Skip to main content
Log in

Compressive scanning of an object signature

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

In this paper we explore the utility of compressive sensing for object signature generation in the optical domain. In the data acquisition stage we use laser scanning to obtain a small (sub-Nyquist) number of points of an object’s boundary. This is used to construct the signature, thereby enabling object identification, reconstruction, and, image data compression. We refer to this framework as compressive scanning of objects’ signatures. The main contributions of the paper are the following: (1) we use this framework to replace parts of the digital processing with optical processing and present one possible implementation, (2) the use of compressive scanning reduces laser data obtained and maintains high reconstruction accuracy, and (3) we show that using compressive sensing can lead to a reduction in the amount of stored data without significantly affecting the utility of this data for image recognition and image compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arkin EM, Chiang YJ, Held M, Mitchell JSB, Sacristan V, Skiena SS, Yang TC (1998) On minimum-area hulls. Algorithmica 21(1):119–136. doi:10.1007/PL00009204

  • Baggs R, Tamir DE (2008) Image registration using dynamic space warping. In: Artificial intelligence and pattern recognition’08. pp 128–135

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  • Candes E, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  • Candes E, Wakin M (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  • Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Elad M (2007) Optimized projections for compressed sensing. IEEE Trans Signal Process 55(12):5695–5702

    Article  MathSciNet  Google Scholar 

  • Frueh C, Zakhor A (2003) Constructing 3d city models by merging ground-based and airborne views. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition, vol 2, II - 562–9

  • Gonzalez RC, Woods RE (2006) Digital image processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  • Hug C (1997) Extracting artificial surface objects from airborne laser scanner data. Autom Extract Man-Made Objects Aerial Space Images II:203–212

    Article  Google Scholar 

  • Im YS, Choe JY, Oh TK, Paek EG, Tang X (2000) Experimental nonmechanical image rotation to 20 angles using an acousto-optic dove prism. Opt Eng 39(11):2909–2914

    Article  Google Scholar 

  • Keogh E, Wei L, Xi X, hee Lee S, Vlachos M (2006) Lb keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: IN VLDB, 2006. pp 882–893

  • Lustig M, Donoho DL, Santos JM, Pauly JM (2007) Compressed sensing MRI. EEE Signal Process Mag 25(2):72–82

    Article  Google Scholar 

  • Pavlidis T (1982) Algorithms for graphics and image processing. Digital system design series. Computer Science Press, Berlin

  • Porat B (1997) A course in digital signal processing. Wiley, New York

    Google Scholar 

  • Rivenson Y, Stern A, Javidi B (2010) Compressive fresnel holography. J Disp Technol 6(10):506–509

    Article  Google Scholar 

  • Scafter K (2011) Laser diode collimator flatbeam. http://www.sukhamburg.com/onTEAM/pdf/cam_cat_44-45_en.pdf

  • Swift D (1972) Image rotation devices—a comparative survey. Opt Laser Technol 4:175–188

    Article  Google Scholar 

  • Tamir DE, Shaked NT, Geerts WJ, Dolev S (2011) Compressive sensing of object-signature. In: Dolev S, Oltean M (eds) Optical superComputing. Lecture Notes in Computer Science, vol 6748. Springer, Berlin Heidelberg, pp 63–77

  • Tamir JI, Tamir DE, Dolev S (2012) Object signature acquisition through compressive scanning. OSC-2012, Bertinoro, Italy

  • Xiong J, Schlottau F, Li Y, Wagner K (2004) Nonmechanical programmable image rotator with Glan-Thompson prism. Proc SPIE 5557:124–131. doi:10.1117/12.557988

  • Ye JC (2007) Compressed sensing shape estimation of star-shaped objects in fourier imaging. IEEE Signal Process Lett 14(10):750–753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan E. Tamir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamir, J.I., Tamir, D.E., Geerts, W.J. et al. Compressive scanning of an object signature. Nat Comput 14, 457–467 (2015). https://doi.org/10.1007/s11047-014-9460-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9460-7

Keywords

Navigation