples, then removing the nicks between the staples, while it does cover each edge twice in
opposite directions, generally results in covering the graph with multiple circular strands, not just one.
Nonetheless, the methods presented here offer a possible approach to analysing open questions arising
from this earlier assembly method.

Mill routing is another problem very closely related to Problem 1. In discrete thin mill routing, a
router needs to cover all the edges of a graph, which, in the case of orthogonal discrete thin mill routing,
is a subset of a grid (see [1]). It is fastest for a router to go straight across when encountering a grid
point, more time consuming for it to turn left or right, and quite slow for it to go back the way it came.
Thus, this is a turning cost problem.

While Problem 1 is closely related to the mill routing problem, it differs in that the mill routing
problem allows edges to be repeated, and even to “double back” on an edge, while we prohibit this as it
should be avoided with DNA origami. Such subtle differences can have a profound effect on the computa-
tional complexity of a problem, as can be seen for example among the variations of the Chinese Postman
problem, where the original problem may be solved in polynomial time, but even minor modifications
such as directing some subset of the edges lead to NP-hardness (see [12] and [16,17] for overviews).

The mill routing problem was shown in [1] to be NP-hard in the general case of any underlying graph,
but again allowing edges to be traversed more than once. Thus, the results of [1], which show that the
mill routing problem is NP-hard, do not apply here. The results here, however, show that the discrete
thin mill routing problem remains NP-hard, even in the special case that the desired tour must be an
Eulerian circuit. Thus, even if a set of repeated edges is specified ahead of time (this corresponds to
doubling an edge), or if, in general, augmenting edges are added to make the graph Eulerian, then the
general discrete thin mill routing problem remains intractable if the desired tour must be an Eulerian
circuit.
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